Exercise-1

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : General introduction of complex salts and definitions to be used

- **A-1.** K₂SO₄ solution mixed with Cr₂(SO₄)₃ solution in 1 : 1 molar ratio gives the test of Cr³⁺ ion but CuSO₄ solution mixed with aqueous ammonia in 1 : 4 molar ratio does not give the test of Cu²⁺ ion. Explain why?
- A-2. What is the coordination number and the oxidation state of the metal in each of the following complexes?
 (a) [AqCl₂]⁻ ; (b) [Cr(H₂O)₅Cl]²⁺ ; (c) [Co(NCS)₄]²⁻

(a)	[AgCl₂] [−]	;	(b)	[Cr(H ₂ O) ₅ Cl] ²⁺ ;	(c)	[Co(NCS)4] ^{2–}
(d) 🙇	[Co(NH ₃) ₃ (NO ₂) ₃]	;	(e) 🙇	[Fe(EDTA)] [_]	(f) 🙇	[Cu(en)2]SO4;
(g)	K[Pt(NH₃)Cl₅]					

A-3. Write the name of the following ligands and classify their denticity

(A) CH₃NC	(B) acac ⁻¹	(Č) N₃ [−]	(D) dien	(E) edta ^{4–}
(F) edta ^{3–}	(G) ox ^{2–}	(H) dmg ^{−1}	(I) NC ⁻	(J) NO2 [−]
(K) O ^{2–}	(L) O ₂ -			

A-4. Predict the different ligating sites by drawing structures in the following ligands. (A) $(NO_2)^-$ (B) $(SCN)^-$ (C) $(C_2O_2S_2)^{2-}$ (D) $(OCN)^-$ (E) $(NOS)^-$

A-5. (a) Determine the denticity of the ligands in complexes $[Fe(C_2O_4)_3]^{3-}$ and $[Pt(en)_2]^{2+}$. What are the coordination number and the oxidation number of the central metal ion?

- (b) Designate the coordination entities and counter ions in the coordination compounds. $K_2[Ni(CN)_4]$; $[Cr(en)_3] Cl_3$; $Fe_4[Fe(CN)_6]_3$; $[PtCl_2(en)_2] (NO_3)_2$.
- (c) Identify the Lewis acid and Lewis base components of the following complexes. (i) $[HgBr_4]^{2-}$ (ii) $[Ni(H_2O)_6]^{2+}$ (iii) $[PdCl_2(NH_3)_2]$ (iv) $[Al(OH)_4]^-$ (v) $[Ag(CN)_2]^-$ (vi) $[Cr(CO)_6]$

Section (B) : Nomenclature of coordination compounds

B-1. Name the following compounds

(a) 🕰	[Co(NH ₃) ₆]Cl ₃	Prepared in 1798 by B.M. Tassaert and considered to be first complex salt prepared.		
(b)	[Rh(NH ₃) ₅ l]l ₂	A yellow colored complex obtained by heating $[Rh(NH_3)_5(H_2O)]I_3$ above 100°C.		
(C)	[Fe(CO)5]	A highly toxic volatile liquid.		
(d)	[Fe(C ₂ O ₄) ₃] ³⁻	The ion formed when Fe ₂ O ₃ rust is dissolved in oxalic acid, H ₂ C ₂ O ₄ .		
(e)æ	[Cu(NH ₃) ₄]SO ₄	A deep blue compound obtained when CuSO ₄ is treated with excess of NH ₃ .		
(f)	Na[Cr(OH) ₄]	The compound formed when Cr(OH) ₃ precipitate is dissolved in excess of NaOH.		
(g) 🏽	[Co(gly) ₃]	A complex that contains the anion of amino acid, glycine.		
(h) 🔊	[Fe(H ₂ O) ₅ (SCN)] ²⁺	The red complex ion formed in the qualitative analysis test of Fe ³⁺ ion.		
(i) کھ	K ₂ [Hgl ₄]	Alkaline solution of this complex is called Nessler's Reagent.		
(j)	Co[Hg(SCN)₄]	Deep blue crystalline precipitate obtained in qualitative detection of Hg ²⁺ .		
(k)	Fe ₄ [Fe(CN) ₆] ₃	Prussian blue , deep blue colored complex obtained in detection of Fe ²⁺ .		
(I)	K ₃ [Co(NO ₂) ₆]	Potassium cobaltinitrite or Fischer salt yellow precipitate obtained in detection of Co ²⁺ .		
(m)	[Ni(dmg) ₂]	Rosy red precipitate obtained in detection of Ni ²⁺ ions.		
(n)	K ₂ [PtCl ₆]	K ₂ [PtCl ₆] Yellow precipitate obtained in detection of potassium ions.		
	®	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005		
		Website : www.resonance.ac.in E-mail : contact@resonance.ac.in Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029 ADVCOR - 30		

(0) کھ	Na₂[Fe(CN)₅NO ⁺]	Sodium nitroprusside used for detection of sulphide ions/sulphur.		
(p) کھ	[Fe(H ₂ O) ₅ (NO ⁺)]SO ₄	Brown ring complex, obtained in detection of Fe ⁺¹ ions.		
(q) æ	[Cu(CN)₄] ^{3−}	Colourless stable soluble complex obtained in detection of Cu ²⁺ on adding excess of KCN solution.		
(r)	(NH ₄) ₂ [PtCl ₆]	Only few compounds of ammonium ions are precipitate this is one of these, a yellow precipitate.		

B-2.^ Name the following compounds.

(-)	$I \cap = D_{n}(a_{n}) (O \cap O) 1 +$
(a)	[CoBr(en) ₂ (ONO)] ⁺
(~)	

- (b) [Co(NH₃)₅(CO₃)]Cl
- (C) 🙇 $[Co(en)_3]_2(SO_4)_3$
- (d) [Cr(CO)₅(PPh₃)]
- $Ba[Zr(OH)_2(ONO)_2(ox)]$ (e)
- [(CO)₅Mn-Mn(CO)₅] (f) 🔊

- (g) 🏽 $[Co(NH_3)_6][Co(ONO)_6]$ (h) $[Pt(NH_3)_4Cl_2][PtCl_4]$
- [(NH₃)₅Co-NH₂-Co(NH₃)₄(H₂O)]Cl₅ (i)
- (j) $[Cr(\eta^6 - C_6 H_6)_2]$
 - [Co(NH₃)₄(OH₂)₂][BF₄]₃
- (k) (I) a $[Co(NH_3)_6][Co(C_2O_4)_3]$
- B-3. Write down the formulae of the following compounds

;

(a)	Tetraamminezinc(II) Nitrate	The compound formed when zinc nitrate is treated with an excess of ammonia		
(b)	TetracarbonyInickel(0)	The first metal carbonyl(prepared in 1888) and an important compound in the industrial refining of nickel metal		
(C) 🔊	Potassium amminetrichloridoplatinate(II)	A compound that contains a square planar anion		
(d)	Dicyanidoaurrate(I) ion	An ion important in the extraction of gold from its ores		
(e)	Sodium hexafluoridoaluminate(III)	Called cryolite, used in the electrolytic refining of aluminium		
(f) 🕰	Diamminesilver(I) ion	Ion formed when AgCI is dissolved in excess of ammonia		

B-4. Write down the formulae of the following compounds

(a)	diamminetriaquahydroxidochromium (III) nitrate
(b)	barium dihydroxidodinitrito-O-oxalatozirconate(IV)
(C)	dibromidotetracarbonyliron (II)
(d)	ammonium diamminetetrakis(isothiocyanato)chromate(III).
(e)	pentaamminedinitrogenruthenium(II) chloride
(f)	tetrakis(pyridine)platinum(II) tetraphenylborate(III)
(g)	tetrapyridineplatinum(II) tetrachloridonickelate(II)

Section (C) : Werner's Theory

(Initial bonding theories and EAN rule)

C-1. Werner conducted many experiments to establish the formula of complexes, one of these were conductivity measurements. On the basis of the experiments performed he obtained the following values of conductivity for different type of complexes.

Type of complex	Electrical Conductivity
Nonelectrolyte	0 – 10 (due to impurities)
1:1 Electrolyte	90 – 130
1:2 or 2:1 Electrolyte	230 – 290
1:3 or 3:1 Electrolyte	390 – 450
1:4 Electrolyte	500 – 550

On the basis of above table Match the following two columns.

	COLUMN A		COLUMN B
	Formula of compound	Conductivity	Correct Werner's Representation
(a)	PtCl ₄ .2NH ₃	6.99	(i) [Cr(NH ₃)₅Cl]Cl ₂
(b)	PtCl ₄ .NH ₃ .KCl	106.8	(ii) [Co(NH ₃)₅Br]Br ₂
(C)	CrCl ₃ .5NH ₃	260.2	(iii) [Cr(NH ₃) ₆]Cl ₃
(d)	PtCl ₄ .2KCl	256.8	(iv) [Pt(NH ₃) ₂ Cl ₄]
(e)	CrCl ₃ .6NH ₃	441.7	(v) [Pt(NH ₃) ₆]Cl ₄
(f)	PtCl ₄ .6NH ₃	522.9	(vi) [Pt(NH ₃) ₃ Cl ₃]Cl
(g)	CoBr ₃ .5NH ₃	257.6	(vii) K ₂ [PtCl ₆]
(h)	PtCl ₄ .3NH ₃	96.8	(viii) K[Pt(NH ₃)Cl ₅]

C-2. 1 g of complex [Cr(H₂O)₅Cl]Cl₂.H₂O was passed through a cation exchanger to produce HCl. The acid liberated was diluted to 1 litre. What will be the molarity of acid solution [Molecular weight of complex = 266.5] ?

