

Exercise-1

marked questions are recommended for Revision.

PART - I: SUBJECTIVE QUESTIONS

Section (A): Octet rule, Lewis dot structures

- A-1. Draw the Lewis structures of the following molecules and ions. PH₃, H₂S, BeF₂, SiCl₄, HCOOH, H₂SO₄, O₂²⁻, F₂O, C₃⁴⁻, S₃²⁻, NOCl, SOBr₂, SO₂Cl₂
- With the help of Lewis dot structure find the number of total covalent bonds formed in the following A-2. species.
 - (i) CO₃²⁻, (ii) CCl₄, (iii) NF₃
- A-3. Indicate what is wrong with each of the following Lewis structures? Replace each with a more acceptable structure.

 - (a) $[:S-C=N:]^{-}$ (b) $[:C]^{+}[:C]^{-}[C:]^{+}$ (c) :O=N=C
- A-4. In how many of the following species, the central atoms have two lone pairs of electrons?
 - (i) XeF₄
- (ii) XeF₅-
- (iii) F₂SeO₂
- (iv) XeF₃+

(v) XeOF₄

- (vi) CIOF₃
- (vii) ICl₄-
- (viii) SCI₂
- (ix) OSF₄

Section (B): Formal charge & limitations of octet rule

- How many compounds violate octet rule? B-1.
 - (i) CO₂ (v) IF₇
- (ii) PCI₅ (vi) PCl₃
- (iii) SiF₄ (vii) H₂SO₄
- (iv) BrF₅ (viii) BF₃
- B-2. Write the reason for the violation of octet rule by various molecules?

BCl₃, XeF₂, NO, IF₇, NO₂, CIF₃, ClO₂

Section (C): Resonance and Bond order Calculation

- C-1. Write down the resonance structure(s) for :
 - (i) SO₄²⁻
- (ii) CH₃COO-
- (iii) HCO₃-
- (iv) NO₃-
- (v) PO₄3-

Also calculate average bond order of M–O bond in these compounds.

Where M is central atom (And M–O bonds considered are the one which involve delocalization)

- C-2. How many types of N-O bondlengths are present in (a) HNO₃ (b) NO₃-?
- C-3. Explain the following:

C-O bond lengths in formic acid are 1.23 Å & 1.36 Å and both the C-O bond lengths in sodium formate have same value 1.27 Å.

C-4.> Compare bond length of S-O bond in SO₃²⁻ and HSO₃-.

Section (D): VBT, Overlapping of orbitals

- Find number of sigma bonds and pi bonds in CH₂=C=C=CH₂.
- **D-2.** Draw the type of overlaps between
 - (a) s and p_x
- (b) p_x and p_x
- (c) p_y and p_y
- (d) pz and pz

- (e) s and d₋₂
- (f) s and $d_{x^2-v^2}$
- (g) s and d_{yz}
- (h) p_z and d_{z^2}

- (i) p_z and d_{xy}
- (j) p_x and d_{xy}
- (k) p_x and d_{2}
- (I) p_x and $d_{x^2-v^2}$

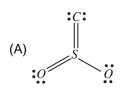
- (m) $d_{x^2-v^2}$ and $d_{x^2-v^2}$ (n) d_{xy} and d_{xy}
- (o) dxy and dyz

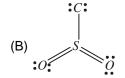
if internuclear axis is z-axis. Identify them as σ , π , δ bond wherever bond is formed.

