Exercise-1

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Properties of equilibrium, active mass

- A-1. In a reaction A + B \rightleftharpoons C + D the rate constant of forward reaction & backward reaction is $k_f = 2 \times 10^{-4}$ M sec⁻¹ and $k_b = 5 \times 10^{-5}$ M sec⁻¹ then the equilibrium constant (k) for reaction is expressed as :
- A-2. What is the active mass of 5.6 litres of O₂ at S.T.P.?

Section (B) : Homogeneous equilibrium : Kc in gaseous system

- B-1. ▲ A mixture of SO₃, SO₂ and O₂ gases is maintained at equilibrium in 10 litre flask at a temperature at which K_c for the reaction, 2SO₂(g) + O₂(g) ⇒ 2SO₃(g) is 100 mol⁻¹ litre. At equilibrium.
 (a) If no. of mole of SO₃ and SO₂ in flask are same, how many mole of O₂ are present ?
 (b) If no. of mole of SO₃ in flask are twice the no. of mole of SO₂, how many mole of O₂ are present ?
- **B-2.** The equilibrium constant of the reaction, $A_2(g) + B_2(g) \Longrightarrow 2 AB(g)$ at 100°C is 16. Initially equal moles of $A_2 \& B_2$ are taken in 2L container. Then find mole % of A_2 in equilibrium mixture.
- **B-3.** For the reaction $3A(g) + B(g) \rightleftharpoons 2C(g)$ at a given temperature, $K_c = 9.0$. What must be the concentration of (C) at equilibrium, if a mixture of 2.0 mol each of A, B and C exist in equilibrium ?

The gas A₂ in the left flask allowed to react with gas B₂ present in right flask as $A_2(g) + B_2(g) \implies 2AB(g)$; K_c = 4 at 27°C.

What is the concentration of AB when equilibrium is established?

Section (C) : Homogeneous equilibrium : K_p in gaseous system

- **C-1.** In mole each of $H_2O(g)$, $H_2(g)$ and $O_2(g)$ are mixed at a suitable high temperature to attain the equilibrium $2H_2O(g) \rightleftharpoons 2H_2(g) + O_2(g)$. If y mole of $H_2O(g)$ are the dissociated and the total pressure maintained is P, calculate the K_P.
- **C-2.** The moles of N₂O₄ and NO₂ at equilibrium are 1 and 2 respectively total pressure at equilibrium is 9 atm. Find K_P for the reaction N₂O₄(g) \rightleftharpoons 2 NO₂(g).
- **C-3.** 1 mole of N₂ and 3 moles of H₂ are placed in 1L vessel. Find the concentration of NH₃ at equilibrium, if the equilibrium constant (K_c) at 400 K is $\frac{4}{27}$ M⁻².

 $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$

Section (D) : Relation between K_P and K_C

- **D-1.** Calculate the expression for K_c and K_p if initially a moles of N₂ and b moles of H₂ is taken for the following reaction. N₂ (g) + $3H_2$ (g) $\implies 2NH_3$ (g) $(\Delta n < 0)$ (P, T, V given)
- **D-2.** 1 mole of a gas 'A' is taken in a vessel of volume 1L. It dissociates according to the reaction $A(g) \rightleftharpoons B(g) + C(g)$ at 27°C. Forward and backward reaction rate constants for the reaction are 1.5 × 10^{-2} and 3 × 10^{-2} respectively. Find the concentrations of A, B and C at equilibrium. Also find K_p and K_c.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005			
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in			
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCEQ - 20		

D-3. 0.15 mole of CO taken in a 2.5 litre flask is maintained at 500 K along with a catalyst so that the following reaction can take place; $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$.

Hydrogen is introduced until the total pressure of the system is 8.2 atm at equilibrium and 0.08 mole of methanol is formed.Calculate :

(i) K_p & K_c

(ii) the final pressure if the same amount of CO and H_2 as before are used, but with no catalyst so that the reaction takes place on its own.

Section (E) : Reaction quotient and Its applications

E-1. A mixture of 1.5 mol of N₂, 2 mole of H₂ and 8 mol of NH₃ is introduced into a 20 L reaction vessel at 500 K. At this temperature, the equilibrium constant, K_c for the reaction

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \text{ is } 1.7 \times 10^2.$

Is the reaction mixture at equilibrium? If not what is the direction of the net reaction?

E-2. At 460°C, $K_c = 81$ for the reaction, $SO_2(g) + NO_2(g) \rightleftharpoons NO(g) + SO_3(g)$ A mixture of these gases has the following concentrations of the reactants and products : $[SO_2] = 0.04 \text{ M}$ $[NO_2] = 0.04 \text{ M}$ [NO] = 0.30 M $[SO_3] = 0.3 \text{ M}$

Is the system at equilibrium? If not, in which direction must the reaction proceed to reach equilibrium. What will be the molar concentrations of the four gases at equilibrium?

Section (F) : Properties of equilibrium Constant

F-1.	Explain the effect of the following on the equilibrium cons	stant.
	(i) Concentrations of the reactants are doubled	(ii) The reaction is reversed
	(iii) Catalyst is added to the reaction	(iv) Temperature is increased.

F-2. The equilibrium constant for the reactions $N_2 + O_2 \rightleftharpoons 2NO$ and $2NO + O_2 \rightleftharpoons 2NO_2$ are K_1 and K_2 respectively, then what will be the equilibrium constant for the reaction $N_2 + 2O_2 \rightleftharpoons 2NO_2$?

F-3. Calculate the equilibrium constant for the reaction : $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$ at 1395 K, if the equilibrium constants at 1395 K for the following are

 $2H_2O(g) \Longrightarrow 2H_2(g) + O_2(g)$ $K_1 = 2.1 \times 10^{-13}$ $2CO_2(g) \Longrightarrow 2CO(g) + O_2(g)$ $K_2 = 1.4 \times 10^{-12}$.

Section (G) : Homogenuous Equilibrium (liquid system)

G-1. The homogeneous reversible reaction, $C_2H_5OH(\ell) + CH_3COOH(\ell) \implies CH_3COOC_2H_5(\ell) + H_2O(\ell)$ is studied at various initial concentrations of the reactants at constant temperature. Calculate initial acid and alcohol moles.

	Moles of acid per litre (initial)	Moles of alcohol per litre (initial)	Moles of ester per litre at equilibrium
(i)	1	1	0.667
(ii)	Х	Х	8/3

Section (H) : Heterogenuous equilibrium

- H-1. Write the expressions for equilibrium constant K_c and K_P and classify in Homogeneous and Hetereogeneous equilibrium :
 - (i) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$
 - (ii) $3Fe(s) + 4H_2O(g) \Longrightarrow Fe_3O_4(s) + 4H_2(g)$
 - (iii) $NH_4HS(s) \Longrightarrow NH_3(g) + H_2S(g)$
 - (iv) $CH_3COOH(\ell) + C_2H_5OH(\ell) \Longrightarrow CH_3COOC_2H_5(\ell) + H_2O(\ell)$
 - (v) $MgCO_3(s) \Longrightarrow MgO(s) + CO_2(g)$
 - (vi) $2H_2S(g) \Longrightarrow 2H_2(g) + S_2(g)$
 - (vii) $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$
 - (viii) $NH_4NO_2(s) \Longrightarrow N_2(g) + 2H_2O(\ell)$

- H-2. For the reaction: CaCO₃ \implies CaO(s) + CO₂(g); K_p = 1 atm at 927°C. If 20g of CaCO₃ were kept in a 10 litre vessel at 927°C, then calculate percentage of CaCO₃ remaining at equilibrium :
- H-3. For the given reaction at equilibrium :

AgNO₃(s) \Longrightarrow Ag(s) + NO₂(g) + $\frac{1}{2}$ O₂(g)

If total pressure at equilibrium is P, then calculate KP for the given reaction.

Section (I) : Degree of dissociation (α) and vapour density

- I-1. N₂O₄ is 25% dissociated at 37°C and one atmosphere pressure. Calculate (i) K_P and (ii) the percentage dissociation at 0.1 atmosphere and 37°C.
- I-2.2 At temperature T, the compound AB₂ (g) dissociates according to the reaction; $2AB_2$ (g) \implies 2AB(g) + $B_2(q)$. With a degree of dissociation x, which is small compared with unity. Deduce the expression for x in terms of the equilibrium constant, K_p and the total pressure, P.
- I-3. Vapour density of the equilibrium mixture of NO₂ and N_2O_4 is found to be 38.33. For the equilibrium $N_2O_4(g) \Longrightarrow 2NO_2(g).$

Calculate : (i) abnormal molecular weight. (iii) percentage of NO2 in the mixture.

(ii) degree of dissociation.

(iv) K_P for the reaction if total pressure is 2 atm.

When sulphur in the form of $S_8(q)$ is heated at 900 K, the initial partial pressure of $S_8(q)$ which was 1 atm I-4. falls by 29% at equilibrium. This is because of conversion of some $S_8(q)$ to $S_2(q)$. Find the K_p for reaction, $S_8(q) \Longrightarrow 4S_2(q)$.

Section (J): Thermodyanamics of equilibrium

- J-1. $SO_2(g) + 1/2O_2(g) \implies SO_3(g)$ For the reaction, $\Delta H^{0}_{298} = -98.32$ kJ/mole, $\Delta S^{0}_{298} = -95.0$ J/mole-K. Find the K_p for this reaction at 298K. (Given that $10^{.27} =$ 1.86)
- J-2. From the following data :

(i) $H_2(g) + CO_2(g) \Longrightarrow H_2O(g) + CO(g)$; $K_{2000K} = 4.4$ (ii) $2H_2O(g) \implies 2H_2(g) + O_2(g)$; $K_{2000K} = 5.31 \times 10^{-10}$ (iii) $2CO(g) + O_2(g) \Longrightarrow 2CO_2(g)$; $K_{1000K} = 2.24 \times 10^{22}$ State whether the reaction (iii) is exothermic or endothermic?

Section (K) : Le-chatelier's principle

- K-1. Which of the following reactions will get affected by increase of pressure ? Also mention, whether change will cause the reaction to go into the right or left direction ?
 - $\begin{array}{c} CH_4(g) + 2S_2(g) \rightleftharpoons CS_2(g) + 2H_2S(g) \\ CO_2(g) + C(s) \rightleftharpoons 2CO(g) \end{array}$ (i)
 - (ii)
 - $4NH_3(g) + 5O_2(g) \Longrightarrow 4NO(g) + 6H_2O(g)$ (iii)
 - $C_2H_4(g) + H_2(g) \implies C_2H_6(g)$ (iv)

K-2. Using Le Chatelier's principle, predict the effect of (i) decreasing the temperature and (ii) increasing the pressure on each of the following equilibria: (a) $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g) + Heat$ (b) $N_2(g) + O_2(g) \Longrightarrow 2NO(g) + Heat$

- (c) $H_2O(g)$ + Heat \Longrightarrow $H_2(g)$ + $\frac{1}{2}O_2(g)$ (d) 2CO (g) + $O_2(g)$ \Longrightarrow 2CO₂ (g) + Heat
- K-3. The decomposition of solid ammonium carbamate, (NH₄)(NH₂CO₂), to gaseous ammonia and carbon dioxide is an endothermic reaction.

 $(NH_4)(NH_2CO_2)$ (s) $\implies 2NH_3$ (g) + CO₂(g)

(a) When solid (NH₄) (NH₂CO₂) is introduced into an evacuated flask at 25°C, the total pressure of gas at equilibrium is 0.3 atm. What is the value of K_p at 25°C?

(b) Given that the decomposition reaction is at equilibrium, how would the following changes affect the total quantity of NH₃ in the flask once equilibrium is re-established ?