- Calculate the EAN of central atom in the following complexes C-3.a [Co(NH₃)₆]³⁺ $[Cr(CO)_6]$ [Fe(CN)₆]⁴⁻ [Fe(CO)₅] (a) (b) (c) (d) [Cu(CN)₄]³⁻ [Pd(NH₃)₆]⁴⁺ [PtCl6]2-[Ni(CO)₄] (e) (f) (g) (h)
- C-4. Arrange the following compounds in order of increasing molar conductivity. (i) K[Co(NH₃)₂(NO₂)₄] (ii) [Cr(NH₃)₃(NO₂)₃] (iii) [Cr(NH₃)₅(NO₂)]₃[Co(NO₂)₆]₂ (iv) [Cr(NH₃)₆]Cl₃

Section (D) : Valence Bond Theory + Crystal Field Theory (Part-I)

- **D-1.** A metal complex having composition Cr(NH₃)₄Cl₂Br has been isolated in two forms A and B. The form A reacts with AgNO₃ to give a white precipitate readily soluble in dilute aqueous ammonia, whereas B gives a yellow precipitate soluble in concentrated ammonia.
 - (i) Write the formulae of A and B.
 - (ii) State hybridisation of chromium in each.
 - (iii) Calculate their magnetic moments for each (spin-only value).
 - (iv) Calculate the EAN for both.
 - (v) Will they conduct electricity or not.

(vi) Write the formula of the complexes formed when the precipitates dissolve in aqueous ammonia & the concentrated ammonia respectively.

D-2. Predict the hybridisation and geometry of the following complexes. (a) $[NiBr_4]^{2-}$ (b) $[AuCl_4]^-$ (c) $[Pt(NH_3)_4]^{2+}$

Section (E) : Valence Bond Theory + Crystal Field Theory (Part-II)

- **E-1.** For the complex $K_2[Cr(NO)(NH_3)(CN)_4]$; $\mu = 1.73$ BM.
 - (i) Write IUPAC name.
 - (ii) What will be structure?
 - (iii) How many unpaired electrons are present in the central metal ion?
 - (iv) Is it paramagnetic or diamagnetic?
 - (v) Calculate the EAN of the complex.
 - (vi)What will be the hybridisation of the complex?
- **E-2.** Predict the hybridisation and geometry of the following complexes. (a) $[Fe(CN)_6]^{3-}$ (b) $[MnBr_4]^{2-}$ (c) $[Fe(H_2O)_6]^{2+}$

(d) [Co(SCN)₄]²⁻

- **E-3.** $[Co(NH_3)_6]^{3+}$ & $[CoF_6]^{3-}$ both are complexes of Co(III), but $[Co(NH_3)_6]^{3+}$ is diamagnetic while $[CoF_6]^{3-}$ is paramagnetic with $\mu = 4.90$ B.M. Explain.
- E-4. Arrange the following in increasing order as directed.
 - (a) (i) [CoCl₃(NH₃)₃], (ii) [CoCl(NH₃)₅]Cl₂, (iii) [Co(NH₃)₆]Cl₃, (iv) [CoCl₂(NH₃)₄]Cl Molar conductance
 - (b) C, N, O, F (halogen) tendency of σ donation.
 - (c) Br⁻, S²⁻, NO₂⁻, CO, H₂O, CN⁻, NH₃, NO₃⁻ strength of ligands.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005		
人 Resonance®	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 32	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 32	

- E-5. For each of the following complexes, draw a crystal field energy-level diagram, assign the electrons to orbitals, and predict the number of unpaired electrons:
 - [CrF₆]³⁻ (b) [V(H₂O)₆]³⁺ [Fe(CN)6]3-(a) (c) [Cu(en)3]2+ [FeF6]3-(d) (e)

Section (F) : Applications of crystal field theory (Magnetic moment of complex, Colour of complex, Limitation, Stability of complex)

- F-1. Cobalt (II) is stable in aqueous solution but in the presence of complexing reagents(strong field ligands) it is readily oxidised. why ?
- The value of Δ_0 for $[Ti(H_2O)_6]^{3+}$ is found to be 240 kJ mol⁻¹ then predict the colour of the complex using F-2. the following table. Give the number corresponding to the colour. $(h = 6 \times 10^{-34} \text{ J-sec}, N_A = 6 \times 10^{23}, c = 3 \times 10^8 \text{ m/sec})$

Absorbed light	λ (nm) (absorbed)	Colour exhibited
Blue	435 – 480	1. Yellow
green-blue	480 – 490	2. Orange
blue-green	490 – 500	3. Red
Green	500 - 560	4. purple
yellow-green	560 - 580	5. violet
Yellow	580 – 595	6. blue
Red	605 – 700	7. blue green

F-3. (a) [Ti(H₂O)₆]³⁺ absorbs light of wavelength 5000 Å. Name one ligand which would form a titanium(III) complex absorbing light of lower wavelength than 5000 Å and one ligand which would form a complex absorbing light of wavelength higher than 5000 Å.

(b) Calculate the magnetic moments (spin only) of the following complexes

(i) [PtCl₆]²⁻ (ii) [Cr(CO)₆] (iv) [Pd(en)₂]²⁺ (iii) $[Ir(NH_3)_6]^{3+}$

Section (G) : Isomerism in Coordination compounds (Structural Isomerism, Stereoisomerism, Geometrical Isomerism, Optical Isomerism)

G-1. What type of isomers are the following :

(i)	[Mn(CO)₅SCN]	and	[Mn(CO)₅NCS]
(ii)	[Co(en) ₃] [Cr(CN) ₆]	and	[Cr(en) ₃] [Co(CN) ₆]
(iii)	[Co(NH ₃) ₅ NO ₃]SO ₄	and	$[Co(NH_3)_5SO_4]NO_3$
(iv)	[Co(H ₂ O) ₂ Cl ₂ (py) ₂]Cl	and	[Co(H ₂ O)Cl ₃ (py) ₂]H ₂ O

G-2. (a) Draw all possible constitutional isomers of the compound Ru(NH₃)₅(NO₂)Cl. Label the isomers as linkage isomers or ionization isomers.

(b) There are six possible isomers for a square planar palladium(II) complex that contains two NH_3 and two SCN⁻ ligands. Sketch the structures of all six, and label them according to the classification.

G-3. How many geometrical isomers are possible for each of the following complexes? ahedral)

(a) [Pt(NH ₃) ₂ (SCN) ₂]	(b) [CoCl ₂ Br ₂] ^{2–} (tetra
(c) [Co(NH ₃) ₃ (NO ₂) ₃]	(d) [Pt(en)Cl ₂]

(e) $[Cr Br_2 (en)_2]^+$ (f) [Rh(en)₃]³⁺

G-4.> Which of the following complexes can exist as enantiomers? Draw their structures

(e) [Ni(CO)₄]

- (a) cis-[Co(NH₃)₄Br₂]⁺
- (b) cis-[Cr(H₂O)₂(en)₂]³⁺

(c) $[Cr(g|y)_3]$

- (e) cis-[Co(NH₃)Cl(en)₂]²⁺ (d) [Cr(en)₃]³⁺
- (f) trans-[Co(NH₃)₂(en)₂]²⁺

Section (H) : Organometallic Compounds

- H-1. Draw the structures of the following metal carbonyls (b) [Cr(CO)₆]
 - (a) [V(CO)₆] (d) [Fe(CO)₅]

(c) [Mn₂(CO)₁₀]

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005		
A Resonance®	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 33	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 33	

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Coord	dination Compounds			——————————————————————————————————————			
B-5.	The hypothetical complex triamminediaquachloridocobalt(III) chloride can be represented as :(A) [CoCl(NH_3)_3(H_2O)_2](B) [Co(NH_3)_3(H_2O)Cl_3](C) [Co(NH_3)_3(H_2O)_2Cl]Cl_2(D) [Co(NH_3)_3(H_2O)_3]Cl_3]						
Sectio	n (C) : Werner's Theory (Initial bonding theories						
C-1.	EAN of a metal carbon (A) 4	yl M(CO) _x is 36. If atomic (B) 8	c number of metal M is 2 (C) 5	6, what is the value of x? (D) 6			
C-2.	The EAN of platinum ir (A) 90	n potassium hexachlorido (B) 86	oplatinate(IV) is (Atomic r (C) 76	number of Pt = 78) : (D) 88			
C-3.	aqueous solution of the		articles per molecule whe	olutions in the ratio of 1 : 3. The ereas molar conductivityreveals (D) K[Co(NO ₂) ₄]			
C-4.	Which of the following (A) K ₄ [Fe(CN ₆]	will exhibit maximum ion (B) [Co(NH ₃) ₆] Cl ₃	ic conductivity? (C) [Cu(NH ₃)4] Cl ₂	(D) [Ni (CO)4]			
C-5. 🖎	Which of the following (A) [Co(NH ₃) ₆]Cl ₃	shows maximum molar o (B) [Co(NH ₃) ₃ Cl ₃]	conductance? (C) [Co(NH ₃) ₄ Cl ₂]Cl	(D) [Co(NH ₃) ₅ Cl]Cl ₂			
C-6.	The complex [Cr(H₂O) (A) Br⁻	⁴ Br ₂]Cl gives the test for (B) Cl ⁻	(C) Cr ³⁺	(D) Br⁻ and Cl⁻ both			
C-7.	Which of the following identical condition. (A) $[Cr(H_2O)_5Cl]Cl_2.H_2O(C)$ $[Cr(H_2O)_6]Cl_3$		rated to relatively minimum extent by conc. H ₂ SO ₄ under (B) [Cr(H ₂ O) ₄ Cl ₂]Cl.2H ₂ O (D) all of these				
C-8. 🖎	On adding AgNO ₃ so precipitated is: (A) 100	olution to a solution of (B) 75	[Pt(NH₃)₃Cl₃]Cl, the pe (C) 50	ercentage of total chloride ion (D) 25			
C-9.		n, ammonia and chloride		(D) [Pt(NH ₃) ₄ Cl ₂]Cl ₂			
Sectio	n (D) : Valence Bond T	heory + Crystal Field T	heory (Part-I)				
D-1.a	The complex ion which (A) [MnO₄]⁻	n has no. 'd' electrons in t (B) [Co(NH₃)6] ³⁺	he central metal atom is (C) [Fe(CN) ₆] ^{3–}	: (D) [Cr(H ₂ O) ₆] ³⁺			
D-2.	For the correct assignment of electronic configuration of a complex, the valence bond theory often requires the measurement of (A) molar conductance (B) optical activity (C) magnetic moment (D) dipole moment						
D-3.	The magnitude of crystal field stabilisation energy (CFSE of Δ_1) in tetrahedral complexes is considerably less than that in the octahedral field. Because (A) There are only four ligands instead of six so the ligand fild is only 2/3 in tetradedral complex (B) The direction of the orbitals does not coincide with the direction of the ligands. This reduces the crystal field stabilization energy (Δ) by further 2/3 (C) Both points (A) and (B) are correct (D) Both points (A) and (B) are wrong						
D-4.	related as:			for tetrahedral complex (Δ_t) are			
	$(A) \ \Delta_{t} = \frac{4}{9} \ \Delta_{0}$	(B) $\Delta_t = 0.5 \Delta_o$	(C) $\Delta_t = 0.33 \Delta_o$	(D) $\Delta_t = \frac{9}{4} \Delta_0$			