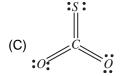
Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

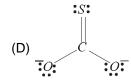
Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

PART - II: ONLY ONE OPTION CORRECT TYPE


Section (A): Octet rule, Lewis dot structures


- A-1. Among the following which property is commonly exhibited by a covalent molecule
 - (A) High solubility in water


(B) High electrical conductance


(C) Low boiling point

- (D) High melting point
- A-2. The possible structure of monothiocarbonate ion is :

- A-3. Which one is the electron deficient compound:
 - (A) ICI
- (B) NH₃
- (C) BCl₃
- (D) PCI₃

Section (B): Formal charge & limitations of octet rule

- The octet rule is not obeyed in:
 - (A) CO₂
- (B) BCl₃
- (C) PCI₅
- (D) (B) and (C) both
- **B-2.** ▶ Pick out among the following species isoelectronic with CO₂.
 - (A) N_3^-
- (B) (CNO)-
- (C) (NCN)2-
- (D) All of these
- To which of the following species is the octet rule applicable? B-3.
 - (A) BrF₅
- (B) SF₆
- (C) IF7
- (D) CO₂

Section (C): Resonance and Bond order Calculation

- C-1. ★ The average charge on each O atom and average bond order of I–O bond in IO₆5- is:
 - (A) -1 and 1.67
- (B) 5/6 and 1.67
- (C) -5/6 and 1.33
- (D) -5/6 and 1.167
- OThe relation between x, y and z in bicarbonate ion with respect to bond length is -C-2. (A) x > y > z(B) x > z > v(C) z = y > x
- Average bond order of C-C bond in C₆H₆ is C-3.

- (B) 2
- (C) 1.5
- (D) 1.33
- C-4. Among the species, which has the weakest carbon-oxygen bond:
 - (A) CO₂
- (B) CH₃COO-
- (C) CO
- (D) CO₃²-

(D) x > y = z

Section (D): VBT, Overlapping of orbitals

- **D-1.** Which of the following overlaps is **incorrect** [assuming z-axis to be the internuclear axis]?
 - (a) $2p_y + 2p_y \rightarrow \pi 2p_y$ (A) 'a' & 'b'
- (b) $2p_z + 2p_z \rightarrow \sigma 2p_z$
- (c) $2p_x + 2p_x \rightarrow \pi 2p_x$ (C) only 'd'
- (d) 1s + 2p_y $\to \pi (1s-2p_y)$

- Effective overlapping will be shown by: D-2.
 - (A) ⊕⊕+⊕⊝
- (B) ++++++

(B) 'b' & 'd'

- (C) ⊕⊙+⊙⊕
- (D) All the above

(D) None of these

- Indicate the wrong statement according to Valence bond theory: D-3.e
 - (A) A sigma bond is stronger then π -bond
 - (B) p-orbitals always have only sidewise overlapping
 - (C) s-orbitals never form π -bonds
 - (D) There can be only one sigma bond between two atoms
- D-4. C₃⁴⁻ has:
 - (A) two σ and two π -bond

(B) three σ and one π -bond

(C) two σ and one π -bond

(D) two σ and three π -bond

人

- **D-5.** Which of the following is not correct_
 - (A) A sigma bond is weaker than π -bond
 - (B) A sigma bond is stronger than π -bond
 - (C) A double bond is stronger than a single bond
 - (D) A double bond is shorter than a single bond

PART - III: MATCH THE COLUMN

1. Match the column

	Column-I		Column-II		
	Molecule/ion		Number of σ bonds		
(A)	C ₂ -2	(p)	5		
(B)	C ₂ H ₂	(q)	1		
(C)	CH ₃ OH	(r)	3		
(D)	HNO₃	(s)	4		

Exercise-2

marked questions are recommended for Revision.

PART - I: ONLY ONE OPTION CORRECT TYPE

- 1. In NO₃⁻ ion, The number of bond pair and lone pair of electrons present on Nitrozen atom are:
 - (A) 2,2
- (B) 3,1
- (C) 1,3
- (D) 4,0
- 2. How many bonded electron pairs are present in IF₇ molecule?
 - (A) 6
- (B) 7
- (C) 5
- (D) None of these
- 3. Which of the following is the electron deficient molecule?
 - (A) C₂H₆
- (B) SiH₄
- (C) PH₃
- (D) $BeCl_2(g)$

- **4.** Which is not an exception to the octet rule?
 - (A) BF₃
- (B) SnCl₄
- (C) XeF₆
- (D) CIO₃
- 5. Which of the following structure is the most preferred structure for SO₃?