Ð	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalaw	ar Road, Kota (Raj.) – 324005
-	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCEQ - 22

(i) Adding CO₂

(iii) Removing CO₂

- (v) Adding neon (at constant volume)
- (iv) Increasing the total volume

(ii)

(vi) Increasing the temperature.

Adding (NH₄) (NH₂CO₂)

- K-4. Following equilibrium is established at temperature T.
 - $A(g) \Longrightarrow B(g) + C(g)$
 - at eq. 1M 2M 2M.

If volume of the vessel is doubled then find the equilibrium concentration of each species. (Given that : $\sqrt{40} = 6.324$)

Section (L) : Vapour pressure and Relative Humidity

- L-1.2Equilibrium constants is given (in atm) for the following reaction $0^{\circ}C$:
Na2HPO4.12H2O(s) \implies Na2HPO4.7H2O(s) + 5H2O(g) $K_{p} = 2.43 \times 10^{-13}$
The vapour pressure of water at $0^{\circ}C$ is 4.56 torr.
At what relative humidities will Na2HPO4.12H2O(s) be efflorescent when exposed to air at $0^{\circ}C$?
- **L-2.** Equilibrium constant for the following equilibrium is given at 0°C. Na₂HPO₄.12H₂O (s) \implies Na₂HPO₄.7H₂O(s) + 5H₂O(g) $K_P = 31.25 \times 10^{-13}$ At equilibrium what will be partial pressure of water vapour :

Section (M) : Simultaneous equilibria

- M-1. Two solid compounds A and B dissociate into gaseous products at 20°C as
 - (i) $A(s) \rightleftharpoons A'(g) + H_2S(g)$ (ii) $B(s) \rightleftharpoons B'(g) + H_2S(g)$
 - At 20°C pressure over excess solid A is 50 mm and that over excess solid B is 60 mm find :
 - (a) The dissociation constant of A and B
 - (b) Relative no. of moles of A' and B' in the vapour phase over a mixture of solid A and B.
 - (c) Show that the total pressure of the gas over the solid mixture would be 79.33 mm
- M-2. When NO & NO₂ are mixed, the following equilibria readily obtained;

 $2NO_2 \rightleftharpoons N_2O_4 \qquad K_p = 6.8 \text{ atm}^{-1}$ NO + NO₂ \leftarrow N_2O_3 \leftarrow K_p = ?

In an experiment when NO & NO₂ are mixed in the ratio of 1 : 2, the total final pressure was 5.05 atm & the partial pressure of N_2O_4 was 1.7 atm. Calculate

- (a) the equilibrium partial pressure of NO.
- (b) K_p for NO + NO₂ \implies N₂O₃

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A) : Properties of equilibrium, active mass, homogeneous & heterogeneous equilibrium (theoritical)

- A-1. A reversible reaction is one which
 - (A) Achieves equlibrium state
 - (C) Does not occurs at all

- (B) Proceeds in both directions
- (D) Both (A) and (B)
- A-2. A chemical reaction is at equilibrium when
 - (A) Measurable properties becomes constant
 - (B) The rates of forward and backward reactions are equal
 - (C) Net rate of reaction is zero
 - (D) All are correct
- A-3. Molar concentration of 96 g of O₂ contained in a 2 litre vessel is : (A) 16 mol/litre (B) 1.5 mol/litre (C) 4 mol/litre

(D) 24 mol/litre

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

A-4. Tind correct graph reagarding equilibrium state :

Initially the reactions in the container a & b are at equilibrium when the products & reactants are put together in a container c then at the equilibrium the total number of different chemical species compounds are : (A) 5 (B) 7 (C) 6 (D) 8

Section (B) : Homogeneous equilibrium : K_c in gaseous system

B-1. In a reversible reaction $A = \frac{K_1}{k_2}$ B, the initial concentration of A and B are a and b in moles per litre, k_1 and k_2 are rate constants for forward 8 backward reactions respectively and the equilibrium concentrations are

 k_2 are rate constants for forward & backward reactions respectively and the equilibrium concentrations are (a - x) and (b + x) respectively; express x in terms of k_1 , k_2 , a and b.

(A)
$$\frac{k_1 a - k_2 b}{k_1 + k_2}$$
 (B) $\frac{k_1 a - k_2 b}{k_1 - k_2}$ (C) $\frac{k_1 a - k_2 b}{k_1 + k_2}$ (D) $\frac{k_1 a + k_2 b}{k_1 + k_2}$

- **B-2.** The reaction $A(g) + B(g) \rightleftharpoons C(g) + D(g)$ is studied in a one litre vessel at 250°C. The initial concentration of A was 3n and that of B was n. When equilibrium was attained, equilibrium concentration of C was found to the equal to the equilibrium concentration of B. What is the concentration of D at equilibrium? (A) n/2 (B) (3n - 1/2) (C) (n - n/3) (D) n
- **B-3.** The figure show the change in concentration of species A and B as a fuctional of time. The equilibrium constant K_c for the reaction A(g) \implies 2B (g) is :

- **B-4.** $K_c = 9$ for the reaction, $A + B \rightleftharpoons C + D$, If one mole of each A and B are taken, then amount of C in equilibrium is : (A) 1 (B) 0.25 (C) 0.75 (D) None of these
- **B-5.** The equilibrium $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ is estabilished in a reaction vessel of 2.5 L capacity. The amounts of N_2 and O_2 taken at the start were respectively 2 moles and 4 moles. Half a mole of nitrogen has been used up at equilibrium. The molar concentration of nitric oxide is : (A) 0.2 (B) 0.4 (C) 0.6 (D) 0.1
- **B-6.** An equilibrium mixture for the reaction $2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)$ had 1 mol of H_2S , 0.2 mol of H_2 and 0.8 mol of S_2 in a 2 litre flask. The value of K_c in mol lit⁻¹ is : (A) 0.08 (B) 0.016 (C) 0.004 (D) 0.160

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in		
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCEQ - 24	

Section (C) : Homogeneous equilibrium : K_{P} in gaseous system

C-1. What is the unit of K₁ for the reaction ?

$$CS_{2}(0) + AH_{2}(0) = CH_{4}(0) + 2H_{2}(S) (C) atm2 (D) atm-1
C-2. a. Ns and Hs are taken in 1: 3 molar ratio in a closed vessel to attained the following equilibrium $N_{1}(g) + 3H_{2}(g) \Longrightarrow 2NH_{2}(g)$. Find K₂ for reaction at total pressure of 2P if $P_{H_{1}}$ at equilibrium S_{1}^{P} (A) $\frac{1}{g^{2}}$ (B) $\frac{4}{g^{2}}$ (C) $\frac{4P^{2}}{3}$ (D) none
C-3. **a**. The equilibrium constant, K₁ for the reaction 2SO₂(g) + O₂(g) $\Longrightarrow 2SO_{2}(g)$ is 4.0 atm⁻¹ at 1000 K. What would be the partial pressure of O₂ if at equilibrium the moles of SO₂ and SO₃ are the same ? (A) 16.0 atm (B) 0.25 atm (C) 1 atm (D) 0.75 atm
C-4. For the reaction $A_{2}(g) + 2B_{2}(g) \Longrightarrow 2CO_{2}(g)$ the partial pressure of A₂. Bs at equilibrium are 0.80 atm and 0.40 atm respectively. The pressure of the system is 2.80 atm. The equilibrium constant K₂ will be (A) 20 (B) 5.0 (C) 0.02 (D) 0.2
C-5. **a** PCIs \rightleftharpoons PCIs + CI₂ in the reversible reaction at equilibrium the moles of PCIs, PCIs and CL₂ are a, b and c respectively and total pressure is P then value of K₁ is :
(A) $\frac{bc}{a}$.RT (B) $\frac{b}{(a+b-c)}$ P (C) $\frac{a}{(a+b-c)}$ (D) $\frac{c}{(a+b-c)}$ P
C-6.5. A sample of pure NO₂ gas heated to 1000 K decomposes : 2NO₂(g) $\Longrightarrow 2NO(g) + O_2(g)$. The equilibrium the constant K₁ is 100 atm. Analysis shows that the partial pressure of OPLs, PCIs atm. at equilibrium, constant K₂ is 100 atm. Analysis shows that the partial pressure of OPLs is 0.25 atm. at equilibrium. The partial pressure of NO₂ at equilibrium is:
(A) 0.03 (B) 0.25 (C) 0.02 (D) 0.2
C-5. **a** Net (G) = $\frac{1}{2}N_{2}(g) + \frac{2}{2}H_{2}(g)$
What is the K₂ of the reaction?
(A) 16.4 $\frac{49}{150}$ (B) 0.12, $\frac{23}{100}$ (C) 0.07, $\frac{23}{100}$ (D) 2.0, $\frac{49}{150}$
Section (D): Relation between K₂ and K₂
(P-1.**a** At 527C, the reaction given below has K₂ = 4
N⁴(g) $\frac{1}{2}N_{2}(g) + \frac{1}{2}H_{2}(g)$
What is the K₂ for the reaction 2, $\frac{1}{2}N_{2}(g) + \frac{1}{2}H_{2}(g)$
What is the K₂$$

八

Section (E) : Reaction quotient and Its applications

E-1.æ	2 mole each of SO	$P_{3}, CO, SO_{3}, CO, SO_{3$	D_2 and CO_2 is t	aken in a one (a) + CO ₂ (a) i	e lit. vessel. If s 1/9 then	K _c for		
	(A) total no. of moles at equilibrium are less than 8							
	(B) n(SO ₃) + n(CO	2) = 4						
	(C) $[n(SO_2)/n(CO)]$	<1						
	(D) both (B) and (C	.).						
E-2.	A reaction mixture 725 K. If the value	containin e of K _P fo	ng H ₂ , N ₂ and N or the reaction	NH₃ has parti , N₂ + 3H₂ ᢏ	al pressure 2 <mark> </mark>	atm, 1 atm atm 4.28 \times 10 ⁻⁵ a	nd 3 atm respectivel htm ⁻² at 725 K, in w	ly at hich
	(A) Forward	action will	ii go :	(B) Ba	ckward			
	(C) No net reaction	า		(D) Dir	ection of read	tion cannot be	e predicted	
E-3 ~					СН			
E-J. (3),							tane	
	For the equilibium	ι CH₃–Cŀ	H ₂ CH ₂ CH ₃ (g)) , CH₃ -	- C – CH₃(g) │ H	equilibrium		
	constant is found t	o be 1.73	2 at 298 K. No	w if in a vess	el at 298 K, a	a mixture of	° ≌	
	these two gases b	be taken a	as represented	by the poin	t P in the figu	ure, predict	conc. of n-butane	
	(A) Immediately, a	bove equ	ilibrium will be	setup				
	(B) Above reaction	will go in	the forward di	rection till it a	ttains equilibr	ium		
	(C) Above reaction	n will go in	the backward	direction till in	attains equil	ibrium		
	(D) Nothing can be	e said						
E-4.	The reaction quot	ient Q fo	r N2(g) + 3H2	(g) 2 NI	H₃(g) is giver	h by Q = $\frac{[NH]}{[N_2]}$	$\frac{ H_3 ^2}{ H_2 ^3}$. The reaction	will
	proceed in backwa	ard direction	on, when					
	(A) Q = Kc	(B)	Q < Kc	(C) Q :	> Kc	(D) A = 0		
E-5.	For the reaction,							
	$2A + B \rightleftharpoons 3C$	at 2	298 K, K	c = 49	nootivoly. Th	a reaction at t	ha aama tamparatur	
	(A) must proceed i	ns 2, 1 ar n forward	direction	, в ало с res (B) mu	st proceed in	backward dire	ection	е
	(C) must be equilib	orium		(D) car	n not be predi	cted		
E-6.	When two reactan	ts, A & B	are mixed to g	ive products	C & D, the re	action quotier	nt Q, at the initial sta	ages
	of the reaction :		J	·			[JEE-2000, 1/35]	ľ
	(A) is zero	oftimo		(B) dec	crease with tir	ne		
	(C) is independent	orume		(D) Inc	reases with ti	me		
Secti	on (F) : Properti	es of e	quilibrium C	Constant				
F-1.	At a certain tempe	rature, the	e following read	ctions have th	e equilibrium	constant as s	hown below :	
	25	$S(s) + O_2(c)$	$(a) \longrightarrow 2SC_2$	$(a): K_{c2} = 0 \times 10^{2}$	9			
	What is the equilib	rium cons	stant K _c for the	reaction at th	e same temp	erature?		
	25	SO ₂ (g) + C	D₂ (g) ≓ 28	SO₃(g)				
	(A) 2.5 × 10 ⁷⁶	(B)	4 × 10 ²³	(C) 4 :	× 10 ^{−77}	(D) None	of these	
F-2.æ	The equilibrium co	nstant of	the reaction Se	O ₂ (g) + ½O ₂ (g) SO₃(g) ,	⇒ is 4 × 10 ⁻³	atm ^{-1/2} . The equilibr	rium
	constant of the rea	iction 2S	$O_3(g) \Longrightarrow 2S(g)$	$O_2(g) + O_2(g)$	would be :		104 1	
	(A) 250 atm	(B)	4 × 10° atm	(C) 0.2	5 × 10⁴ atm	(D) 6.25 x	× 10 ⁴ atm	
Λ_		CO[®]	Reg. & Corp. Offi	ce : CG Tower, A-	46 & 52, IPIA, Nea	ar City Mall, Jhalawa	ar Road, Kota (Raj.) – 32400	05
\mathbb{Z}	Educating for better tom	lorrow	Website : www.res	onance.ac.in E-n	ail : contact@resc	nance.ac.in	ADVCEQ - 26	