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005		
Resonance [®]	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 35	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 35	

D-5.	All the	metal	ions cont	ains t _{2g} 6	eg ⁰ configuratio	ns. Whicl	n of i	the follow	ving	comple	x will be para	amagnetic?
	(A) $[FeCl(CN)_4(O_2)]^{4-}$ (B) $K_4[Fe(CN)_6]$ (C) $[Co(NH_3)_6]Cl_3$ (D) $[Fe(CN)_5(O_2)]^{-5}$ on (E) : Valence Bond Theory + Crystal Field Theory (Part-II)											
				-	-			-				
E-1.	(A) sp		exacarbor	iyi is an (B) ds	octahedral com	(C) d ²		ing :		(D) ds	sp ³	
E-2.		n of the t(en)2] ²⁻			les is not tetrah li(CO)4]		n(Nł	┨ ₃)₄] ²⁺		(D) [N	liCl4] ^{2–}	
E-3.১		omplex uare pl		-	structure : trahedral	(C) py	ram	idal		(D) pe	entagonal	
			nn-I with below :	Column	-II and select the	ne correc	t an	swer with	h res	spect to	o hybridisatio	on using the
		giveni	Colum	ו - I				Colum	n - II			
			(Comp	,				(Hybrid				
	(I)		[Au F₄]⁻			(p)		dsp ² hy				
	(II)		[Cu(CN			(q)		sp ³ hyb				
	(111)		[Co(C ₂ C			(r)		sp ³ d ² hy d ² sp ³ hy				
	(IV) Code)5INO]-*		(s)		a-sp- nj	ybna	Isation		
	Coue	s. (l)	(II)	(111)	(IV)		(I)) (II))	(111)	(IV)	
	(A)	q	(п <i>)</i>	r	S	(B)	() p		,	S	r	
	(C)	р	q	r	S	(D)	q			S	r	
E-5.		ybridisa ³ d² ; 4	ation and		d electrons in [F ²sp³ ; 3	e(H ₂ O) _{6]} ² (C) d ²				(D) sp	o ³ d ² ; 2	
E-6.	The n (A) 4	umber	of unpaire	ed electi (B) 2	rons in d ⁶ , low s	pin, octał (C) 1	nedra	al comple	ex is	: (D) 0		
E-7.		of the o(NH ₃)			h spin complex e(CN) ₆] ^{4–}	? (C) [N	i(CN	√) 4] ^{2−}		(D) [F	eF ₆] ^{3–}	
E-8.১		n has m u(H₂O)			gnetic nature ? Cu(NH ₃)₄] ²⁺	(C) [N	ln(H	₂ O) ₆] ²⁺		(D) [F	e(CN) ₆] ^{4–}	
E-9.	The n (A) 5	umber	of unpaire	ed electi (B) 4	rons present in o	complex i (C) 6	on [l	FeF₀] ³⁻ is	:	(D) 0		
E-10.		i of the i Cl₄]²-	following		xes has a geom i (CO)₄	netry diffe (C) [N			ers ?		'n(NH ₃)4] ²⁺	
E-11.	(A) Co	omplex	rrect stat ion [MoC and (B) a	l ₆] ^{3–} is p	aramagnetic. ct.			lex ion [C of correc		n)₃]³+ is	diamagnetic	
E-12.	 Amongst Ni(CO)₄, [Ni(CN)₄]²⁻ and NiCl₄²⁻: (A) Ni(CO)₄ and NiCl₄²⁻ are diamagnetic and [Ni(CN)₄]²⁻ is paramagnetic. (B) NiCl₄²⁻ and [Ni(CN)₄]²⁻ are diamagnetic and Ni(CO)₄ is paramagnetic. (C) Ni(CO)₄ and [Ni(CN)₄]²⁻ are diamagnetic and NiCl₄²⁻ is paramagnetic. (D) Ni(CO)₄ is diamagnetic and NiCl₄²⁻ and [Ni(CN)₄]²⁻ are paramagnetic. 											
Section					field theory ex, Colour of c	omplex,	Lim	itation, S	Stabi	ility of	complex)	
		ompour u(NH ₃).			t show parama g(NH₃)₂]Cl	9netism ? (C) N				(D) N	O ₂	
F-2.		g the fo r(H₂O)∈			ch one has the l e(H ₂ O) ₆] ²⁺			nagnetisr 2O)6] ²⁺	n ?	(D) [Z	'n(H ₂ O) ₆] ²⁺	
	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005 Website : www.resonance.ac.in E-mail : contact@resonance.ac.in ADVCOR - 36											
	٦			_®	<u>g. a ee.p. e</u> ee . s	• • • • • • • • • • • •		, , ,			lawar noua, nota	(114) 02 1000

Coord	dination Compounds	/		——————————————————————————————————————				
F-3.	Which of the following fac (A) Higher ionic radius of (C) Lower ionisation poter	the metal ion	(B) Higher charge/size	ratio of the metal ion				
	ection (G) : Isomerism in Coordination compounds Structural Isomerism, Stereoisomerism, Geometrical Isomerism, Optical Isomerism)							
G-1.	The complexes [Pt(NH ₃) ₄] (A) linkage isomers (C) co-ordination isomers		Cl ₂] [PtCl ₄] are : (B) optical isomers (D) ionisation isomers					
G-2.๖	[Co(NH ₃) ₅ NO ₂]Cl ₂ and [Co (A) geometrical isomers (C) coordination isomers	o(NH₃)₅ONO]Cl₂ are re	lated to each other as : (B) linkage isomers (D) ionisation isomers					
G-3.	The number of geometric (A) 0 (I	al isomer of [Co(NH₃)₃(B) 2	(NO ₃)₃] are : (C) 3	(D) 4				
G-4.	Geometrical isomerism is (A) 2 (I	found in coordination (B) 3	compounds having coord (C) 4 (tetrahedral)	dination number : (D) 6				
G-5.๖	monodentate ligands) :	found in square plan B) Ma₃b	ar complexes of mole (C) Ma ₂ b ₂	cular formula ('a' and 'b' are (D) Mab ₃				
G-6.	Geometrical isomerism ca (A) [Ag(NH ₃)(CN)] (I	an be shown by : B) Na2[Cd(NO2)4]	(C) [PtCl ₄ l ₂]	(D) [Pt(NH ₃) ₃ Cl][Au(CN) ₄]				
Sectio	n (H) : Organometallic Co	ompounds						
H-1.	Which one is not an organ (A) RMgX (I	nometallic compound ? B) (C ₂ H ₅) ₄ Pb	, (C) (CH₃)₄Sn	(D) C₂H₅ONa				
H-2.	Formula of ferrocene is: (A) [Fe(CN) ₆] ⁴⁻ (I	B) [Fe(CN) ₆] ³⁺	(C) [Fe(CO)₅]	(D) [Fe(C₅H₅)₂]				
				-				

PART - III : MATCH THE COLUMN

	Column-I		Column-II
(A)	[Fe(en) ₃] ³⁺	(p)	d ² sp ³ hybridisation of central metal
(B)	[Co(ox) ₃] ³⁻	(q)	sp ³ d ² hybridisation of central metal
(C)	[Cr(CN) ₆] ³⁻	(r)	paramagnetic
(D)	[NiCl ₆] ^{4–}	(s)	diamagnetic
		(t)	metal ion has +3 oxidation state

2. There are some coordination compounds given in column-I which may exist in different isomeric forms as given in column-II. Select the correct option(s) for the coordination compounds and their respective isomeric forms.

	Column-l		Column-II
(A)	[Co(en)2NH3CI]SO4	(p)	Enantiomer
(B)	[Co(NH ₃) ₄ (NO ₂) ₂](NO ₃) ₂	(q)	Geometrical isomer
(C)	[Co(en)(pn)(NO ₂) ₂]Cl	(r)	Ionization isomer
(D)	[Co(gly) ₃]	(s)	Linkage isomer

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005			
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 37		
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 37		

Exercise-2

> Marked questions are recommended for Revision.