6.5 For hydrazoic acid, which of the following resonating structure will be least stable?

$$H - N = N^{+} = N^{-} \longrightarrow H - N^{+} - N^{+} = N^{2-} \longrightarrow H - N^{-} - N^{+} \equiv N$$
(II) (III)

- (A) I
- (B) II
- (III) (C) III
- (D) Both (I) and (III)

- 7. What is correct order of bond order of CI–O bond.
 - (A) $CIO_4^- > CIO_3^- > CIO_2^- > CIO^-$
- (B) $CIO^- < CIO_2^- > CIO_3^- < CIO_4^-$
- $(C) CIO_3^- < CIO_2^- < CIO_4^- < CIO^-$
- (D) $CIO_2^- < CIP_3^- < CIO_4^- < CIO^-$
- **8.** Which of the following statements is not correct for sigma and pi bond formed between two carbon atoms?
 - (A) Free rotation of atoms about a sigma bond is allowed but not in case of a pi-bond
 - (B) Sigma -bond determines the direction between carbon atoms but a pi-bond has no primary effect in this regard
 - (C) Sigma-bond is stronger than a pi-bond
 - (D) Bond energies of sigma- and pi-bonds are of the order of 264 kJ/mol and 347 kJ/mol. respectively.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

- 9. Number and type of bonds between two carbon atoms in CaC₂ are:
 - (A) one sigma (σ) and one pi (π) bond
- (B) one σ and two π bonds
- (C) one σ and one and a half π bond
- (D) one σ bond
- **10.** The number of σ and π bonds in dicyanogen (CN)₂ are :
 - (A) $2\sigma + 3\pi$
- (B) $3\sigma + 2\pi$
- (C) $3\sigma + 4\pi$
- (D) $4\sigma + 3\pi$

PART - II: SINGLE AND DOUBLE VALUE INTEGER TYPE

- 1. In OF₂ number of bond pairs of electrons are :
- 2. How many of the following molecules the central atom is surrounded by atleast 10 electrons.
 - (i) ClO₂
- (ii) NO₃-
- (iii) O₃
- (iv) PCI₅

- (v) SO₃
- (vi) SO₄²⁻
- (vii) CO₂
- (viii) N₃-

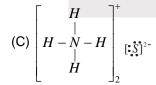
- (ix) I₃-
- **3.** Number of molecule or ions having lone pairs ≥ 2 for central atom are :
 - (i) HClO₄
- (ii) HClO₃
- (iii) HClO₂
- (iv) H₂O

- (v) NH_2^{-1} (ix) XeF_6
- (vi) CIF₃
- (vii) XeF₂ (xi) N₃⁻¹
- (viii) XeF₄ (xii) O₃

- (xiii) ICl₄
- (x) I_3^{-1} (xiv) ICI_2^+
- (xv) XeO₃
- (xvi) XeF₅-1

- **4.** Total no. of resonating structure in CO_3^{2-} are :
- **5.** Compound SO_3 has x bond pairs and y lone pairs. Calculate value of x + y.
- **6.** Find the number of molecule having two lone pairs on central atom.
 - (i) I₃+
- (ii) XeF₂
- (iii) XeF₄
- (iv) H₂O

- (v) NH₂-
- (vi) H₂S
- (vii) H₂SO₄
- (viii) NF₃
- **7.** Consider y-axis as internuclear axis, how many of following will lead to π bond formation:
 - (i) $p_y p_y$
- (ii) $p_x p_x$
- (iii) $p_z p_z$
- (iv) $d_{xy} d_{xy}$


- (v) $d_{yz} d_{yz}$
- (vi) $p_x d_{xy}$
- (vii) $d_{xy} p_z$
- (viii) $d_{xz} d_{xz}$

PART - III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- 1. Find the correct statements regarding SO_4^{-2} .
 - (A) Bond order of S-O bond is 1.5
- (B) Bond order of S-O bond is 2.5

(C) It violates Octet Rule.