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

八

F-3. Equilibrium constant for the reactions,

2 NO + O ₂ \implies 2 NO ₂	is K _{C1} ;
$NO_2 + SO_2 \implies SO_3 + NO$	is K_{C_2} and
$2 \text{ SO}_3 \Longrightarrow 2 \text{ SO}_2 + \text{O}_2$	is K_{C_3} then correct reaction is :
(A) $K_{C_3} = K_{C_1} \times K_{C_2}$	(B) $K_{C_3} \times K_{C_1} \times K^2_{C_2} = 1$
(A) $K_{C_2} = K_{C_1} \times K_{C_2} = 1$	(D) $K_{C_2} \times K^2_{C_1} \times K_{C_2} = 1$

Section (G) : Homogenuous Equilibrium (liquid system)

G-1. When alcohol (C₂H₅OH (ℓ)) and acetic acid (CH₃COOH (ℓ)) are mixed together in equimolar ratio at 27°C , 33% of each is converted into ester. Then the K_C for the equilibrium

 $\begin{array}{c} C_{2}H_{5}OH(\ell) + CH_{3}COOH(\ell) \rightleftharpoons CH_{3}COOC_{2}H_{5}(\ell) + H_{2}O(\ell) \text{ is :} \\ (A) \ 4 \qquad (B) \ 1/4 \qquad (C) \ 9 \qquad (D) \ 1/9 \end{array}$

Section (H) : Heterogenuous equilibrium

- **H-1.** What is the minimum mass of CaCO₃ (s), below which it decomposes completely, required to establish equilibrium in a 6.50 litre container for the reaction : CaCO₃(s) \implies CaO(s) + CO₂(g); K_c = 0.05 mole/litre (A) 32.5 g (B) 24.6 g (C) 40.9 g (D) 8.0 g
- **H-2.** In the reaction $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, the equilibrium pressure is 12 atm. If 50% of CO₂ reacts then K_p will be : (A) 12 atm (B) 16 atm (C) 20 atm (D) 24 atm
- H-3. Solid ammonium carbamate dissociate to give ammonia and carbon dioxide as follows $NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$

which of the following graph correctly represents the equilibrium.

H-4.For $NH_4HS(s) \iff NH_3(g) + H_2S(g)$ reaction started only with $NH_4HS(s)$, the observed pressure for
reaction mixture in equilibrium is 1.2 atm at 106°C. What is the value of K_p for the reaction ?
(A) 1.44 atm²(B) 0.36 atm²(C) 0.16 atm²(D) 3.6 atm²

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in		
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCEQ - 21	

- **H-5.** Consider the decomposition of solid NH₄HS in a flask containing NH₃(g) at a pressure of 2 atm. What will be the partial pressure of NH₃(g) and H₂S(g) after the equilibrium has been attained? K_P for the reaction is 3. (A) $p_{NH_3} = 6 \text{ atm}, p_{H_2S} = \frac{1}{2} \text{ atm}$ (B) $p_{NH_3} = 1.732$ atm, $p_{H_2S} = 1.732$ atm
 - (C) $p_{NH_2} = 3 \text{ atm}, p_{H_2S} = 1 \text{ atm}$ (D) $p_{NH_2} = 1$ atm, $p_{H_2S} = 3$ atm

Section (I) : Degree of dissociation (α) and vapour density

I-1. For the dissociation reaction N₂O₄(g) \implies 2NO₂(g), the degree of dissociation (α) in terms of K_p and total equilibrium pressure P is:

(A)
$$\alpha = \sqrt{\frac{4p + K_p}{K_p}}$$
 (B) $\alpha = \sqrt{\frac{K_p}{4p + K_p}}$ (C) $\alpha = \sqrt{\frac{K_p}{4p}}$ (D) None of these

- I-2.a The degree of dissociation of SO₃ is α at equilibrium pressure P₀. K_P for 2SO₃(g) \implies 2SO₂(g) + O₂(g) is: (A) $[(P_0\alpha^3)/2(1-\alpha)^3]$ (B) $[(P_0\alpha^3)/(2+\alpha)(1-\alpha)^2]$ (C) $[(P_0\alpha^2)/2(1-\alpha)^2]$ (D) None of these
- In the dissociation of N₂O₄ into NO₂, (1 + α) values with the vapour densities ratio $\left(\frac{D}{d}\right)$ is as given by : I-3.a

[a-degree of dissociation, D-vapour density before dissociation, d-vapour density after dissociation]

- For the reaction $N_2O_4(g) \implies 2NO_2(g)$, if percentage dissociation of N_2O_4 are 20%, 45%, 65% & 80%, I-5.a then the sequence of observed vapour densities will be :
 - (A) $d_{20} > d_{45} > d_{65} > d_{80}$

I-4.

(B) $d_{80} > d_{65} > d_{45} > d_{20}$

(C) $d_{20} = d_{45} = d_{65} = d_{80}$

(D) $(d_{20} = d_{45}) > (d_{65} = d_{80})$

I-6. The degree of dissociation of PCl₅ (α) obeying the equilibrium, PCl₅ \implies PCl₃ + Cl₂, is approximately related to the presure at equilibrium by (given $\alpha \ll 1$):

(A)
$$\alpha \propto P$$
 (B) $\alpha \propto \frac{1}{\sqrt{P}}$ (C) $\alpha \propto \frac{1}{P^2}$ (D) $\alpha \propto \frac{1}{P^4}$

- I-7. At 727°C and 1.23 atm of total equilibrium pressure, SO₃ is partially dissociated into SO₂ and O₂ according to SO₃(g) \implies SO₂(g) + 1/2O₂(g). The density of equilibrium mixture is 0.9 g/litre. The degree of dissociation is : (C) I/4 (D) 1/5. (A) 1/3 (B)2/3
- I-8. Consider the following hypothetical equilibrium $2B(g) \implies B_2(g)$. If d is observed vapour density and D is theoretical vapour density, then degree of association (α) will be :

(A)
$$\alpha = 2\left(\frac{D-d}{d}\right)$$
 (B) $\alpha = \frac{2D-d}{D}$ (C) $\alpha = 2 - \frac{2D}{d}$ (D) $\alpha = \frac{2D}{D-d}$

Chemical Equilibrium **K-2.** Given the following reaction at equilibrium $N_2(g) + 3H_2(g) \implies 2NH_3(g)$. Some inert gas at constant pressure is added to the system. Predict which of the following facts will be affected. (A) More NH₃(a) is produced (B) Less NH₃(g) is produced (C) No affect on the equilibrium (D) K_p of the reaction is decreased K-3. The equilibrium, $SO_2Cl_2(g) \implies SO_2(g) + Cl_2(g)$ is attained at 25°C in a closed container and an inert gas, helium, is introduced. Which of the following statement(s) is/are correct. (A) Concentrations of SO₂, Cl₂ and SO₂Cl₂ are changed (B) No effect on equilibrium (C) Concentration of SO₂ is reduced (D) K_p of reaction is increasing K-4. Densities of diamond and graphite are 3.5 and 2.3 g/mL. C (diamond) \implies C (graphite) $\Delta_r H = -1.9 \text{ kJ/mole}$ favourable conditions for formation of diamond are (A) high pressure and low temperature (B) low pressure and high temperature (C) high pressure and high temperature (D) low pressure and low temperature K-5. Introduction of inert gas (at the same temperature) will affect the equilibrium if : (A) volume is constant and $\Delta n_q \neq 0$ (B) pressure is constant and $\Delta n_q \neq 0$ (C) volume is constant and $\Delta n_g = 0$ (D) pressure is constant and $\Delta n_g = 0$ **K-6.** For an equilibrium $H_2O(s) \Longrightarrow H_2O(\ell)$ which of the following statements is true. (A) The pressure changes do not affect the equilibrium (B) More of ice melts if pressure on the system is increased (C) More of liquid freezes if pressure on the system is increased (D) The degree of advancement of the reaction do not depend on pressure. K-7. A reaction in equilibrium is represented by the following equation - $2A(s) + 3B(g) \implies 3C(g) + D(g) + O_2$ if the pressure on the system is reduced to half of its original value

(A) The amounts of C and D decreases

L-2.

L-3.