PART - I : ONLY ONE OPTION CORRECT TYPE

1.		nium becomes six). W nium(VI)		igands (in proper number so that an be its correct IUPAC name? loosmate(VI)		
2.	The EAN of metal atoms in (A) 34, 35 (B)	[Fe(CO)2(NO ⁺)2] and) 34, 36	Co ₂ (CO) ₈ respectively (C) 36, 36	v are : (D) 36, 35		
3.	Which of the following is int (A) $[Ir(H_2O)_6]^{3+}$ (B)	ner orbital complex as) [Ni(NH ₃) ₆] ²⁺	-	n nature ? (D) [Co(NH₃)₀]²+		
4.	Which of the following state (A) The oxidation state of in (B) $[Ag(NH_3)_2]^+$ is linear in s (C) In $[Fe(H_2O)_6]^{3+}$, Fe is d (D) In Ni (CO) ₄ , the oxidation	on in sodium nitro pru shape ²sp³ hybridized	usside Na₂[Fe(CN)₅(N0	D))] is +3		
5.2	The complex K4[Zn(CN)4(O (A) Zn(II) is oxidised into Zr (C) O–O bond length increa	n(IV)	Zn(CN)4(O2)2], then whi (B) Paramagnetic mo (D) Paramagnetic mo			
6.	All the following complexes group of complexes having I Ni (CO) ₄ IV K_2 [PtCl ₄] (A) II, III, V (B)	tetrahedral geometry II K [AgF ₄ V [RhCl (F	ris:]	ed in a magnetic balance then the Na ₂ [Zn (CN) ₄] (D) none of these		
7.2						
8.	Which of the following state (A) TiCl ₄ is a colourless cor (C) $K_3[VF_6]$ is a colourless of	npound.	(B) [Cr(NH ₃) ₆)]Cl ₃ is a	coloured compound.] is a colourless compound.		
9.	Among TiF_6^{2-} , CoF_6^{3-} , Cu_2					
	(A) $\operatorname{CoF}_{6}^{3-}$ and $\operatorname{NiCl}_{4}^{2-}$ (B)) Ti F_6^{2-} and Co F_6^{3-}	(C) NiCl ₄ ²⁻ and Cu ₂ Cl ₂	$_2$ (D) TiF $_6^{2-}$ and Cu ₂ Cl ₂		
10.	The number of geometrical (A) 4, 2 (B)	isomers for octahedr 2, 2	al [Co(NH ₃) ₂ Cl ₄] [–] , squa (C) 3, 2	are planar AuCl₂Br₂ [–] are : (D) 2, 3		
11.	 Which of the following statements is not true about the complex ion [Pt(en)₂Cl₂]²⁺ ? (A) It has two geometrical isomers – cis and trans. (B) Both the cis and trans isomers display optical activity. (C) Only the cis isomer displays optical activity. (D) Only the cis isomer has non-superimposable mirror image. 					
12.	Both geometrical and optic (A) $[Co(en)_2Cl_2]^+$ (B)	al isomerism are shov) [Co(NH₃)₅Cl]²+	vn by : (C) [Co(NH₃)₄Cl₂]⁺	(D) [Cr(OX) ₃] ³⁻		
13.	Among the following, metal			(D) [Ti(CO) ₆] ^{2–}		
	Posonanco®			ty Mall, Jhalawar Road, Kota (Raj.) – 324005		
\mathbb{Z}	Educating for better tomorrow		c.in E-mail : contact@resonan CIN: U80302RJ2007PLC02402			

PART - II : SINGLE AND DOUBLE VALUE INTEGER TYPE

- 1. Sum of denticity of following ligands are Glycinate ion, Oxalate ion, o-phenathroline, 2,2-bipyridyl, diethylenetriamine, ethylenediamine
- 2. How many total sodium ions are present in one formula unit of sodium ethane-1.2diaminetetraacetatochromate(II) and sodium hexanitrito cobaltate(III) ?
- A blue colour complex is obtained in the analysis of Fe⁺³ having formula Fe₄[Fe(CN)₆]₃ 3.2 Let a = oxidation number of Iron in the coordination sphere b = no. of secondary valencies of central iron ion. c = Effective atomic number of Iron in the coordination sphere. Then find the value of (c + a - 2b)
- Coordination number of Cr in CrCl_{3.5}H₂O as six. The possible volumes of 1 M Ag NO₃ needed to 4.2 precipitate the chlorine inoutersphere in 200 ml of 0.1 M solution of the complex is/are. Write your answer as $V_1 + V_2 + V_3 + \dots$
- 5. Ni⁺² form a complex ion in water having the formula $[Ni(H_2O)_6]^{+2}$. How many of the following statements are true for the complex ion ? (ii) The complex is diamagnetic in nature.
 - (i) The complex is octahedral in shape.
 - (iii) Ni⁺² has incompletely filled 3d subshell.
 - (v) All the bonds (metal-ligand) are perpendicular to each other.
 - (ví) All the 3d orbitals of Ni+2 are degenerate
 - (vii) Total spin of the complex is 1. (ix) The complex is more stable than $[Ni(en)_3]^{+2}$
- (viii) The hybridisation of Ni⁺² is d²sp³
- (x) Effective atomic number of Ni⁺² is 36.

(iv) Secondary valency of Ni⁺² is 6.

How many of the following is correctly matched complex ? 6.

	Complex	Oxidation no. on central metal	Electronic configuration
(a)	K ₃ [Co(C ₂ O ₄) ₃]	+3	t ⁶ _{2g}
(b)	(NH4)2 [CoF4]	+2	$t_{2g}^{5} = e_{g}^{2}$
(C)	Cis - [Cr(en) ₂ Cl ₂]Cl	+3	$t_{2g}^{3} = e_{g}^{0}$
(d)	[Mn(H ₂ O) ₆]SO ₄	+2	$t_{2g}^{3} = e_{g}^{2}$

7.^& Total number of paramagnetic complexes which are inner orbital complexes :

(i) $[Cr(NH_3)_6]Cl_3$ (ii) [Co(NH₃)₆](NO₃)₂ (iv) $K_2[PtCl_6]$, (v) [V(H₂O)₆]SO₄ (vii) K₃[CuCl₄] (viii) Na₄[Fe(CN)₅(NOS)]

(iii) [Ni(NH₃)₆]SO₄ (vi) [Fe(H₂O)₅ (NO)]SO₄

- 8. The number of coordination isomers possible for $[Fe(NH_3)_6]^{3+}$ $[Cr(C_2O_4)_3]^{3-}$ is
- Find the sum of number of geometrical isomers for following complexes. 9. (a) [CoCl₂Br₂]²⁻ (b) [Rh(en)₃]³⁺ (c) [Cr(en)₂ Br₂]⁺ (d) [Pt en Cl₂] (e) [Co(NH₃)₃(NO₂)₃]
- 10.2 What is the sum of bond order of Fe-C bond and C-O bond in Fe(CO)5 ?
- 11. How many isomeric forms are possible for the octahedral complex, [Rh(en)₂(NO₂)(SCN)]⁺?

PART - III : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- Which of the following statement(s) are incorrect ? 1.
 - (A) Those additional compounds which lose their identity in solution are called double salts.
 - (B) In $K_3[Fe(CN)_6] Fe^{2+}$ and CN^- ion can give quantitative identification test.
 - (C) [KAI(SO₄)₂.12H₂O] is a coordination compound.
 - (D) All acids are lewis acids and σ donors.
- 2. The effective atomic number of Co(CO)₄ is 35 and hence is less stable. It attains stability by (A) oxidation of Co (B) reduction of Co (C) dimerization (D) none

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005					
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 39				
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 39				

3. Select the correct statements ;

(A) Potassium ferrocyanide and potassium ferricyanide can be differentiated by measuring the solid state magnetic moment.

(B) The complex $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)_5SO_4]Br$ can be differentiated by adding aqueous solution of barium chloride

(C) The complex $[Co(NH_3)_5CI]Br$ and $[Co(NH_3)_5Br]CI$ can be differentiated by adding aqueous solution of silver nitrate.

(D) the complex $[Co(NH_3)_6]Cl_3$ and $[Co(NH_3)_5Cl]Cl_2$ can be differentiated by measuring molar conductance

4. Consider the following statements :

 S_1 : [MnCl₆]³⁻, [FeF₆]³⁻ and [CoF₆]³⁻ are paramagnetic having four, five and four unpaired electrons respectively.

S₂: Low value of formation constant of a complex indicates its high thermodynamic stability.

 S_3 : The crystal field splitting Δ_o , depends upon the field produced by the ligand and charge on the metal ion.

and arrange in the order of true/ false.

- 5. Which of the following is/are correctly matched ?
 - (A) $[Ni(CO)_4]$ dsp² and diamagnetic.
 - (B) $[Ni(en)_3](NO_2)_2 sp^3d^2$ and two unpaired electrons.
 - (C) $[V(NH_3)_6]Cl_3$ sp³d² and two unpaired electrons.
 - (D) $[Mn(NO^+)_3(CO)]$ sp³ and diamagnetic.
- 6. Which of the following statement(s) is/are correct with respect to the crystal field theory ?
 - (A) It considers only the metal ion d-orbitals and gives no consideration at all to other metal orbitals.
 - (B) It cannot account for the π bonding in complexes.
 - (C) The ligands are point charges which are either ions or neutral molecules
 - (D) The magnetic properties can be explained in terms of splitting of d- orbitals in different crystal field.
- 7.2'Spin only' magnetic moment of Ni in $[Ni(dmg)_2]$ is same as that found in :(A) Ni in $[NiCl_2 (PPh_3)_2]$ (B) Mn in $[MnO_4]^-$ (C) Co in $[CoBr_4]^{2-}$ (D) Pt in $[Pt(H_2O)_2Br_2]$
- **8.^** Which complex of the following pairs has the larger value of Δ_0 ? (i) $[Co(CN)_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$ (ii) $[Co(H_2O)_6]^{3+}$ and $[Co(H_2O)_6]^{2+}$ (iii) $[Co(H_2O)_6]^{3+}$ and $[Rh(H_2O)_6]^{3+}$ (iv) $[Co(NH_3)_6]^{3+}$ and $[CoF_6]^{3-}$ Select the correct one (A) $[Co(CN)_6]^{3-} > [Co(NH_3)_6]^{3+}$ (B) $[Co(H_2O)_6]^{2+} < [Co(H_2O)_6]^{3+}$ (C) $[Co(H_2O)_6]^{3+} > [Rh(H_2O)_6]^{3+}$ (D) $[Co(NH_3)_6]^{3+} < [CoF_6]^{3-}$
- 9. Which of the following isomerisms is/are shown by the complex [CoCl₂(OH₂)₂(NH₃)₂]Br ? (A) Ionization (B) Linkage (C) Geometrical (D) optical

ςl

(II)