- (D) All S-O bonds are equivalent.
- 2. Which of the following Lewis diagram is/are incorrect?
 - (A) Na⁺ O-CI

- H H | | (D) H-N-N-H
- 3. Which are the exceptions of the lewis octet rule.
 - (A) NO₃⁻ and N₂O

(B) BeH₂ and NO

(C) KrF2 and ClF3

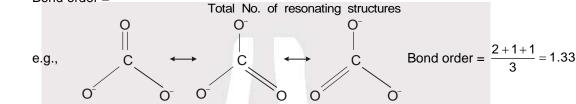
- (D) All of these
- 4. Which species have same bond order?
 - (A) CO_3^{-2}
- (B) NO₃⁻
- (C) NO₂
- (D) NO

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

PART - IV: COMPREHENSION

Read the following passage carefully and answer the questions.


Comprehension #1

Definition: Resonance may be defined as the phenomenon in which two or more structures involving in identical position of atom, can be written for a particular compound.

Resonance hybrid: It is the actual structure of all different possible structures that can be written for the molecule without violating the rules of covalence maxima for the atoms.

Resonance hybrid

O Bond order = Total No. of bonds formed between two atoms in all structures

- Resonance energy = Actual bond energy Energy of most stable resonating structure.
- O Stability of molecule α resonance energy.
- O More is the number of covalent bonds in molecule more will be its resonance energy.
- O Resonance energy α number of resonating structures.
- 1. Which is the resonance hybride of sulphate ion:

2. The correct order of increasing C–O bond length of CO, CO₃²⁻, CO₂ is :

(A)
$$CO_3^{2-} < CO_2 < CO$$
 (B) $CO_2 < CO_3^{2-} < CO$ (C) $CO < CO_3^{2-} < CO_2$ (D) $CO < CO_2 < CO_3^{2-}$

Comprehension # 2

Answer Q.3, Q.4 and Q.5 by appropriately matching the information given in the three columns of the following table.

Observe the three columns in which column-1 represents ions, column-2 represents number of equal contributing resonating structure while column-3 represents bond order.

Column-1			Column-2	Column-3		
(I)	SO ₄ ⁻²	(i)	4	(P)	1.66	
(II)	CO ₃ ⁻²	(ii)	6	(Q)	1.25	
(III)	NO ₂ ⁻	(iii)	3	(R)	1.33	
(IV)	PO ₄ ⁻³	(iv)	2	(S)	1.5	

- **3.** Which of the following combinations is correct for a hypervalent ion?
 - (A) (I) (ii) (R)
- (B) (II) (i) (R)
- (C) (IV) (i) (Q)
- (D) (III) (iv) (S)
- **4.** In which of the following combinations, octet is not violated?
 - (A) (IV) (i) (Q)
- (B) (II) (iii) (R)
- (C) (II) (i) (R)
- (D) (III) (iii) (P)
- 5. In which of the following combinations, the sum of oxidation state of central atom and number of π -bonds is maximum?
 - (A) (I) (ii) (S)
- (B) (II) (iii) (R)
- (C) (IV) (i) (Q)
- (D) (III) (iv) (R)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

人

Exercise-3

* Marked Questions may have more than one correct options.