- (B) The amounts of C and D increases (D) All the amounts remain constant
- (C) The amount of B and D decreases

Section (L) : Vapour pressure and Relative Humidity

L-1. What is the relative humidity of air at 1 bar pressure and 313 K temperature if partial pressure of water in air is 19.355 mmHg.for any data use the table given below :

	(in n	nmHg)	V.P. of H ₂ O	25.2	31.8	42.2	55.3	71.9	92.5
	(in K	()	Temp.	298	303	308	313	318	323
	(A) 35%	0	(B) 25%	, D	(C) 7	5%	(C) 5%	
	(a)	CuSO ₄ .	5H2O(s) 📛 C	uSO4.3H ₂ C) (s) + 2H ₂ (D (g)	K	⊳ = 4 × 10 ⁻⁴	atm ²
	(b)	Na ₂ SO ₄	.10H ₂ O(s) 🚞	Na ₂ SO ₄ .5H	H ₂ O (s) + 5I	H ₂ O (g)	K	∝ = 2.43 × 1	0 ^{–8} atm⁵
	(c)	Na ₂ S ₂ O	3.5H₂O(s) ⇒	Na ₂ S ₂ O ₃ .2	H ₂ O (s) + 3	8H₂O (g)	K	∍ = 6.4 × 10)−5 atm ³
	What is	order of	partial pressure	of water v	apours at e	quilibrium	and relative	e humidity r	espectively.
	(A) c >	b>a	Partial pressure	1	(B) (c < b < a	Partial pre	ssure	
	C >	b > a	Relative humidi	ty	(;>b>a	Relative h	umidity	
	(C) a >	c > b	Partial pressure	!	(D) a	a > c > b	Partial pre	ssure	
	a >	c > b	Relative humidi	ty	a	a < c < b	Relative h	umidity	
2	CuSO4.	5H2O(s)	← CuSO₄.3I	H₂O(s) + 2ŀ	H ₂ O(g)		K _P = 4 × 1	0 ⁻⁴ atm ²	
	and vap	oour pres	sure of water is	22.4 torr a	t 298 K. Th	en find out	realative h	umidity	
	(A) 74.4	46%	(B) 78.4	6%	(C) 6	7.85%	([) 70.46%	

Section (M) : Simultaneous equilibria

- M-1. The two equilibria, AB(aq) \implies A⁺(aq) + B⁻(aq) and AB(aq) + B⁻(aq) \implies AB₂⁻(aq) are simultaneously maintained in a solution with equilibrium constants, K₁ and K₂ respectively. The ratio of concentration of A⁺ to AB₂⁻ in the solution is :
 - (A) directly proportional to the concentration of B^{-} (ag.).
 - (B) inversely proportional to the concentration of B^{-} (aq.).
 - (C) directly proportional to the square of the concentration of B^- (aq.).
 - (D) inversely proportional to the square of the concentration of B^{-} (aq.).
- M-2. In the preceeding problem, if [A⁺] and [AB₂⁻] are y and x respectively, under equilibrium produced by adding the substance AB to the solvents, then K_1/K_2 is equal to

(A)
$$\frac{y}{x}(y-x)^2$$
 (B) $\frac{y^2(x+y)}{x}$ (C) $\frac{y^2(x+y)}{x}$ (D) $\frac{y}{x}(x-y)$

[Note: Use the information of the preceeding problem]

M-3. The reactions $PCI_5(g) \implies PCI_3(g) + CI_2(g)$ and $COCI_2(g) \implies CO(g) + CI_2(g)$ are simultaneously in equilibrium at constant volume. A few moles of CO(q) are introduced into the vessel. After some time, the new equilibrium concentration of

(A) PCI₅ will remain unchanged

(B) Cl₂ will be greater

- (C) PCI₅ will become less
- (D) PCI₅ will become greater

PART - III : MATCH THE COLUMN

1. Match the following : (Assume only reactants were present initially).

	Column-I		Column-II
(A)	$N_2(g) + 3H_2(g) \implies 2NH_3(g) (t = 300^{\circ}C)$	(p)	$\Delta n_g > 0$
(B)	$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g) (t = 50^{\circ}C)$	(q)	K _p < K _c
(C)	$C(s) + H_2O(g) \Longrightarrow CO(g) + H_2(g)$	(r)	K _p not defined
(D)	$CH_{3}COOH(\ell) + C_{2}H_{3}OH(\ell) \Longrightarrow CH_{3}COOC_{2}H_{5}(\ell) + H_{2}O(\ell)$	(s)	P _{initial} > P _{eq.}

2. Match the following :

	Column-I (Assume only reactant were present initially)		Column-II
(A)	For the equilibrium $NH_{4I}(s) \implies NH_{3}(g) + HI(g)$, if pressure is increased at equilibrium	(p)	Forward shift
(B)	For the equilibrium $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$, volume is increased at equilibrium	(q)	No shift in equilibrium
(C)	For the equilibrium $H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g)$, inert gas is added at constant pressure at equilibrium	(r)	Backward shift
(D)	For the equilibrium $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$, CI_2 is removed at equilibrium.	(s)	Final pressure is more than initial pressure

Exercise-2

> Marked questions are recommended for Revision.

PART - I : ONLY ONE OPTION CORRECT TYPE

1.2 If K₁, K₂, K₃ are equilibrium constant for formation of AD, AD₂, AD₃ respectively as follows A + D \implies AD, $AD + D \implies AD_2$, $AD_2 + D \implies AD_3$. Then equilibrium constant 'K' for $A + 3D \implies AD_3$ is related as

- (A) $K_1 + K_2 + K_3 = K$
- (C) $K_1 + K_2 = K_3 + K$
- (B) $\log K_1 + \log K_2 + \log K_3 = \log K$
- (D) $\log K_1 + \log K_2 = \log K_3 + \log K$

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in ADVCEQ - 31 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Chem	ical Equilibrium /
11.	In the Haber process for the industrial manufacturing of ammonia involving the reaction, N ₂ (g) + 3H ₂ (g) \implies 2NH ₃ (g) at 200 atm pressure in the presence of a catalyst, a temperature of about 500°C is used. This is considered as optimum temperature for the process because (A) yield is maximum at this temperature (B) catalyst is active only at this temperature (C) energy needed for the reaction is easily obtained at this temperature (D) rate of the catalytic reaction is fast enough while the yield is also appreciable for this exothermic reaction at this temperature.
12.১	Addition of water to which of the following equilibria causes it to shift in the backward direction? (A) CH_3NH_2 (aq) + $H_2O(\ell) \rightleftharpoons CH_3NH_3^{\oplus}$ (aq) + OH^- (aq) (B) $AgCI$ (s) $\rightleftharpoons Ag^+$ (aq) + CI^- (aq) (C) HCN (aq) + $H_2O(\ell) \rightleftharpoons H_3O^+$ (aq) + CN^- (aq) (D) $[Cr(dien)_2]^{3+}$ (aq) + $3H_2O(\ell)$ + $3CI^-$ (aq) $\rightleftharpoons [Cr(H_2O)_3CI_3]$ (aq) + 2 dien (aq)
13.	Consider the reactions (i) $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$ (ii) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ The addition of an inert gas at constant pressure (A) will increase the dissociation of PCI_5 as well as N_2O_4 (B) observed molecular weight of PCI_5 increases at equilibrium. (C) Concentration NO_2 increases at equilibrium. (D) will not disturb the equilibrium of the reactions
14.	An equilibrium mixture $[N_2(g) + O_2(g) \rightleftharpoons 2NO(g)]$ in a vessel of capacity 100 litre contain 1 mol N_2 , 2 mol O_2 and 3 mol NO. Number of moles of O_2 to be added so that at new equilibrium the conc. of NO is found to be 0.04 mol/lit.: (A) (101/18) (B) (101/9) (C) (202/9) (D) None of these.
15.	$\begin{array}{l} \text{CaCl}_{2.6}\text{H}_{2}\text{O}(s) \rightleftharpoons \text{CaCl}_{2}(s) + 6\text{H}_{2}\text{O}(g) \text{ K}_{p} = 6.4 \times 10^{-17} \text{ atm}^{6} \\ \text{Excess solid CaCl}_{2.6}\text{H}_{2}\text{O} \& \text{CaCl}_{2} \text{ are taken in a container containing some water vapours at a pressure of} \\ 1.14 \text{ torr at a particular temp.} \\ \text{(A) CaCl}_{2}(s) \text{ acts as drying agent under given condition.} \\ \text{(B) CaCl}_{2}(s) \text{ acts as hygroscopic substance given condition.} \\ \text{(C) CaCl}_{2.6}\text{H}_{2}\text{O}(s) \text{ acts as effluoroscent substance.} \\ \text{(D) Mass of CaCl}_{2.6}\text{H}_{2}\text{O}(s) \text{ increases due to some reaction.} \end{array}$
16.24	$A(s) \rightleftharpoons B(g) + C(g)$ $K_P = 40 \text{ atm}^2$ $X(s) \rightleftharpoons B(g) + E(g)$ Above equilibrium is allowed to attain in a closed container and pressure of B was found to be 10 atm.Calculate standard Gibb's free energy change for $X(s) \rightleftharpoons B(g) + E(g)$ at 300 K (take R = 2 cal/K/mol)(A) 3.5 Kcal/mol(B) 3 Kcal/mol(C) 2.5 Kcal/mol(D) 2 Kcal/mol
	PART - II : SINGLE AND DOUBLE VALUE INTEGER TYPE

- 1. How many of the following reactions are homogenous reversible reactions ?
 - (1) $CH_3COOH(\ell) + C_2H_5OH(\ell) \longrightarrow CH_3COOC_2H_5(\ell) + H_2O(\ell)$
 - (2) $H_2(g) + CO_2(g) \Longrightarrow CO(g) + H_2O(g)$ (3) $CO(g) + Cl_2(g) \Longrightarrow COCl_2(g)$

 - (4) $NH_4HS(s) \Longrightarrow NH_3(g) + H_2S(g)$
 - (5) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
 - (6) $N_2(g) + O_2(g) \implies 2NO(g)$

 - (7) $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$ (8) $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$
 - (9) NO(g) + $\frac{1}{2}$ Br₂(ℓ) \implies 2NOBr(g)

- 2. A(g) + B(g) → C(g) + D(g) above equilibrium is established by taking A & B in a closed container. Initial concentration of A is twice of the initial concentration of B. At equilibrium concentrations of B and C are equal. Then find the equilibrium constant for the reaction, C(g) + D(g) → A(g) + B(g).
- **3.** If 0.5 mole H₂ is reacted with 0.5 mole I₂ in a ten-litre container at 444°C and at same temperature value of equilibrium constant K_c is 49, the ratio of [HI] and [I₂] will be :
- 4. For the reaction, N₂O₅(g) ⇒ 2NO₂(g) + 1/2 O₂(g), calculate the mole fraction of N₂O₅(g) decomposed at a constant volume & temperature, if the initial pressure is 600 mm Hg & the pressure at any time is 960 mm Hg. Assume ideal gas behaviour. If answer is x then report 10x.
- 5. Consider the equilibrium

 $Ni(s) + 4CO(g) \implies Ni(CO)_4(g)$; $K_p = 0.125 \text{ atm}^{-3}$.

If equal number of moles of CO and Ni(CO)₄ (ideal gases) are mixed in a small container fitted with a piston, find the maximum total pressure (in atm) to which this mixture must be brought in order to just precipitate out metallic Ni ?

- 6.★ K_p is 9 atm² for the reaction: LiCl.3NH₃(s) ⇒ LiCl.NH₃(s) + 2NH₃(g) at 40°C. How many moles of ammonia must be added at this temperature to a 5 litre flask containing 0.1 mole of LiCl. NH₃ in order to completely convert the solid to LiCl.3NH₃? Multiply the obtained answer by 100. Round off the answer to the nearest integer.
- 7.★ Consider the reaction, 2Cl₂(g) + 2H₂O(g) ⇒ 4HCl(g) + O₂(g); △H⁰ = + 113 kJ The four gases, Cl₂, H₂O, HCl and O₂, are mixed and the reaction is allowed to come to equilibrium. Each operation is to be considered separately. Temperature and volume are constant unless stated otherwise. Report the number of operations in the left column which lead to increase in the equilibrium value of the quantity in the right column.
 - (a) Increasing the volume of the container
 - (b) Adding O₂
 - (c) Adding O₂
 - (d) Decreasing the volume of the container
 - (e) Decreasing the volume of the container
 - (f) Decreasing the volume of the container
 - (g) Raising the temperature
 - (h) Raising the temperature
 - (i) Adding He
 - (j) Adding catalyst
- 8. For given simultaneous reaction :

 $X(s) \Longrightarrow A(g) + B(s) + C(g) \qquad K_{P_1} = 500 \text{ atm}^2$ $Y(s) \Longrightarrow D(g) + A(g) + E(s) \qquad K_{P_2} = 2000 \text{ atm}^2$

If total pressure = x, then write your answer after dividing by 25.