10. Three arrangements are shown for the complex $[Co(en)(NH_3)_2Cl_2]^+$. Pick up the wrong statement.

(A) I and II are geometrical isomers

(C) I and III are optical isomers

(D) II and III are geometrical isomers

- **11.** Consider the following complexies [V(CO)₆]⁻, [Cr(CO)₆] and [Mn(CO)₆]⁺. Then incorrect statement (s) about metal carbonyls is /are.
 - (A) 'C–O' bond is strongest in the cation and weakest in the anion
 - (B) 'C–O' bond order is less in the cation than in anion.
 - (C) 'C–O' bond longer in the cation than in anion or neutral carbonyl.
 - (D) 'M–C' bond order is higher in the cation than in anionic or neutral carbonyl.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala	war Road, Kota (Raj.) – 324005
Resonance®	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 40

12.Following Sidwick's rule of EAN, $Co(CO)_x$ will be :
(A) $Co_2(CO)_4$ (B) $Co_2(CO)_3$ (C) $Co_2(CO)_8$

(D) Co₂(CO)₁₀

PART - IV : COMPREHENSION

	Read the following passage carefully and answer the questions.									
Comp	In coordination chemistry there are a variety of methods applied to find out the structure of complexes. One method involves treating the complex with known reagents and from the nature of reaction, the formula of the complex can be predicted. An isomer of the complex Co(en) ₂ (H ₂ O)Cl ₂ Br, on reaction with concentrated H ₂ SO ₄ (dehydrating agent) it suffers loss in weight and on reaction with AgNO ₃ solution it gives a white precipitate which is soluble in NH ₃ (aq).									
1.	The <u>correct</u> formula o (A) [CoClBr(en) ₂]H ₂ O (C) [CoBr(en) ₂ (H ₂ O)]C	·	(B) [CoCl(en)2(H2O)]B (D) [CoBrCl(en)2]Cl.H2							
2.	-	coordination sphere of x ion (due to spin only) v (B) 5.9 BM		eplaced by F⁻, then the magnetic (D) 1.73 BM						
3.24	Similarly if all the ligan the complex ion (due t (A) 1.73 BM	•	ohere be replaced by NC (C) 4.9 BM	0₂ ⁻ , then the magnetic moment of (D) 5.9 BM						
4.	If one mole of original white precipitate (of Pl (A) 0.5	•	excess Pb(NO ₃) ₂ soluti (C) 0.0	on, then the number of moles of (D) 3.0						
5.	The number of geom complex): (A) 2	etrical isomers of the fo (B) 3	ormula of the above orig	ginal complex are (including the (D) 1						
Comp	rehension # 2									
		yoxime $\xrightarrow{NH_4OH}$ Com	,	e four.						
6.24	 The corrdination number of cobalt and nickel in complexes X and Y are four. The IUPAC names of the complexes (X) and (Y) are respectively : (A) tetrathiocyanato-S-cobalt(II) and bis(dimethylglyoximate) nickel(II). (B) tetrathiocyanato-S-cobaltate (II) and bis(dimethylglyoximato)nickel (II). (C) tetrathiocyanato-S-cobaltate (II) and bis(dimethylglyoximato)nickelate(II). (D) tetrathiocyanato-S-cobaltate(III) and bis(dimethylglyoximato)nickel(II). 									
7.a	The geometry of comp (A) tetrahedral and sq (C) square planar and	-	spectively : (B) both tetrahedral. (D) both square plana	r.						
8.24	(A) (X) is paramagneti (B) (Y) is diamagnetic	•	trons.	gnetic.						

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005				
Resonance®	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 41			
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 41			

Comprehension # 3

Q.9, Q.10 and Q.11 by appropriately matching the information given in the three columns of the following table.

Column 1	Column 2	Column 3
μ (in B.M.)	Hybridisation state	No. of geometrical isomers
(I) μ = 2.83 B.M.	(i) sp ³	(P) 2
(II) μ = 5.93 B.M.	(ii) sp ³ d ²	(Q) 3
(III) μ = 3.88 B.M.	(iii) d ² sp ³	(R) 4
(IV) μ = 0 B.M.	(iv) dsp ²	(S) 5

9.	About (CrCl₃(NH₃)₃) wh (A) (III), (iii), P	ich of following combina (B) (II), (iv), Q	tion is correct ? (C) (IV), (i), R	(D) (I), (ii), S
10.	Correct combination fo (A) (II), (i), P	r [VCl₂(NO₂)₂(NH₃)₂]⁻. (B) (I), (iii), S	(C) (III), (ii), R	(D) (IV), (iv), Q
11.	Correct combination fo (A) (II), (iii), Q	r [PtCl ₂ (NH ₃) ₂] is : (B) (I), (iv), S	(C) (IV), (iv), P	(D) (III), (ii), R

Exercise-3

* Marked Questions may have more than one correct option.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1.	A green complex, K ₂ [C name of the complex ar				
2.	The species having tetr	[JEE 2004, 3/84]			
		(B) [Ni(CN) ₄] ^{2–}	(C) [Pd(CN) ₄] ²⁻	(D) [NiCl4] ²⁻	[0== 200 !, 0,0 !]
3.	The spin magnetic mor	nent of cobalt in the comp	oound, Hg [Co(SCN)4] is	s:	[JEE 2004, 3/84]
	(A) √3	(B) √8	(C) √15	(D) $\sqrt{24}$	
4.	ammonia solution, a bri (a) Draw the structure o (b) Write the oxidation s	ne is added to the aque ght red coloured precipit of bright red substance. state of nickel in the subs ubstance is paramagnetic	ate is obtained. tance and hybridisation.	chloride in	presence of dilute [JEE 2004, 4/60]
5.	Which kind of isomerism (A) Geometrical and ion (C) Optical and ionization	tical	[JEE 2005, 3/84]		
6.	The bond length in CO (A) 1.158 Å	is 1.128 Å. What will be t (B) 1.128 Å	the bond length of CO in (C) 1.178 Å	Fe(CO)₅ ? [、 (D) 1.118 Å	JEE 2006, 5/184]
Compr	ehension # (Q.7 to Q.9)				
	$NiCl_2 \xrightarrow{KCN}_{HCN} \rightarrow$	complex A			
	NiCl ₂	complex B			
	A & B complexes have	the co-ordination numbe	r 4.		

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005				
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 42			
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 42			

八

Coo	rdination Compour	nds /					——————————————————————————————————————
7.	The IUPAC name (A) Potassium tet (B) Potassium tet (C) Potassium cy	of complexes racyanonickela racyanonickel(anonickelate(I)	ate(II) and II) and P I) and Po	are respectively : d Potassium tetrachlor otassium tetrachloroni tassium chloronickelat sium chloronickel(II)	ckel(II)	[JEE :	2006, 5/184]
8.	The hybridisation (A) dsp ²	of both comple (B) sp ²		: (C) dsp ² & sp ³	5 (D)	[JEE 2 both sp ³	2006, 5/184]
9.	• •	etic. etic & 'B' is pa etic & 'B' is pa	ramagne	? tic with one unpaired e tic with two unpaired e		[JEE 2	2006, 5/184]
10.	Among the follow (A) [Mn(CO) ₆] ⁺	ing metal carbo (B) [V(C	-	e C–O bond order is lo (C) [Cr(CO) ₆)]		[JEE 2 [Fe(CO)₅]	2007, 3/162]
11.	Match the comple	xes in Column	I with th	eir properties listed in	Column-II.	[JEE 2	2007, 6/162]
	Column-I			Column-II		-	-
	(A) [Co(NH ₃) ₄	(H ₂ O) ₂]Cl ₂	(p)	Geometrical isomers	6		
	(B) [Pt(NH ₃) ₂ (Cl ₂]	(q)	Paramagnetic			
	(C) [Co(H ₂ O) ₅	-	(r)	Diamagnetic			
	(D) [Ni(H ₂ O) ₆]	Cl ₂	(s)	Metal ion with +2 oxi	dation state		
12.	The IUPAC name (A) Tetrachloronic (B) Tetraamminer (C) Tetraamminer (D) Tetraamminer	ckel(II) tetraam hickel(II) tetrac hickel(II) tetrac hickel(II) tetrac	minenick hloronick hloronick hloronick	el (II) el (II) celate (II) celate (0)		-	2008, 3/163]
13.	A respectively, are : (A) sp ³ , sp ³	, -		amagnetic. The hybrid (C) dsp ² , sp ³			e complexes, 2008, 3/163]
14.	Statement-2 : Bo (A) Statement-1 is	th geometrical s true, stateme s true, stateme s true, Stateme	isomers nt-2 is tru nt-2 is tru ent-2 is fa		3)4Cl ₂] posses	s axis of symm [JEE tion for statem	netry. 2008, 3/163] ent-1.
15.	(A) Statement-1 is	he Fe in [Fe(H s true, stateme s true, stateme s true, Stateme	2O)₅NO]S nt-2 is tru nt-2 is tru ent-2 is fa	SO4 has three unpaired ue; statement-2 is a co ue; statement-2 is NOT alse.	orrect explanat	tion for statem	
16.*	The compound(s) (A) [Pt(en)Cl ₂]	that exhibit(s) (B) [Pt(-	ical isomerism is(are) (C) [Pt(en)2Cl2		[JEE 2 [Pt(NH ₃) ₂ Cl ₂]	2009, 4/160]
17.	The spin only ma (A) 0	gnetic moment (B) 2.84		n Bohr magneton units (C) 4.90		s: [JEE 2 5.92	2009, 3/160]
				ice : CG Tower, A-46 & 52, IPI		Jhalawar Road, Kota	a (Raj.) – 324005
\nearrow	Educating for better tor			sonance.ac.in E-mail : contact 58 5555 CIN: U80302RJ2007		ADV	COR - 43

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

[JEE 2010, 3/163]