PA	ART - I : JEE (ADVANC	CED) / IIT-JE	E PROB	LEMS (P	PREVIOUS	S YEARS)
1.	Molecular shapes of SF ₄ , CF ₄ at (A) the same with 2, 0 and 1 lo (B) the same with 1, 1 and 1 lo (C) different with 0, 1 and 2 lor (D) different with 1, 0 and 2 lor	ne pair of electron ne pair of electro ne pair of electror	ns respective ns respective ns respective	ely. ly.	[JEE:	-2000(S), 1/135]
2.	The number of lone pair(s) of e (A) 3 (B) 2	electrons in XeOF	′ ₄ is : (C) 1		(D) 4	-2004(S), 3/144]
3.	In which of the following the ma	aximum number o	of lone pairs i	is present on		om ? -2005(S), 3/144]
	(A) $[CIO_3]^-$ (B) Xe	F4	(C) SF ₄		(D) I ₃ ⁻	
4.*	The compound(s) with TWO lo (A) BrF_5 (B) CIF		ons on the ce			ed) 2016, 4/124]
_			` '	ntral atam in	` '	
5.	The sum of the number of lone $[TeBr_6]^{2-}$, $[BrF_2]^+$, SNF_3 , and $[X]$ (Atomic numbers: $N = 7$, $F = 9$,	eF ₃]-				species is ced 2017, 3/122]
	`		V		_	
	PART - II : JEE (MAIN	N) / AIEEE P	KOBLEN	VIS (PRE	VIOUS YE	EARS)
	JE	E(MAIN) OFFL	INE PRO	BLEMS		
1.	The number of lone pairs on X ₀ (1) 3, 2, 1 (2) 2, 4		nd XeF ₆ resp (3) 1, 2, 3	pectively are	: [AIEE (4) 6, 4, 2	EE-2002, 3/225]
2.	In the anion HCOO ⁻ the two C- (1) Electronic orbits of carbon a (2) The C=O bond is weaker th (3) The anion HCOO ⁻ has two (4) The anion is obtained by re	atom are hybridis an the C–O bond resonating struct	ed. 1. ures.			ason for it ? EE-2003, 3/225]
3.	Which of the following has max (1) XeF ₄ (2) Xe		lone pairs as (3) XeF ₂	ssociated wit	h Xe ? [AIEE (4) XeO ₃	EE-2011, 4/120]
4.	Which of the following exists as (1) Iodine (2) Sili		s in the solid (3) Sulphur		(4) Phosphore	EE-2013, 4/120] us
5.	The correct statement for the m	nolecule, CsI ₃ , is	:		[JEE(Ma	ain)-2014, 4/120]
	(1) it is a covalent molecule.	a covalent molecule. (2) it contains			[-3	
	(3) it contains Cs ³⁺ and I ⁻ ions.		(4) it contain	ns Cs⁺, l⁻ an	id lattice I ₂ mo	lecule.
6.	Total number of lone pair of ele	ectrons in I_3^- ion	is:		[JEE(Ma	nin)-2018, 4/120]
	(1) 9 (2) 12		(3) 3		(4) 6	
	JE	E(MAIN) ONL	INE PROB	SLEMS		
1.	The number and type of bonds (1) One σ -bond and one π -bond (3) Two σ -bonds and two π -bonds	d	(2) One σ -b	EE(Main) 20 ^o oond and two oonds and on	π-bonds	-04-14), 4/120]
2.	H—N·····N In hydrogen azide (above) the (I) (II) (1)	bond orders of bo		-	8 Online (15-	(II)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

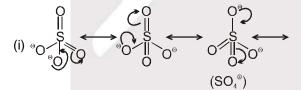
Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Answers

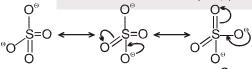
EXERCISE - 1

PART - I

A-3. (a)
$$[: \ddot{S} - C = \ddot{N}]$$

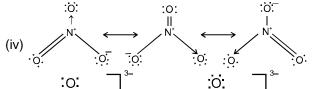


NO Odd electron

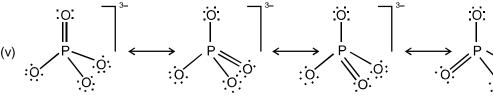

 NO_2 Odd electron CIO₂ Odd electron XeF₂ Super octet molecule Super octet molecule IF_7

CIF₃ Super octet molecule

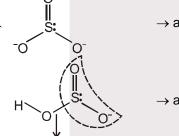
Bond order =
$$\frac{2+1+1+2}{4}$$
 = 1.5



(ii)
$$CH_3 - C$$
 O
 $CH_3 - C$
 O


Bond order =
$$1 + \frac{1}{2} = 1.5$$

Bond order =
$$1 + \frac{1}{2} = 1.5$$

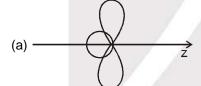

Bond order = $1 + \frac{1}{3} = 1.33$

Bond order = $1 + \frac{1}{4} = 1.25$

- **C-2.** (a) 2
- (b) 1
- C-3. Sodium formate exists as HCOO- Na+

C-4.