- **9.** For equilibrium $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ the observed vapour density of N_2O_4 is 40 at 350 K. Calculate percentage dissociation of $N_2O_4(g)$ at 350K.
- **10.** The vapour density of N_2O_4 at a certain temperature is 30.67. The % dissociation of N_2O_4 at this temperature is :
- **11.** Solid ammonium carbamate dissociates to give ammonia and carbon dioxide as follows:

 $NH_2 COONH_4 (s) \Longrightarrow 2NH_3 (g) + CO_2 (g)$

At equilibrium, ammonia is added such that partial pressures of NH_3 at new equilibrium equals the original total pressure (at previous equilibrium). If the ratio of the total pressures now to the original total pressure is a/b then report a + b.

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Number of moles of H₂O Number of moles of H₂O Number of moles of HCI Number of moles of Cl₂ Partial pressure of Cl₂ K_C K_C Concentration of HCI Number of moles of HCI Number of moles of HCI

TYPE

constant.

E D

G

Time

PART - III : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE1. Which of the following is correct about the chemical equilibrium ?
(A) (AGhr = 0)(B) Equilibrium constant is independent of initial concentration of reactants
(C) Catalyst has no effect on equilibrium state
(D) Reaction stops at equilibrium state
(C) Temperature2. For a reaction N2 + 3Hz
(C) Temperature2NHz, the value of Kc does not depends upon :
(A) Initial concentration of the reactants
(B) Pressure
(D) catalyst3. Which of the following statement's is/are correct :
(A) tradit concentration of the reactants
(B) pressure
(D) catalyst3. Which of the following statement's is/are correct :
(A) tradit concentration of the reactants
(B) pressure
(D) catalyst4. Equilibrium constant for following reactions respectively K1, K2 and K2
N2 + 52 c2 = 2NO + 3HzO
K2
Hz +
$$\frac{1}{2}$$
 Oz = HzO
K4
Which of the following relation is correct:
(A) K1 = $\frac{K_2 \times (K_3)^2}{K_4}$ (D) Kz = $\frac{K_4 \times K_5}{(K_3)^2}$ (D) Kz = $\frac{K_2 \times (K_3)^2}{K_1}$ 5. M Hog $\frac{K_5}{K_6} - \log \frac{1}{RT} = 0$, then above is true for the following equilibrium reaction
(A) NHa(9) = $\frac{1}{2}$ NL(9) + $\frac{3}{2}$ Hz(9)
(B) CaCOs(s) = CaO(s) + COs(9)
(C) 2NOs(9) = NOs(4)
(C) 2NOs(9) = NOs(4)
(C) 2NOs(9) = NOs(6), Kz = 4. This reversible reaction is studied graphically as
shown in figure. Select the correct statements.
(A) Reaction provident has maximum value at point A
(B) Reaction proceeds left to right at a point when $(N_2O_1 = (NO_2) = 0.1$ M
(C) $Nos of these5. The reaction for which, K = KG is statisfied(A) A(9) + 2B(9) = C(9) + C(9)(C) 2A(9) = B(9) + C(9)(C) Nos(4) = Call + Call transmittion value at point A(B) Reaction proceeds left to right at a point when $(N_2O_1 = (NO_2) = 0.1$ M
(C) N$

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

10.	Vapour density of equilibrium $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$ is decreased by(A) increasing temperature(B) decreasing pressure(C) increasing pressure(D) decreasing temperature
11.2	$CuSO_{4}.5H_{2}O(s) \implies CuSO_{4}(s) + 5H_{2}O(g); K_{p} = 10^{-10} \text{ (atm)}^{5}. \ 10^{-2} \text{ moles of } CuSO_{4}.5H_{2}O(s) \text{ is taken in a}$
	2.5L container at 27°C then at equilibrium [Take : $R = \frac{1}{12}$ litre atm mol ⁻¹ K ⁻¹]
	(A) Moles of CuSO ₄ .5H ₂ O left in the container is 9×10^{-3} (B) Moles of CuSO ₄ .5H ₂ O left in the container is 9.8×10^{-3} (C) Moles of CuSO ₄ left in the container is 10^{-3} (D) Moles of CuSO ₄ left in the container is 2×10^{-4}
12.	$\begin{array}{l} \text{CuSO}_{4.5}\text{H}_2\text{O}(s) & \mathchoice{\longrightarrow}{\leftarrow}{\leftarrow} \text{CuSO}_{4.3}\text{H}_2\text{O}(s) + 2\text{H}_2\text{O}(g) & K_{\text{P}} = 0.4 \times 10^{-3} \text{ atm}^2 \\ \text{Which of following statement are correct :} \\ \text{(A) } \Delta \text{G}^\circ = - \text{RT In } \text{P}_{\text{H}_2\text{O}} \text{ where } \text{P}_{\text{H}_2\text{O}} = \text{Partial pressure of H}_2\text{O at equilibrium.} \end{array}$
	 (B) At vapour pressure of H₂O = 15.2 torr relative humidity of CuSO₄.5H₂O is 100%. (C) In presence of aqueous tension of 24 torr, CuSO₄.5H₂O can not loss moisture. (D) In presence of dry atmosphere in open container CuSO₄.5H₂O will completely convert into CuSO₄.3H₂O
13.	 mole each of H₂(g) and I₂(g) are introduced in a 1L evacuated vessel at 523K and equilibrium H₂(g) + I₂(g) = 2HI (g) is established. The concentration of HI(g) at equilibrium : (A) Changes on changing pressure. (B) Changes on changing temperature. (C) Changes on changing volume of the vessel. (D) Is same even if only 2 mol of HI (g) were introduced in the vessel in the begining. (E) Is same even when a platinum gauze is introduced to catalyse the reaction.
14.	For the reaction : $PCI_5(g) \Longrightarrow PCI_3(g) + CI_2(g)$ The forward reaction at constant temperature is favoured by (A) introducing chlorine gas at constant volume (B) introducing an inert gas at constant pressure (C) increasing the volume of the container (D) introducing PCI_5 at constant volume
15.24	
16.	$\begin{array}{l} 2\text{CaSO}_4(s) & \longrightarrow 2\text{CaO}(s) + 2\text{SO}_2(g) + \text{O}_2(g), \Delta H > 0 \\ \text{Above equilibrium is established by taking some amount of CaSO}_4(s) in a closed container at 1600 K. \\ \text{Then which of the following may be correct option.} \\ \text{(A) moles of CaO}(s) will increase with the increase in temperature} \\ \text{(B) If the volume of the container is doubled at equilibrium then partial pressure of SO}_2(g) will change at new equilibrium.} \\ \text{(C) If the volume of the container is halved partial pressure of O}_2(g) at new equilibrium will remain same \\ \text{(D) If two moles of the He gas is added at constant pressure then the moles of CaO(s) will increase.} \\ 2\text{CaSO}_4(s) & \longrightarrow 2\text{CaO}(s) + 2\text{SO}_2(g) + \text{O}_2(g), \Delta H > 0 \end{array}$
17.	 The dissociation of phosgene, which occurs according to the reaction COCl₂ (g) ⇒ CO(g) + Cl₂(g) Is an endothermic process. Which of the following will increase the degree of dissociation of COCl₂? (A) Adding Cl₂ to the system (B) Adding helium to the system at constant pressure (C) Decreasing the temperature of the system

八

(D) Reducing the total pressure

PART - IV : COMPREHENSION

Read the following passage carefully and answer the questions.

Comprehension # 1

Le chatelier's principle

If a system at equilibrium is subjected to a change of any one of the factors such as concentration, pressure or temperature, the system adjusts itself in such a way as to nulify the effect of that change.

Change of pressure : If a system in equilibrium consists of gases, then the concentrations of all the components can be altered by changing the pressure. To increase the pressure on the system, the volume has to be decreased proportionately. The total number of moles per unit volume will now be more and the equilibirum will shift in the direction in which there is decrease in number of moles i.e., towards the direction in which there can be decrease in pressure.

- Effect of pressure on melting point : There are two types of solids :
- (a) Solids whose volume decreases on melting, e.g., ice, diamond, carborundum, magnesium nitride and quartz.
 - Solid (higher volume) \implies Liquid (lower volume)
 - The process of melting is facilitated at high pressure, thus melting point is lowered.
- (b) Solids whose volume increase on melting, e.g., Fe, Cu, Ag, Au, etc.
 - Solid (lower volume) = Liquid (higher volume)

In this case the process of melting become difficult at high pressure; thus melting point becomes high.

(c) **Solubility of substances** : When solid substance are dissolved in water, either heat is evolved (exothermic) or heat is absorbed (endothermic).

KCl + aq = KCl(aq) – heat

In such cases, solubility increase with increase in temperature. Consider the case of KOH; when this is dissolved, heat is evolved.

 $KOH + aq \implies KOH(aq) + heat$

In such cases, solubility decrease with increase in temperature.

- (d) **Solubility of gases in liquids :** When a gas dissolves in liquid, there is decrease in volume. Thus, increase of pressure will favour the dissolution of gas in liquid.
- A gas 'X' when dissolved in water heat is evolved. Then solublity of 'X' will increase :

 (A) Low pressure, high temperature
 (B) Low pressure, low temperature
 (D) high pressure, low temperature
- **2.** Au(s) \implies Au(ℓ)
 - Above equilibrium is favoured at :
 - (A) High pressure low temperature
 - (C) Low pressure, high temperature
- (B) High pressure high temperature
- (D) Low pressure, low temperature

3.* For the reaction,

 $\frac{1}{2} \operatorname{N}_2(g) + \frac{1}{2} \operatorname{O}_2(g) \rightleftharpoons \operatorname{NO}(g)$

If pressure is increased by reducing the volume of the container then :

(A) Total pressure at equilibrium will change.

(B) Concentration of all the component at equilibrium will change.

- (C) Concentration of all the component at equilibrium will remain same
- (D) Equilibrium will shift in the forward direction

Comprehension # 2

Effect of temperature on the equilibrium process is analysed by using the thermodynamics From the thermodynamics relation

	∆Gº = – 2.30 RT logk	(1)
	$\Delta G^{o} = \Delta H^{o} - T \Delta S^{o}$	
From	(1) & (2)	
	$-2.3 \text{ RT logk} = \Delta H^{\circ} - T\Delta S^{\circ}$	
\Rightarrow	$\log K = -\frac{\Delta H^{o}}{2.3RT} + \frac{\Delta S^{o}}{2.3 R}$	(3)

- ΔG^{o} : Standard free energy change
- ΔH^{o} : Standard heat of the reaction.

 ΔS^{o} : Standard entropy change

Clearly if a plot of log k vs 1/T is made then it is a straight line having slope = $\frac{-\Delta H^0}{2.3 R}$

and Y intercept = $\frac{\Delta S^{\circ}}{2.3 \text{ R}}$

If at temp. T₁ equilibrium constant be k_1 and at temperature T₂ equilibrium constant be k_2 then : The above equation reduces to:

$$\Rightarrow \qquad \log K_1 = -\frac{\Delta H^0}{2.3 \text{ R } T_1} + \frac{\Delta S^0}{2.3 \text{ R}} \qquad \dots \dots (4)$$

$$\Rightarrow \qquad \log K_2 = -\frac{\Delta H^0}{2.3 \text{ R } T_2} + \frac{\Delta S^0}{2.3 \text{ R}} \qquad \dots \dots (5)$$

(B)

Substracting (4) from (5) we get

 $\log \frac{K_2}{K_1} = \frac{\Delta H^0}{2.30 R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$

From the above relation we can conclude that the value of equilibrium constant increases with increase in temperature for endothermic reaction but value of equilibrium constant decreases with the increase in temperature for exothermic reaction.