18. The correct structure of ethylenediaminetetraacetic acid (EDTA) is : $CH_2 - COOH$ HOOC - CH₂ (A) HOOC - $N - CH_2 - CH_2 - N$ HOOC (B) HOOC $CH_2 - COOH$ (C) (D) 19. The ionization isomer of [Cr(H₂O)₄Cl (NO₂)]Cl is : [JEE 2010, 3/163] (A) $[Cr(H_2O)_4(O_2N)]Cl_2$ (B) $[Cr(H_2O)_4Cl_2](NO_2)$ (C) [Cr(H₂O)₄Cl(ONO)]Cl (D) [Cr(H₂O)₄Cl₂(NO₂)].H₂O 20. The complex showing a spin-only magnetic moment of 2.82 B.M. is : [JEE 2010, 5/163] (B) [NiCl₄]²⁻ (A) Ni(CO)₄ (C) Ni(PPh₃)₄ (D) [Ni(CN)₄]²⁻ 21. Total number of geometrical isomers for the complex [RhCl(CO)(PPh₃)(NH₃)] is : [JEE 2010, 3/163] 22. Geometrical shapes of the complexes formed by the reaction of Ni²⁺ with Cl⁻, CN⁻ and H₂O, respectively, are [JEE 2011, 3/160] (A) octahedral, tetrahedral and square planar (B) tetrahedral, square planar and octahedral (C) square planar, tetrahedral and octahedral (D) octahedral, square planar and octahedral 23. Among the following complexes (K-P), K₃[Fe(CN)₆] (K), [Co(NH₃)₆]Cl₃ (L), Na₃[Co(oxalate)₃] (M), [Ni(H₂O)₆]Cl₂ (N), K₂[Pt(CN)₄] (O) and [Zn(H₂O)₆](NO₃)₂ (P) [JEE 2011, 3/160] the diamagnetic complexes are : (A) K, L, M, N (B) K, M, O, P (C) L, M, O, P (D) L, M, N, O 24. The volume (in mL) of 0.1 M AgNO₃ required for complete precipitation of chloride ions present in [JEE 2011, 4/160] 30 mL of 0.01 M solution of [Cr(H₂O)₅Cl]Cl₂, as silver chloride is close to. As per IUPAC nomenclature, the name of the complex [Co(H₂O)₄(NH₃)₂]Cl₃ is : 25. [JEE 2012, 3/143] (A) Tetraaquadiaminecobalt (III) chloride (B) Tetraaquadiamminecobalt (III) chloride (C) Diaminetetraaquacobalt (III) chloride (D) Diamminetetraaguacobalt (III) chloride

26.		tic). The o			-		-	-		d diamag	(paramagnetic/ gnetic states are EE 2012, 3/143]
	(A) tetrahedral and tetrahedral						(B) square planar and square planar				
	(C) tetrahedral and square planar						(D) square planar and tetrahedral				
27.	Consider the following complex ions, P, Q and $P = [FeF_6]^{3-}, Q = [V(H_2O)_6]^{2+}$ and $R = [Fe(H_2O)_6]^{3+}$								[JEE(Advance	ed) 2013, 2/120]
	The correct order of the complex ic (A) $R < Q < P$ (B) $Q < R$						eir spin- < P < C			oment va Q < P < R	
28.*	The pair(s) of coordi	nation co	mplex	es/ions exh	ibiting t	he same	e kind of		•	ed) 2013, 4/120]
	(A) [Cr(NH ₃) ₅ Cl]Cl ₂ and [Cr(NH ₃) ₄ Cl ₂ (C) [CoBr ₂ Cl ₂] ²⁻ and [PtBr ₂ Cl ₂] ²⁻			l2]Cl	. , -	. ,	-	d [Pt(NI	, H₃)₂(H₂O) :(NH₃)₃CI]	Cl]⁺	
29.	EDTA ⁴ is ethylenediaminetetraacetate ion. The complex ion is :					o total	numbor	of N C	~ 0 hor	nd analos	in $[Co(EDTA)]^{1-}$
ZJ.		•					number			-	ed) 2013, 4/120]
30.^	complex i A list of s XeF4, SF Defining	on is : becies hav , SiF4. BF4	ng the fc ⁻, BrF₄⁻, he basis	rmula [Cu(Nl	XZ₄ is givei H₃)₄] ²⁺ , [Fe	n below Cl4] ²⁻ , [(CoCl4] ²⁻	and [Pt	[JEE([JEE(Cl4] ²⁻ .	Advance Advance	/-
	Complex i A list of s XeF4, SF4 Defining square pl Match ea select the	on is : becies having shape on t anar shape ch coordin correct an	ng the fc ⁻, BrF₄⁻, he basis is ation con swer usir	rmula [Cu(Ni of the npoun ng the	XZ ₄ is given H ₃)4] ²⁺ , [Fer e location o d in List-I w code given	n below Cl₄]²-, [(f X and ⁄ith an a below t	CoCl₄] ^{2–} I Z aton appropri he lists.	and [Ptons, the state pair	[JEE([JEE(Cl4] ²⁻ . total nur of chara [JEE(Advance Advance mber of s	ed) 2013, 4/120] ed) 2014, 3/120]
30.^	Complex i A list of s XeF4, SF4 Defining square pl Match ea select the	on is : becies havi , SiF4. BF4 shape on t anar shape ch coordin correct an ICH2CH2NI	ng the fc ⁻, BrF₄⁻, he basis is ation con swer usir	rmula [Cu(Ni of the npoun ng the	XZ₄ is giver H₃)₄]²+ , [Fer e location o d in List-I w	n below Cl₄]²-, [(f X and ⁄ith an a below t	CoCl₄] ^{2–} I Z aton appropri he lists.	and [Ptons, the state pair	[JEE([JEE(Cl4] ²⁻ . total nur of chara [JEE(Advance Advance mber of s	ed) 2013, 4/120] ed) 2014, 3/120] species having a s from List-II and
30.^	complex i A list of s XeF4, SF Defining square pl Match ea select the $\{en = H_2N$	on is : becies havi , SiF4. BF4 shape on t anar shape ch coordin correct an ICH2CH2NI t-I	ng the fc ⁻, BrF₄⁻, he basis is ation con swer usin H₂ ; atom	rmula [Cu(Ni of the npoun ng the	XZ₄ is given H₃)₄] ²⁺ , [Fen e location o d in List-I w code given nbers : Ti = , List-II	n below Cl₄] ^{2−} , [(f X and ith an a below t 22; Cr =	CoCl₄] ^{2–} I Z aton appropri he lists. : 24; Cp	and [Ptons, the state pair = 27; P	[JEE([JEE] Cl4] ²⁻ . total nur of chara [JEE(t = 78}	Advance Advance mber of s acteristics Advance	ed) 2013, 4/120] ed) 2014, 3/120] species having a s from List-II and
30.^	complex iA list of sXeF4, SFDefiningsquare plMatch easelect the{en = H2NLisP.	on is : becies havi , SiF4. BF4 shape on t anar shape ch coordin correct an ICH2CH2NI	ng the fc ⁻, BrF₄⁻, he basis is ation con swer usin H₂ ; atom	rmula [Cu(Ni of the npoun ng the ic num	XZ₄ is giver H₃)₄] ²⁺ , [Fer e location o d in List-I w code given nbers : Ti =	n below Cl₄] ^{2–} , [(f X and ith an a below t 22; Cr =	CoCl₄] ^{2−} I Z aton appropri he lists. : 24; Cp d exhibit	and [Ptens, the state pair = 27; P	[JEE([JEE(Cl4] ²⁻ . total nur of chara [JEE(t = 78}	Advance Advance mber of s acteristics Advance	ed) 2013, 4/120] ed) 2014, 3/120] species having a s from List-II and
30.^	complex i A list of s XeF4, SF Defining square pl Match ea select the $\{en = H_2N$ $(en = H_2N)$ P. [Cr Q. [Ti(on is : becies havi shape on t anar shape ch coordin correct an ICH ₂ CH ₂ NI t-I NH ₃) ₄ Cl ₂)0	ng the fc , BrF ₄ $$, he basis is ation con swer usin H ₂ ; atom $\overline{H_2}$; atom $\overline{H_2}$; $\overline{H_2}$	rmula [Cu(Ni of the npoun ng the ic num 1.	XZ₄ is giver H₃)₄] ²⁺ , [Fer e location o d in List-I w code given bers : Ti = , List-II Paramagr	n below Cl₄] ^{2−} , [0 f X and vith an a below t 22; Cr = netic and tic and	CoCl₄] ^{2−} I Z aton appropri he lists. 24; Cp d exhibit exhibits	and [Ptens, the state pair = 27; P s ionisa cis-trar	[JEE([JEE(Cl4] ²⁻ . total nur of chara [JEE(t = 78} tion ison	Advance Advance nber of s acteristics Advance nerism rism	ed) 2013, 4/120] ed) 2014, 3/120] species having a s from List-II and
30.^	complex is A list of spectrum of the set of	on is : becies having shape on t anar shape ch coordin correct an ICH ₂ CH ₂ NI I-I NH ₃) ₄ Cl ₂)C H ₂ O) ₅ CI](N	ng the fc , BrF ₄ -, he basis is ation con swer usin H ₂ ; atom $\overline{H_2}$; atom $\overline{H_2}$; $\overline{H_2}$; $\overline{H_2}$	rmula [Cu(Ni of the npoun ng the ic num 1. 2.	XZ₄ is given H ₃)₄] ²⁺ , [Fer e location o d in List-I w code given bers : Ti = : List-II Paramagr Diamagen	n below Cl₄] ^{2−} , [(f X and ith an a below t 22; Cr = netic and itic and entic and	DoCl4] ^{2–} Z aton appropri he lists. 24; Cp d exhibits d exhibits d exhibits	and [Ptons, the state pair = 27; P s ionisa cis-tran	[JEE([JEE] [JE] ^{2–} . total nur of chara [JEE(t = 78] tion isor as isome ans isome	Advance Advance mber of s acteristics Advance nerism rism erism	ed) 2013, 4/120] ed) 2014, 3/120] species having a s from List-II and
30.^	complex is A list of spectrum of the set of	on is : becies have x_1 , SiF ₄ . BF ₄ shape on t anar shape ch coordin correct an ICH ₂ CH ₂ NI t-I NH ₃) ₄ Cl ₂ O H ₂ O) ₅ Cl](N en)(NH ₃)C	ng the fc , BrF ₄ -, he basis is ation con swer usin H ₂ ; atom $\overline{H_2}$; atom $\overline{H_2}$; $\overline{H_2}$; $\overline{H_2}$	rmula [Cu(Ni of the npoun ng the ic num 1. 2. 3.	XZ₄ is given H₃)₄] ²⁺ , [Fer e location o d in List-I w code given bers : Ti = 1 List-II Paramagen Diamagen	n below Cl₄] ^{2−} , [(f X and ith an a below t 22; Cr = netic and itic and entic and	DoCl4] ^{2–} Z aton appropri he lists. 24; Cp d exhibits d exhibits d exhibits	and [Ptons, the state pair = 27; P s ionisa cis-tran	[JEE([JEE] [JE] ^{2–} . total nur of chara [JEE(t = 78] tion isor as isome ans isome	Advance Advance mber of s acteristics Advance nerism rism erism	ed) 2013, 4/120] ed) 2014, 3/120] species having a s from List-II and
30.^	complex is A list of spectrum XeF4, SF4 Defining square pl Match easelect the $\{en = H_2N$ Lis P. [Crit Q. [Tit R. [Ptt S. [Coc Code : P	on is : becies have r_{1} , SiF ₄ . BF ₄ shape on t anar shape ch coordin correct an iCH ₂ CH ₂ NI iCH ₂ CH ₂ NI iCH ₂ CH ₂ NI iCH ₂ O ₅ CI](N en)(NH ₃)4(NO Q	ng the fc , BrF ₄ $$, he basis is ation con swer usin H ₂ ; atom 	rmula [Cu(Ni of the npoun ng the ic num 1. 2. 3.	XZ₄ is given H₃)₄] ²⁺ , [Fer e location o d in List-I w code given bers : Ti = 1 List-II Paramagen Diamagen	n below Cl₄] ^{2–} , [(f X and ith an a below t 22; Cr = netic and itic and itic and	CoCl4] ²⁻ Z aton appropri he lists. 24; Cp d exhibits d exhibits d exhibits d exhibits	and [Ptons, the state pair = 27; P s ionisa <i>cis-trar</i> ionisati	[JEE([JEE] [JE] ^{2–} . total nur of chara [JEE] tion isor as isome ans isome on isome R	Advance Advance mber of s acteristics Advance nerism rism erism erism	ed) 2013, 4/120] ed) 2014, 3/120] species having a s from List-II and
30.^	complex is A list of s XeF4, SF Defining square pl Match ea select the $\{en = H_2N$ $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	on is : pecies have r_{1} , SiF4. BF4 shape on t anar shape ch coordin correct an ICH ₂ CH ₂ NI H ₃) ₄ Cl ₂)C H ₂ O) ₅ Cl](N en)(NH ₃) ₄ (NO Q 2	ng the fc , BrF ₄ $$, he basis is ation con swer usin H ₂ ; atom Cl] O ₃) ₂]NO ₃ 3) ₂]NO ₃	rmula [Cu(Ni of the npoun ng the ic num 1. 2. 3. 4.	XZ₄ is given H₃)₄] ²⁺ , [Fer e location o d in List-I w code given bers : Ti = 1 List-II Paramagen Diamagen	n below Cl₄] ^{2–} , [(f X and ith an a below t 22; Cr = netic and itic and entic and	appropri he lists. 24; Cp d exhibits d exhibits d exhibits	and [Ptons, the state pair = 27; P s ionisa <i>cis-trar</i> ionisati	[JEE([JEE] [JE] $^{2-}$. total nur of chara [JEE] tion isor as isome ans isome on isoma	Advance Advance mber of s acteristics Advance nerism erism erism	ed) 2013, 4/120] ed) 2014, 3/120] species having a s from List-II and