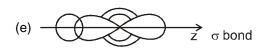
 \rightarrow average B.O. = $1\frac{1}{3}$

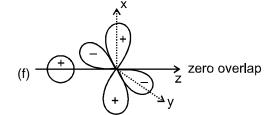

→ average B.O. = $1\frac{1}{2}$

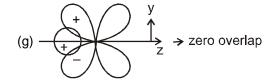
B.O. = 1

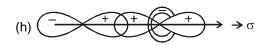
Hence one bond in HSO_3^- is longer than S–O bond in SO_3^{2-} . But other two S–O bond in HSO_3^- are shorter bonds.

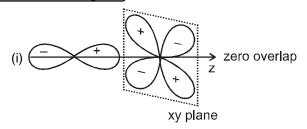
D-1. Number of sigma bonds is 7 & number of pi bonds is 3.

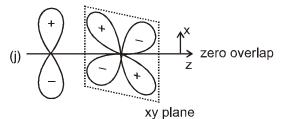

D-2.

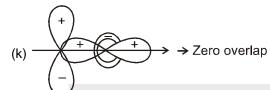


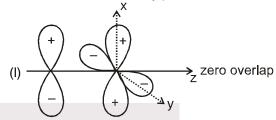

(b) $\xrightarrow{Z} \pi$ bond

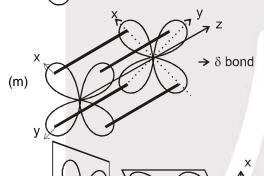


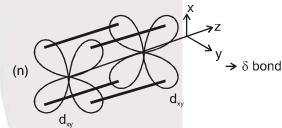


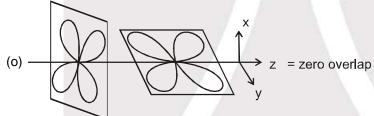



Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005


Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in







- **A-1.** (C)
- **A-2.** (D)
- **PART II A-3**. (C)
- **B-1.** (D)
- **B-2.** (D)

- **B-3.** (D)
- **C-1**. (D)
- **C-2.** (D)
- **C-3**. (C)
- **C-4.** (D)

- **D-1.** (C)
- **D-2.** (C)
- **D-3.** (B)
- **D-4.** (A)
- **D-5.** (A)

PART - III

1. (A) \rightarrow q, (B) \rightarrow r, (C) \rightarrow p, (D) \rightarrow s

EXERCISE - 2

PART - I

- **1.** (D)
- **2.** (B)
- **3.** (D)
- **4.** (B)
- **5.** (A)

- **6.** (B)
- **7.** (A)
- **8.** (D)
- **9.** (B)
- **10.** (C)

PART - II

- **1.** 2
- **2.** 5 (i, iv, v, vi, ix)
- 3.
- 10 (iii, iv, v, vi, vii, viii, x, xiii, xiv, xvi)

- **4.** 3
- 5. 12 (x = 6, y = 6)
- 6.
- 5 (i, iii, iv, v, vi)

7. 5 (ii, iii, iv, v, vi)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Chemical Bonding-I **PART - III** 1. (ACD) 2. (AC) (BC) 4. (AB) PART - IV 1. (D) 2. (D) (C) (B) 5. (A) **EXERCISE - 3** PART - I 1. (D) 2. (C) **3.** (D) 4.* (BC) 5. 6 PART - II **JEE(MAIN) OFFLINE PROBLEMS** 1. 2. (2) 5. (1) (3) 3. (2) (3) 6. (1) **JEE(MAIN) ONLINE PROBLEMS** 1. (2) 2. (1)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in