(C) logk

(D)

4.If standard heat of dissociation of PCI5 is 230 cal then slope of the graph of logk vs $\frac{1}{T}$ is :(A) +50(B) - 50(C) 10(D) None5.For exothermic reaction if $\Delta S_0 < 0$ then the sketch of logk vs $\frac{1}{T}$ may be : $\log k$ $\log k$ $\log k$

6. If for a particular reversible reaction $K_c = 57$ at 355°C and $K_c = 69$ at 450°C then : (A) $\Delta H < 0$ (B) $\Delta H > 0$ (C) $\Delta H = 0$ (D) ΔH whose sign can't be determined

Comprehension # 3

(A)

Answer Q.7, Q.8 and Q.9 by appropriately matching the information given in the three columns of the following table.

Equilibrium is a state in which there are no observable changes as time goes by. When a chemical reaction has reached the equilibrium state, the concentrations of reactants and products remain constant over time and there are no visible changes in the system. However, there is much activity at the molecular level because reactant molecules continue to from product molecules while product molecules react to yield reactant molecules. If a change is applied to the system at equilibrium, then equilibrium will be shifted in that direction in which it can minimise the effect of change applied and the equilibrium is established again under new conditions.

	Column-1		Column-2	Column-3		
(I)	$2NH_{3(g)} \Longrightarrow N_{2(g)} + 3H_{2(g)}$	(i)	Homogeneous	(P)	If $\alpha = \frac{1}{2}$ & P _{total at equilibrium} = 1 atm,	
					$K_P \leq 1$	
μı	$N_{2}O_{4(z)} \longrightarrow 2NO_{2(z)}$	(ii)	$K_{\rm D} > K_{\rm C} (T - 298k)$	(0)	On increasing temperature, yield of	
(11)	112O4(g) 211O2(g)	(11)	$R_{P} > R_{C}(1 = 230R)$	(0)	reaction increases	
(111)	2O _{3(g)} = 3O _{2(g)}	(iii)	Degree of dissociation is not affected by pressure	(R)	On increasing pressure, vapour density of equilibrium mixture decreases	
(IV)	$2HI_{(g)} := H_{2(g)} + I_{2(g)}$	(iv)	$M_{theoritical} \ge M_{experimental}$	(S)	Products are paramagnetic in nature	

Chem	ical Equilibrium 🦯			八
7.*	Incorrect combination is (A) (I) (i) (p)	; (B) (II) (ii) (Q)	(C) (III) (iii) (Q)	(D) (IV) (iv) (S)
8.	Correct combination is (A) (IV) (ii) (Q)	(B) (III) (i) (S)	(C) (II) (iv) (R)	(D) (II) (iii) (S)
9.*	Correct combination is (A) (I) (iii) (R)	(B) (II) (iv) (S)	(C) (III) (iv) (Q)	(D) (IV) (iii) (P)

Exercise-3

* Marked Questions may have more than one correct option.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1.	For a chemical reaction $3X(g) + Y(g) \Longrightarrow X_3Y(g)$ (A) temperature and pressure (C) pressure only	g), the amount of X₃Y at (B) temperature only (D) temperature, pressu	equilibrium is affected by ire and catalyst [JEE-1999, 2/80]
2.	For the reversible reaction, N ₂ (g) + $3H_2(g) =$ partial pressure is measured in atmospheres. The litre ⁻¹ , is (A) $\frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}}$ (B) $\frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}}$	⇒ 2NH ₃ at 500°C, the The corresponding value (C) $\frac{1.44 \times 10^{-5}}{1000}$	e value of K _P is 1.44 × 10 ⁻⁵ when of K _c , with concentration in mole [JEE 2000, 1/35] (D) $\frac{1.44 \times 10^{-5}}{1.44}$
	$(0.082 \times 500)^{-2}$ $(8.314 \times 773)^{-2}$	$(0.082 \times 773)^2$	$(0.082 \times 773)^{-2}$
3.	When two reactants, A & B are mixed to give p of the reaction.	roducts C & D, the reacti	on quotient Q, at the initial stages [JEE-2000, 1/35]
	(A) is zero(C) is independent of time	(B) decrease with time(D) increases with time	
4.	At constant temperature, the equilibrium consta	int (K_P) for the decompo	sition reaction $N_2O_4 \Longrightarrow 2NO_2$ is
	expressed by $K_P = \frac{(4x^2 P)}{(1-x^2)}$, where P = pressur	e, x = extent of decompo	osition. Which one of the following
	statements is true? (A) K_P increases with increase of P (C) K_P increases with decrease of x	 (B) K_P increases with in (D) K_P remains constan 	[JEE 2001, 1/35] crease of x t with change in P and x
5.	Consider the following equilibrium in a closed consider the following equilibrium in a closed constant $N_1 \cap C_1(\alpha) \longrightarrow 2N(\Omega_1(\alpha))$	ontainer	[JEE 2002, 3/90]
	At a fixed temperature, the volume of the reation following statements holds true regarding the equation (A) neither K _P nor α changes (C) K _P changes, but α does not change	action container is halve juilibrium constant (K _P) a (B) both K _P and α chang (D) K _P does not change	d. For this change, which of the nd degree of dissociation (α)? ge but α changes
6.	The value of $log_{10}K$ for a reaction A \implies B is : and R = 8.314 JK ⁻¹ mol ⁻¹ ; 2.303 × 8.314 × 298 = (A) 5 (B) 10	(Given : = ୠH _{298K} –54.0 = 5705) (C) 95	7 kJ mol ^{–1} , _{∆r} S _{298K} = 10 JK ^{–1} mol ^{–1} [JEE 2007, 3/162] (D) 100
7.*	The thermal dissociation equilibrium of CaCO ₃ (s) CaCO ₃ (s) \rightleftharpoons CaO(s) + CO ₂ (g) For this equilibrium, the correct statement(s) is ((A) Δ H is dependent on T (B) K is independent of the initial amount of CaC (C) K is dependent on the pressure of CO ₂ at a (D) Δ H is independent of the catalyst, if any	s) is studied under differe are) : CO ₃ given T	nt conditions. [JEE(Advanced) 2013, 3/120]

Paragraph 1

Thermal decomposition of gaseous X_2 to gaseous X at 298 K takes place according to the following equation :

 $X_2(g) = 2X(g)$

The standard reaction Gibbs energy, $\Delta_r G^o$, of this reaction is positive. At the start of the reaction, there is one mole of X₂ and no X. As the reaction proceeds, the number of moles of X formed is given by β . Thus. $\beta_{\text{equilibrium}}$ is the number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally. (Given : R = 0.083 L bar K⁻¹ mol⁻¹)

8. The equilibrium constant K_p for this reaction at 298 K, in terms of $\beta_{equilibrium}$, is

(A)
$$\frac{8\beta_{equilibrium}^2}{2-\beta_{equilibrium}}$$
 (B) $\frac{8\beta_{equilibrium}^2}{4-\beta_{equilibrium}^2}$ (C) $\frac{4\beta_{equilibrium}^2}{2-\beta_{equilibrium}}$ (D) $\frac{4\beta_{equilibrium}^2}{4-\beta_{equilibrium}^2}$

9. The INCORRECT statement among the following, for this reaction, is [JEE(Advanced) 2016, 3/124] (A) Decrease in the total pressure will result in formation of more moles of gaseous X

- (B) At the start of the reaction, dissociation of gaseous X_2 takes place spontaneously
- (C) $\beta_{\text{equilibrium}} = 0.7$
- (D) Kc < 1

PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

OFFLINE JEE-MAIN

1. Change in volume of the system does not alter the number of moles in which of the following equilibriums: [AIEEE 2002, 3/225] (1) $N_2(g) + O_2(g) \Longrightarrow 2NO(g)$ (2) $PCI_5(q) \Longrightarrow PCI_3(q) + CI_2(q)$ (3) $N_2(g) + 3H_2(g) \implies 2NH_3(g)$ (4) $SO_2Cl_2(g) \implies SO_2(g) + Cl_2(g)$ 2. In which of the following reactions, increase in the volume at constant temperature don't effect the number of moles of at equilibrium : [AIEEE 2002, 3/225] (2) $C(g) + (1/2) O_2(g) \implies CO(g)$ (1) $2NH_3 \implies N_2 + 3H_2$ (3) $H_2(g) + O_2(g) \implies H_2O_2(g)$ (4) none of these. For the reaction CO (g) + (1/2) O_2 (g) \rightleftharpoons CO₂ (g), K_c/K_p is : 3. [AIEEE 2002, 3/225] (4) (RT)^{1/2} (3) (RT)-1/2 (1) RT (2) (RT)⁻¹ 4. Consider the reaction equilibrium $2SO_2(g) + O_2(g) \implies 2SO_3(g); \Delta H^\circ = -198 \text{ kJ}.$ On the basis of Le Chatelier's principle, the condition favourable for the forward reaction is : [AIEEE 2003, 3/225] (1) lowering of temperature as well as pressure (2) increasing temperature as well as pressure (3) lowering the temperature and increasing the pressure (4) any value of temperature and pressure. For the reaction equilibrium, $N_2O_4(g) \implies 2NO_2(g)$ the concentrations of N_2O_4 and NO_2 at equilibrium are 5. 4.8×10^{-2} and 1.2×10^{-2} mol L⁻¹ respectively. The value of K_c for the reaction is [AIEEE 2003, 3/225] (1) 3.3 × 10² mol L⁻¹ (2) 3×10^{-1} mol L⁻¹ (3) 3 × 10⁻³ mol L⁻¹ (4) 3 × 10³ mol L⁻¹ [AIEEE 2004, 3/225] 6. What is the equilibrium constant expression for the reaction : $P_4(s) + 5O_2(g) \implies P_4O_{10}(s)$? (1) $K_C = [P_4O_{10}]/[P_4] [O_2]^5$ (2) $K_C = 1/[O_2]^5$ (3) $K_C = [O_2]^5$ (4) $K_C = [P_4O_{10}]/5[P_4][O_2]$ 7. For the reaction, $CO(g) + Cl_2(g) \implies COCl_2(g)$ then K_p/K_c is equal to : [AIEEE 2004, 3/225] (3) _{VRT} (4) RT (1) 1/RT (2) 1.0