- 32. For the octahedral complexes of Fe³⁺ in SCN⁻ (thiocyanato-S) and in CN⁻ ligand environments, the difference between the spin-only magnetic moments in Bohr magnetons (when approximated to the nearest integer) is : [Atomic number of Fe = 26] [JEE(Advanced) 2015, 4/168]
- 33. In the complex acetylbromidodicarbonylbis(triethylphosphine)iron(II), the number of Fe-C bond(s) is [JEE(Advanced) 2015, 4/168]
- $\mbox{Among the complex ions, } [Co(NH_2-CH_2-CH_2-NH_2)_2CI_2]^+, \ [CrCI_2(C_2O_4)_2]^{3-}, \ [Fe(H_2O)_4(OH)_2]^+, \ [CrCI_2(C_2O_4)_2]^{3-}, \ [Fe(H_2O)_4(OH)_2]^+, \ [CrCI_2(C_2O_4)_2]^{3-}, \ [Fe(H_2O)_4(OH)_2]^+, \ [Fe(H_2O)_4(OH)_4(OH)_4]^+, \ [Fe(H_2O)_4(OH)_4(OH)_4(OH)_4(OH)_4]^+, \ [Fe(H_2O)_4(OH)$ 34. $[Fe(NH_3)_2(CN)_4]^-$, $[Co(NH_2-CH_2-CH_2-NH_2)_2$ (NH₃)Cl]²⁺ and $[Co(NH_3)_4(H_2O)Cl]^{2+}$, the number of complex ion(s) that show(s) cis-trans isomerism is : [JEE(Advanced) 2015, 4/168]
- 35. Among [Ni(CO)4], [NiCl4]²⁻, [Co(NH3)4Cl2]Cl, Na3[CoF6], Na2O2 and CsO2, the total number of [JEE(Advanced) 2016, 3/124] paramagnetic compounds is : (B) 3 (D) 5

(A) 2

(C) 4	
-------	--

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 45	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 45	

Coordination Compounds 36. The number of geometric isomers possible for the complex $[CoL_2Cl_2]^-$ (L = H₂NCH₂CH₂O⁻) is [JEE(Advanced) 2016, 3/124] The geometries of the ammonia complexes of Ni²⁺, Pt²⁺ and Zn²⁺, respectively, are 37. [JEE(Advanced) 2016, 3/124] (A) octahedral, square planar and tetrahedral (B) square planar, octahedral and tetrahedral (C) tetrahedral, square planar and octahedral (D) octahedral, tetrahedral and square planar 38.* The correct statement(s) regarding the binary transition metal carbonyl compounds is (are) [JEE(Advanced) 2018, 4/128] (Atomic numbers: Fe = 26, Ni = 28) (A) Total number of valence shell electrons at metal centre in Fe(CO)₅ or Ni(CO)₄ is 16 (B) These are predominantly low spin in nature (C) Metal-carbon bond strengthens when the oxidation state of the metal is lowered (D) The carbonyl C–O bond weakens when the oxidation state of the metal is increased 39. Among the species given below, the total number of diamagnetic species is ____. H atom, NO₂ monomer, O_2^- (superoxide), dimeric sulphur in vapour phase, Mn₃O₄, (NH₄)₂[FeCl₄], (NH₄)₂[NiCl₄], K₂MnO₄, K₂CrO₄ [JEE(Advanced) 2018, 3/120] 40. The ammonia prepared by treating ammonium sulphate with calcium hydroxide is completely used by NiCl_{2.6}H₂O to form a stable coordination compound. Assume that both the reactions are 100% complete. If 1584 g of ammonium sulphate and 952 g of NiCl₂.6H₂O are used in the preparation, the combined weight (in grams) of gypsum and the nickel-ammonia coordination compound thus produced is _____. (Atomic weights in g mol⁻¹: H = 1, N = 14, O = 16, S = 32, CI = 35.5, Ca = 40, Ni = 59) [JEE(Advanced) 2018, 3/120] 41.* The correct option(s) regarding the complex [Co(en)(NH₃)₃(H₂O)]³⁺ $(en = H_2NCH_2CH_2NH_2)$ is (are) [JEE(Advanced) 2018, 4/120] (A) It has two geometrical isomers (B) It will have three geometrical isomers if bidentate 'en' is replaced by two cyanide ligands (C) It is paramagnetic (D) It absorbs light at longer wavelength as compared to [Co(en)NH₃)₄]³⁺ 42. Match each set of hybrid orbitals from LIST-I with complex(es) given in LIST-II. LIST-I LIST-II [JEE(Advanced) 2018, 3/120] (P) dsp² [FeF6]4-(1)(Q) sp³ (2) $[Ti(H_2O)_3Cl_3]$ (R) sp³d² (3) $[Cr(NH_3)_6]^{3+}$ d²sp³ [FeCl₄]²⁻ (S) (4) Ni(CO)₄ (5) [Ni(CN)₄]²⁻ (6) The correct option is (A) $P \rightarrow 5$; $Q \rightarrow 4$, 6; $R \rightarrow 2$, 3; $S \rightarrow 1$ (B) $P \rightarrow 5$, 6; $Q \rightarrow 4$; $R \rightarrow 3$; $S \rightarrow 1$, 2 (C) P \rightarrow 6 ; Q \rightarrow 4, 5 ; R \rightarrow 1 ; S \rightarrow 2, 3 (D) P \rightarrow 4, 6 ; Q \rightarrow 5, 6 ; R \rightarrow 1, 2 ; S \rightarrow 3 43. Total number of cis N–Mn–Cl bond angles (that is, Mn–N and Mn–Cl bonds in cis position) present in a molecule of cis- $[Mn(en)_2Cl_2]$ complex is (en = NH₂CH₂CH₂CH₂NH₂) [JEE(Advanced) 2019, 3/124]

PART - II : JEE (MAIN) ONLINE PROBLEMS (PREVIOUS YEARS)

An octahedral complex of Co³⁺ is diamagnetic. The hybridisation involved in the formation of the comlex 1. [JEE(Main) 2014 Online (09-04-14), 4/120] is: (3) d²sp³

(1) $sp^{3}d^{2}$

- (4) sp³d
- The correct statement about of the magnetic prperties of $[Fe(CN)_6]^{3-}$ and $[FeF_6]^{3-}$ is : (Z = 26) 2.