八

8. The equilibrium constant for the reaction, $N_2(g) + O_2(g) \implies 2NO(g)$ at temperature T is 4×10^{-4} . The value of K_c for the reaction, NO(g) $\implies \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same temperature is : [AIEEE 2004, 3/225 & JEE(Main) 2012, 4/120] (1) 2.5×10^2 (2) 0.02(3) 4×10^{-4} (4) 50 9. $2NO_2(g) \Longrightarrow 2NO(g) + O_2(g),$ For the reaction, $(K_C = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C})$ (R = 0.0831 kJ/(mol.K))When K_p and K_c are compared at 184°C it is found that : [AIEEE 2005, 3/225] (1) Whether K_p is greater than, less than or equal to K_c depends upon the total gas pressure (2) $K_p = K_c$ (3) K_p is less than K_c (4) K_p is greater than K_c The exothermic formation of CIF₃ is represented by the equation $CI_2(g)+3F_2(g) \implies 2CIF_3(g); \Delta_r H = -329 J$ 10. which of the following will increase the quantity of CIF₃ in an equilibrium mixture of Cl₂, F₂ and CIF₃. [AIEEE 2005, 3/225] (2) Increasing the volume of container (1) Adding F_2 (4) Increasing the temperature (3) Removing Cl₂ 11. An amount of solid NH4HS is placed in a flask already containing ammonia gas at a certain temperature at 0.50 atm pressure. Ammonium hydrogen sulphide decomposes to yield NH_3 and H_2S gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm? The equilibrium constant for NH₄HS decomposition at this temperature is : [AIEEE 2005, 4¹/₂/225] (1) 0.11(2) 0.17(3) 0.18(4) 0.30Phosphorus pentachloride dissociates as follows in a closed reaction vessel. 12. $PCI_5(g) \Longrightarrow PCI_3(g) + CI_2(g)$ If total pressure at equilibrium of the reaction mixture is P and degree of dissociation of PCI₅ is x, the partial pressure of PCI₃ will be : [AIEEE 2006, 3/165] (2) $\left(\frac{2x}{1-x}\right) P$ (3) $\left(\frac{x}{x+1}\right) P$ (4) $\left(\frac{x}{1-x}\right) P$ (1) $\left(\frac{x}{x+1}\right)P$ The equilibrium constant for the reaction, $SO_3(g) \implies SO_2(g) + \frac{1}{2}O_2(g)$ is $K_C = 4.9 \times 10^{-2}$. The value of 13. K_c for the reaction $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$ will be : [AIEEE 2006, 3/165] (4) 4.9 × 10^{-2} (3) 9.8 × 10⁻² (1) 416 (2) 2.40 \times 10⁻³ 14. For the following three reactions a, b and c, equilibrium constants are given: (a) $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g);$ K₁ (b) $CH_4(g) + H_2O(g) \implies CO(g) + 3H_2(g);$ K_2 (c) $CH_4(g) + 2H_2O(g) \implies CO_2(g) + 4H_2(g);$ Kз [AIEEE 2008, 3/105] Which of the following relations is correct? (3) $K_3 K_2^3 = K_1^2$ (4) $K_1 \sqrt{K_2} = K_3$ (1) $K_2 K_3 = K_1$ (2) $K_3 = K_1 K_2$ The equilibrium constants K_{p_1} and K_{p_2} for the reactions X \Longrightarrow 2Y and Z \Longrightarrow P + Q, respectively are in 15. the ratio of 1 : 9. If the degree of dissociation of X and Z be equal then the ratio of total pressures at these [AIEEE 2008, 3/105] equilibria is (1) 1 : 1(2)1:3(3) 1:9 (4) 1:36 16. A vessel at 1000 K contains CO₂ with a pressure of 0.5 atm. Some of the CO₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is : [AIEEE 2011, 4/120] (1) 1.8 atm (2) 3 atm (3) 0.3 atm (4) 0.18

 Res. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

17.	The equilibrium constant (K _c) for the reaction N	$_2(g) + O_2(g) \Longrightarrow 2NO(g)$	g) at temperature T is 4×10^{-4} . The
	value of K_c for the reaction	$NO(g) \Longrightarrow \frac{1}{2} N_2(g)$	$+\frac{1}{2}O_2(g)$ at the same to	emperature is:[AIEEE 2012, 4/120]
	(1) 0.02 (2) 2.5 × 10 ²	(3) 4 × 10 ⁻⁴	(4) 50.0
18.	For the reaction $SO_{2(g)} + \frac{1}{2}$	$O_{2(g)} \Longrightarrow SO_{3(g)}$, if K	$P = K_C(RT)^x$ where the	symbols have usual meaning then
	the value of x is : (assumir	ng ideality)		[JEE(Main) 2014, 4/120]
	(1) –1 (2	$) -\frac{1}{2}$	(3) $\frac{1}{2}$	(4) 1
19.	The standard Gibbs energ	ly change at 300 K fo	or the reaction 2A 🚗	B + C is 2494.2 J. At a given time,
	the composition of the rea	action mixture is [A]	= ¹ / ₂ , [B] = 2 and [C] =	$\frac{1}{2}$. The reaction proceeds in the :
	[R = 8.314 J/K/mol, e = 2.7 (1) forward direction becau (3) forward direction becau	718] ise Q > K _C ise Q < K _C	(2) reverse direction be(4) reverse direction be	[JEE(Main) 2015, 4/120] ecause Q > K _C ecause Q < K _C
20.	The equilibrium constant a the four species were 1 M	at 298 K for a reactior each, then equilibriun	$A + B \rightleftharpoons C + D$ is $r = C$ of C is $r = C$ in concentration of D (in	100. If the initial concentration of all mol L ⁻¹) will be : [JEE(Main) 2016, 4/120]
	(1) 0.818 (2) 1.818	(3) 1.182	(4) 0.182
21.	Which of the following line	es correctly show the	temperature depender	nce In K 🛉
	of equilibrium constant, K,	for an exothermic rea	iction?	A
	(1) C and D		[JEE(Main) 2018, 4/12	20] B $\frac{1}{T(V)}$
	(1) C and D (2) A and D			(0, 0)
	(3) A and B			*****
	(4) B and C			****D
		ONLINE	JEE-MAIN	
1.	At a certain temperature, c	only 50% HI is dissoci	iated into H ₂ and I ₂ at e [JEE(Main) 20	quilibrium. The equilibrium constant 014 Online (09-04-14), 4/120]
	$2HI_{(g)} \rightleftharpoons H_{2(g)} + $ (1) 1.0 (2)	· I _{2(g)}) 3.0	(3) 0.5	(4) 0.25
2.	What happens when an in	ert gas is added to an	equilibrium keeping vo	lume unchanged ?
	(1) More product will form (3) More reactant will form		[JEE(Main) (2) Less product will fo (4) Equilibrium will rem	2014 Online (12-04-14), 4/120] orm nain unchanged
3.	For the decomposition of $K_p = 2.9 \times 10^{-5} \text{ atm}^3$. If the would be : (1) 1.94 × 10 ⁻² atm (3) 7.66 × 10 ⁻² atm	the compound, repr e reaction is started w	resented as NH ₂ COON ith 1 mol of the compour [JEE(Main) 20 (2) 5.82×10^{-2} atm (4) 38.8×10^{-2} atm	$IH_4(s) \implies 2NH_3(g) + CO_2(g)$ the ind, the total pressure at equilibrium D14 Online (19-04-14), 4/120]
4.	Gaseous N_2O_4 dissociates 1 atm pressure, the degree then the density of the equ (1) 3.11 g/L (2)	into gaseous NO ₂ ac e of dissociation of N ₂ illibrium mixture is :) 4.56 g/L	cording to the reaction ₂ O ₄ is 0.2. If one mole o [JEE(Main) 20 (3) 1.56 g/L	$N_2O_4(g) \implies 2NO_2(g) \text{ at } 300 \text{ K and}$ f N_2O_4 gas is contained in a vessel, 015 Online (10-04-15), 4/120] (4) 6.22 g/L
		Reg. & Corp. Office : CG	Tower, A-46 & 52, IPIA. Near C	ity Mall, Jhalawar Road, Kota (Rai.) – 324005
八		Website : www.resonance	ac.in E-mail : contact@resonar	ADVCEQ - 42

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

八

Chem	ical Equilibrium 🖯	八
5.	The increase of pressure on ice a water sy	vstem at constant temperature will lead to : [JEE(Main) 2015 Online (11-04-15), 4/120]
	(1) a decrease in the entropy of the system(3) no effect on the equilibrium	(2) an increase in the Gibbs energy of the system(4) a shift of the equilibrium in the forward direction
6.	A solid XY kept in an evacuated sealed conta and Y at temperature T. The equilibrium press	iner undergoes decomposition to form a mixture of gases X ure is 10 bar in this vessel. K _P for this reaction is : [JEE(Main) 2016 Online (10-04-16), 4/120]
	(1) 25 (2) 5	(3) 10 (4) 100
7.	The following reaction occurs in the Blast Furn	ace where iron ore is reduced to iron metal :
	$Fe_2O_3(s) + 3CO(g) \implies 2Fe(\ell) + 3CO_2(g)$ Using the Le Chatelier's principle, predict which	n one of the following will not disturb the equilibrium ? [JEE(Main) 2017 Online (09-04-17), 4/120]
	(1) Addition of Fe_2O_3 (2) Removal of CO_2	(3) Removal of CO (4) Addition of CO ₂
8.	In which of the following reactions, an increas products ?	e in the volume of the container will favour the formation of [JEE(Main) 2018 Online (15-04-18), 4/120]
	(1) $4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(\ell)$ (3) $3O_2(g) \rightleftharpoons 2O_3(g)$	$(2) 2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$ $(4) H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
9.	At a certain temperature in a 5 L vessel, 2 allowed to reach equilibrium according to the re- $CO + Cl_2 \longrightarrow COCl_2$	moles of carbon monoxide and 3 moles of chlorine were eaction,
	At equilibrium if one mole of CO is present the	h equilibrium constant K_c for reaction is :
	(1) 2 (2) 2.5	[JEE(Main) 2018 Online (15-04-18), 4/120] (3) 3 (4) 4
10.	At 320 K, a gas A_2 is 20 % dissociated to A(g)	The standard free energy change at 320 K and 1 atm in J
	mol^{-1} is approximately : (R = 8.314 JK ⁻¹ mol ⁻¹ ;	ln 2 = 0.693 ; ln 3 = 1.098)
	(1) 1844 (2) 2068	[JEE(Main) 2018 Online (16-04-18), 4/120] (3) 4281 (4) 4763
11.	The gas phase reaction $2NO_2(g) \rightarrow N_2O_4(g)$ equilibrium mixture of $NO_2(g)$ and $N_2O_4(g)$, can	is an exothermic reaction. The decomposition of N_2O_4 , in be increased by :
	(1) addition of an inert gas at constant pressure(3) increasing the pressure	(4) addition of an inert gas at constant volume.
12.	Consider the following reversible chemical read	ctions :
	$A_2(g) + B_2(g) \xrightarrow{K_1} 2AB(g)$	(1)
	$6AB(g) \xrightarrow{K_2} 3A_2(g) + 3B_2(g)$	(2)
	The relation between K_1 and K_2 is :	[JEE(Main) 2019 Online (09-01-19), 4/120]
	(1) $K_1K_2 = \frac{1}{3}$ (2) $K_2 = K_1^{-3}$	(3) $K_1K_2 = 3$ (4) $K_2 = K_1^3$
13.	The values of K_P/K_C for the following reactions	at 300 K are, respectively : (At 300 K, $RT = 24.62 \text{ dm}^3 \text{ atm}$
	$N_2(g) + O_2(g) \Longrightarrow 2NO(g)$	
	$N_2O_4(g) \rightleftharpoons 2NO_2(g)$	
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	[JEE(Main) 2019 Online (10-01-19), 4/120]
	(1) 1,4.1 × 10^{-2} dm ⁻³ atm ⁻¹ mol, 606 dm ⁶ atm ² r	
	(2) 1,24.62 dm ³ atm mol ⁻¹ , 1.65 x 10^{-3} dm ⁻⁶ atm (3) 24.62 dm ³ atm mol ⁻¹ 606.0 dm ⁶ atm ² mol ⁻² .	n ⁻ ∕mol² 1.65 × 10 ⁻³ dm ⁻⁶ atm ⁻² mol²
	(4) 1,24.62 dm ³ atm mol ^{-1} , 606.0 dm ⁶ atm ² mol ⁻¹	-2

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalaw	ar Road, Kota (Raj.) – 324005
A Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCEQ - 43

- 14.5.1 g NH₄SH is introduced in 3.0 L evacuated flask at 327°C. 30% of the solid NH₄SH decomposed to NH₃
and H₂S as gases. The K_p of the reaction at 327°C is (R = 0.082 L atm mol⁻¹K⁻¹, molar mass of S = 32 g
mol⁻¹, molar mass of N = 14 g mol⁻¹)[JEE(Main) 2019 Online (10-01-19), 4/120]
(1) 4.9 × 10⁻³ atm²(2) 0.242 × 10⁻⁴ atm²(3) 1 × 10⁻⁴ atm²(4) 0.242 atm²
- **15.** Consider the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$. The equilibrium constant of the above reaction is K_P. If pure ammonia is left to dissociate, the partial pressure of ammonia at equilibrium is given by (Assume that $p_{NH_3} \ll p_{total}$ at equilibrium) [JEE(Main) 2019 Online (11-01-19), 4/120]

(1)
$$\frac{3^{3/2} K_p^{1/2} P^2}{16}$$
 (2) $\frac{3^{3/2} K_p^{1/2} P^2}{4}$ (3) $\frac{K_p^{1/2} P^2}{4}$ (4) $\frac{K_p^{1/2} P^2}{16}$

16. In a chemical reaction, $A + 2B \rightleftharpoons 2C+D$, the initial concentration of B was 1.5 times of the concentration of A, but the equilibrium concentrations of A and B were found to be equal. The equilibrium constant (K) for the aforesaid chemical reaction is : [JEE(Main) 2019 Online (12-01-19), 4/120] (1) 16 (2) 1 (3) 1/4 (4) 4

17. Two solids dissociate as follows

$$A(s) = B(g) + C(g)$$
; $K_{P_1} = x atm$

$$D(s) \rightleftharpoons C(g) + E(g) ; K_{P_2} = y atm^2$$

The total pressure when both the solids dissociate simultaneously is :

[JEE(Main) 2019 Online (12-01-19), 4/120]

(1) $\sqrt{x + y}$ atm	(2) (x + y) atm	(3) $x^2 + y^2$ atm	(4) $2(\sqrt{x+y})$ atm
------------------------	-----------------	---------------------	-------------------------

Answers **EXERCISE - 1** PART - I <u>100%</u> A-2. B-1. (a) 0.1 (b) 0.4 A-1. 4 0.044 M. B-2. $\frac{P(n+y/2)(n+y)^2}{(3n+y/2)(n-y)^2}$ C-1. B-3. 1/3M B-4. 0.66 C-2. K_P = 12 **D-1.** $K_{C} = \frac{4x^2V^2}{(a-x)(b-3x)^3}$; $K_{P} = \frac{(a+b-2x)^2 \cdot 4x^2}{P^2(a-x)(b-3x)^3}$ C-3. $[NH_3] = 0.76 M$ $[A]_{eq} = [B]_{eq} = [C]_{eq} = 1/2 \text{ M}, \text{ K}_{p} = 12.3 \text{ atm}, \text{ K}_{c} = 0.5 \text{ M} \text{ (unitless)}.$ D-2. (i) $K_c = \frac{20000}{343} = 58.3 \text{ mol}^{-2} L^{2}$, $K_P = \frac{58.3}{41 \times 41} = 0.035 \text{ atm}^{-2}$ (ii) $P = 8.2 \text{ atm}^{-2}$ D-3. E-1. The reaction is $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ $Q_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}} = \frac{8 \times 8 \times 20 \times 20}{\frac{3}{2} \times 2 \times 2 \times 2} = \frac{64}{3} \times 10^{2}$ As $Q_c \neq K_c$, the reaction mixture is not in equilibrium. As $Q_c > K_c$, the net reaction will be in the backward direction. [SO₂] = 0.034 M ; [NO₂] = 0.034 M ; [NO] = 0.306 M ; [SO₃] = 0.306 M E-2. F-1. (i) No change (ii) 1/k (iii) No change (iv) Change the equilibrium constant F-2. For the required reaction, $K = K_1 \times K_2$. F-3. 2.58 G-1. X = 4 $K_{P} = \frac{(P_{NO_2})^2}{(P_{N_2O_4})}$ $K_{C} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]}$ Homogeneous equilibrium H-1. (i) $K_{C} = \frac{[H_2]^4}{[H_2O]^4}$ $K_{P} = \frac{(P_{H_2})^4}{(P_{H_2})^4}$ Hetereogeneous equilibrium (ii) $K_P = (P_{NH_2}) (P_{H_2}S)$ $K_{C} = [NH_{3}] [H_{2}S]$ (iii) Hetereogeneous equilibrium $\mathsf{K}_{\mathsf{C}} \; = \; \frac{[\mathsf{C}\mathsf{H}_3\mathsf{C}\mathsf{O}\mathsf{O}\mathsf{C}_2\mathsf{H}_5] \; [\mathsf{H}_2\mathsf{O}]}{[\mathsf{C}\mathsf{H}_3\mathsf{C}\mathsf{O}\mathsf{O}\mathsf{H}] \; [\mathsf{C}_2\mathsf{H}_5\mathsf{O}\mathsf{H}]}$ but KP is not define for liquid system (iv) Homogeneous equilibrium $K_C = [CO_2]$ $K_P = (Pco_2)$ Hetereogeneous equilibrium (v) $K_{C} = \frac{[H_{2}]^{2} [S_{2}]}{[H_{2}S]^{2}} \qquad \qquad K_{P} = \frac{(P_{H_{2}})^{2} (P_{S_{2}})}{(P_{H_{2}S})^{2}}$ (vi) Homogeneous equilibrium $K_{C} = \frac{[SO_{3}] [NO]}{[SO_{2}][NO_{2}]} \qquad K_{P} = \frac{(P_{SO_{3}}) (P_{NO})}{(P_{SO_{2}})(P_{NO_{2}})}$ (vii) Homogeneous equilibrium $K_{C} = [N_{2}]$ $K_{P} = (P_{N_{2}})$ (viii) Hetereogeneous equilibrium H-2. 50%

 $K_{\rm P} = \frac{2}{3^{3/2}} P^{3/2}$ H-3.

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 kesonance® Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in ADVCEQ - 45 Educating for better tomorrow Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

						[a k	⊣1/3				
I-1.	(i) 0.266 atm ((ii) 63.25%	6		I-2.	$X = \begin{bmatrix} 2 K_{\rm f} \\ P \end{bmatrix}$	<u>P</u>				
I-3.	(i) 76.66, (ii) (D.2, (iii) 33	3.33 %, (iv) 1/3	3	I-4.	2.55 atm ²	3	J-1.	K _P = 1	.86 x 10	¹² atm ^{-1/2}
J-2.	\Rightarrow reaction (iii) is exoth	ermic.								
K-1.	(i) unaffected;	no shift	(ii) affected;	left direction	on.	(iii) affect	ed; lef	t	(iv) aff	ected; rig	ght
K-2.	(i) When decr (a) Forward (ii) Increasing (a) Forward	easing ter	mperature (b) Forward sure (b) No chang	je	(c) Bac (c) Bac	ckward ckward		(d) Forv (d) Forv	ward ward		
K-3.	(a) 4 × 10⁻³ (b) (i) decre	ease (ii) no cha	ange (iii) in	crease ((iv) increas	e (v) n	o chang	e (vi) in	crease	
K-4.	[A] = 0.34 M,	[B] = 1.16	6 M, [C] = 1.16	6 M.	L-1.	below 50	%				
L-2.	5 × 10 ⁻³ atm.		M-1. (a)	K _{p1} = 625 n	nm², K _{p₂}	, = 900 mn	n²	(b) $\frac{25}{36}$			
M-2.	(a) 1.05 atm,		(b) 3.43 atm ⁻	-1							
				PA	RT – II						
A-1.	(D)	A-2.	(D)	A-3.	(B)	4	\-4 .	(D)		A-5.	(D)
B-1.	(A)	B-2.	(A)	В-3.	(A)	E	3-4.	(C)		B-5.	(B)
B-6.	(B)	C-1.	(B)	C-2.	(B)	C	C-3.	(B)		C-4.	(A)
C-5.	(C)	C-6.	(C)	C-7.	(A)	E	D-1.	(C)		D-2.	(A)
D-3.	(B)	E-1.	(D)	E-2.	(B)	E	-3.	(C)		E-4.	(C)
E-5.	(A)	E-6.	(D)	F-1.	(C)	F	-2.	(D)		F-3.	(B)
G-1.	(B)	H-1.	(A)	H-2.	(B)	H	1-3.	(C)		H-4.	(B)
H-5.	(C)	I-1.	(B)	I-2.	(B)	ŀ	-3.	(A)		I-4.	(B)
I-5.	(A)	I-6.	(B)	I-7.	(B)	ŀ	-8.	(C)		I-9.	(A)
I-10.	(A)	J-1.	(A)	J-2.	(B)	J	I-3.	(A)		J-4.	(C)
J-5.	(B)	J-6.	(C)	J-7.	(A)	ŀ	(-1.	(D)		K-2.	(B)
K-3.	(B)	K-4.	(C)	K-5.	(B)	ŀ	(-6 .	(B)		K-7.	(B)
L-1.	(A)	L-2.	(A)	L-3.	(C)	Ν	<i>I</i> I-1.	(D)		M-2.	(A)
M-3.	(C)										

八

1. (A - q, s) ; (B - p) ; (C - p) ; (D - r) **2.** (A - r) ; (B - r) ; (C - q) ; (D - p)

PART – III . (A - r) : (B - r) : (C - q) : (D -

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
 ADVCEQ - 46

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
 ADVCEQ - 46

Che	mical Equilib	prium							
				EXER	CISE – 2				
				P/	ART – I				
1.	(B)	2.	(B)	3.	(A)	4.	(A)	5.	(C)
6.	(B)	7.	(B)	8.	(B)	9.	(A)	10.	(B)
11.	(D)	12.	(D)	13.	(A)	14.	(A)	15.	(C)
16.	(C)								
				PA	ART – II				
1.	05	2.	3	3.	7	4.	4	5.	4
6.	78 mole	7.	5	8.	4	9.	15	10.	50
11.	58								
				РА	RT – III				
1.	(ABC)	2.	(ABD)	3.	(ABCD)	4.	(ACD)	5.	(AB)
6.	(AC)	7.	(BC)	8.	(ABCD)	9.	(ABCD)	10.	(AB)
11.	(BD)	12.	(BCD)	13.	(ABCDE)	14.	(BCD)	15.	(ABC)
16.	(ACD)	17.	(BD)						
	· · ·		· · ·	РА	RT – IV				
1		2		2 *			(P)	5	(P)
ı. 0	(D)	Z. 7 +	(0)	5.		4. 0.*	(D) (DD)	5.	(D)
6.	(B)	7.*	(CD)	8.	(B)	9."	(BD)		
				EXER	CISE – 3		2		
				P	ART - I				
1.	(A)	2.	(D)	3.	(D)	4.	(D)	5.	(D)
6.	(B)	7.*	(ABD)	8.	(B)	9.	(C)		
				PA	ART – II				
	(4)		(4)	OFFLIN	NE JEE-MAIN		(2)	-	(0)
1. 6	(1)	Z. 7	(4)	<u>ع</u> .	(4)	4.	(3)	5.	(3)
0. 11	(2)	12	(1)	0. 12	(4)	9.	(4)	10.	(1)
16	(1)	12.	(1)	13.	(1)	14.	(<i>2</i>)	20	(7)
21.	(3)		(')		(~)		(-)	20.	(-)
	. ,			ONLIN	E JEE-MAIN				
1.	(4)	2.	(4)	3.	(2)	4.	(1)	5.	(4)
6.	(1)	7.	(1)	8.	(2)	9.	(2)	10.	(4)
11.	(1)	12.	(2)	13.	(2)	14.	(4)	15.	(1)
16.	(4)	17.	(4)						

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalaw	/ar Road, Kota (Raj.) – 324005
A Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCEQ - 47