[JEE(Main) 2014 Online (09-04-14), 4/120]

(1) both are paramagnetic (2) both are diamagnetic (3) $[Fe(CN)_6]^{3-}$ is diamagnetic, $[FeF_6]^{3-}$ is paramagnetic.

(2) dsp^2

- (4) [Fe(CN)₆]³⁻ is paramagnetic, [FeF₆]³⁻ is diamagnetic.
- 3. Which of the following name formula combinations is not correct ?

[JEE(Main) 2014 Online (11-04-14), 4/120]

	Formula	Name
(1)	K ₂ [Pt(CN) ₄]	Potasium tetracyanoplatinate (II)
(2)	[Mn(CN)₅] ^{2−}	Pentacyanomagnate (II) ion
(3)	K[Cr(NH ₃) ₂ Cl ₄]	Potassium diammine tetrachlorochromate (III)
(4)	[Co(NH ₃) ₄ (H ₂ O)I]SO ₄	Tetraammine aquaiodo cobalt (III) sulphate

- 4. Consider the coordination compound, [Co(NH₃)₆]Cl₃. In the formation of the complex, the species which acts as the Lewis acid is : [JEE(Main) 2014 Online (11-04-14), 4/120] (3) Co³⁺ (1) $[Co(NH_3)_6]^{3+}$ (2) CI-(4) NH_3
- 5. Among the following species the one which causes the highest CFSE, Δ_0 as a ligand is :

			[JEE(Main) 2014 Online (12-04-14), 4/120]
(1) CN⁻	(2) NH₃	(3) F [−]	(4) CO

6. Which one of the following complexes will most likely absorb visible light ? (At nos. Sc = 21, Ti = 22, V = 23, Zn = 30) [JEE(Main) 2014 Online (12-04-14), 4/120] (2) [Ti(NH₃)₆]⁴⁺ $(3) [V(NH_3)_6]^{3+}$ (4) $[Zn(NH_3)_6]^{2+}$ (1) $[Sc(H_2O)_6]^{3+}$

7. An octahedral complex with molecular composition M.5NH₃.Cl.SO₄ has two isomers, A and B. The solution of A gives a white precipitate with AgNO₃ solution and the solution of B gives white precipitate with BaCl₂ solution. The type of isomerism exhibited by the complex is:

[JEE(Main) 2014	Online (19-04-14), 4/120]
-----------------	---------------------------

- (1) Linkage isomerism (2) Ionisation isomerism (3) Coordinate isomerism (4) Geometrical isomerism
- 8. Nickel (Z = 28) combines with a uninegative monodenate ligand to form a diamagnetic complex $[NiL_4]^{2-}$. The hybridisation involved and the number of unpaired electrons present in the complex are respectively: [JEE(Main) 2014 Online (19-04-14), 4/120] (1) sp^3 , two (2) dsp², zero (3) dsp², one (4) sp^3 , zero
- 9. The correct statement on the isomerism associated with the following complex ions, (a) [Ni(H₂O)₅NH₃]²⁺, (b) [Ni(H₂O)₄(NH₃)₂]²⁺ and (c) [Ni(H₂O)₃(NH₃)₃]²⁺ is :

[JEE(Main) 2015 Online (10-04-15), 4/120]

- (1) (a) and (b) show only geometrical isomerism.
- (2) (b) and (c) show geometrical and optical isomerism
- (3) (b) and (c) show only geometrical isomerism
- (4) (a) and (b) show geometrical and optical isomerism

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala	awar Road, Kota (Raj.) – 324005
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 47
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 4/

Coo	rdination Compounds			八_
10.	Which molecule/ion among the following cannot act as a ligand in complex compounds?			
				ain) 2015 Online (10-04-15), 4/120]
	(1) CH ₄	(2) CN⁻	(3) Br⁻	(4) CO
11.	Which of the followi orbitals? (1) [FeF ₆] ^{3–}	ing complex ions has e (2) [Mn(CN)6] ^{4–}	•	nmetrically filled in both t _{2g} and e _g ain) 2015 Online (11-04-15), 4/120] (4) [Co(NH ₃) ₆] ²⁺
12.	Identify the correct tr	end given below: (Atomic	No.: Ti = 22, Cr = 24	and Mo = 42)
			[JEE(M	ain) 2016 Online (09-04-16), 4/120]
	(2) Δ_0 of $[Cr(H_2O)_6]^{2+}$ (3) Δ_0 of $[Cr(H_2O)_6]^{2+}$	< $[Mo(H_2O)_6]^{2+}$ and Δ_0 of > $[Mo(H_2O)_6]^{2+}$ and Δ_0 of > $[Mo(H_2O)_6]^{2+}$ and Δ_0 of < $[Mo(H_2O)_6]^{2+}$ and Δ_0 of	$[Ti(H_2O)_6]^{3+} > [Ti(H_2O)_6]^{3+} $ $[Ti(H_2O)_6]^{3+} < [Ti(H_2O)_6]^{3+}$)6] ²⁺)6] ²⁺
13.	Which one of the follo	owing complexes will con	•	ts of aqueous solution of Ag(NO ₃) ? ain) 2016 Online (09-04-16), 4/120]
	(1) Na ₃ [CrCl ₆]	(2) [Cr(H ₂ O) ₅ Cl]Cl ₂	(3) [Cr(H ₂ O) ₆]Cl ₃	(4) Na ₂ [CrCl ₅ (H ₂ O)]
14.	Which of the followin	g is an example of homol		ain) 2016 Online (09-04-16), 4/120]
	(1) [Co(NH ₃) ₄ Cl ₂]	(2) [Co(NH ₃) ₆]Cl ₃	(3) [Co(NH₃)₅Cl]Cl	, , , _
. –				
15.	sp ³ d ² hybridization is (1) PF ₅	not displayed by : (2) SF ₆	[JEE(M a (3) [CrF ₆] ^{3–}	ain) 2017 Online (08-04-17), 4/120] (4) BrF₅
15. 16.	(1) PF_5 [Co ₂ (CO) ₈] displays : (1) one Co–Co bond, (2) one Co–Co bond, (3) no Co–Co bond, f	(2) SF ₆	(3) [CrF ₆] ^{3–} [JEE(Ma ur bridging CO bridging CO bridging CO	
	(1) PF_5 [$Co_2(CO)_8$] displays : (1) one Co–Co bond, (2) one Co–Co bond, (3) no Co–Co bond, s (4) no Co–Co bond, s The correct combinat (1) [NiCl4] ^{2–} – square (2) [Ni(CN)4] ^{2–} – tetra (3) [NiCl4] ^{2–} – parama	(2) SF ₆ , four terminal CO and for , six terminal CO and two four terminal CO and four six terminal CO and two b	(3) [CrF ₆] ^{3–} [JEE(Ma ur bridging CO bridging CO bridging CO [JEE(Ma amagnetic nagnetic nedral	(4) BrF₅
16.	(1) PF_5 [Co ₂ (CO) ₈] displays : (1) one Co–Co bond, (2) one Co–Co bond, (3) no Co–Co bond, s (4) no Co–Co bond, s The correct combinat (1) [NiCl ₄] ^{2–} – square (2) [Ni(CN) ₄] ^{2–} – tetra (3) [NiCl ₄] ^{2–} – parama (4) [NiCl ₄] ^{2–} – diamag The correct order of s (Atomic number : Mn (1) [ZnCl ₄] ^{2–} > [NiCl ₄]	(2) SF ₆ , four terminal CO and four , six terminal CO and two four terminal CO and two four terminal CO and two tion is : -planar; [Ni(CN) ₄] ^{2–} – para adhedral; [Ni(CO) ₄] – paran agnetic; [Ni(CO) ₄] – tetral gnetic; [Ni(CO) ₄] – square spin-only magnetic mome a = 25, Co = 27, Ni = 28, Z ^{2–} > [CoCl ₄] ^{2–} > [MnCl ₄] ^{2–}	(3) $[CrF_6]^{3-}$ [JEE(Ma ur bridging CO bridging CO bridging CO [JEE(Ma amagnetic nagnetic nedral -planar ents among the followi Zn = 30) [JEE(Ma (2) $[CoCl_4]^{2-} > [Mn]$	(4) BrF₅ ain) 2017 Online (09-04-17), 4/120] in) 2018 Online (15-04-18), 4/120]
16. 17.	(1) PF_5 [$Co_2(CO)_8$] displays : (1) one Co–Co bond, (2) one Co–Co bond, (3) no Co–Co bond, s (4) no Co–Co bond, s The correct combinat (1) [NiCl ₄] ^{2–} – square (2) [Ni(CN) ₄] ^{2–} – tetra (3) [NiCl ₄] ^{2–} – parama (4) [NiCl ₄] ^{2–} – diamag The correct order of s (Atomic number : Mn (1) [ZnCl ₄] ^{2–} > [NiCl ₄] (3) [NiCl ₄] ^{2–} > [CoCl ₄]	(2) SF ₆ , four terminal CO and four , six terminal CO and two four terminal CO and two four terminal CO and two tion is : -planar; [Ni(CN) ₄] ^{2–} – para adhedral; [Ni(CO) ₄] – paran agnetic; [Ni(CO) ₄] – tetral gnetic; [Ni(CO) ₄] – square spin-only magnetic mome a = 25, Co = 27, Ni = 28, Z ^{2–} > [CoCl ₄] ^{2–} > [MnCl ₄] ^{2–}	(3) $[CrF_6]^{3-}$ [JEE(Ma Jeridging CO bridging CO bridging CO bridging CO [JEE(Ma amagnetic nagnetic nedral -planar ents among the followi Zn = 30) [JEE(Ma (2) $[CoCl_4]^{2-} > [Mn (4) [MnCl_4]^{2-} > [Co re-planar [Pt(Cl)(NO2)$	(4) BrF ₅ ain) 2017 Online (09-04-17), 4/120] in) 2018 Online (15-04-18), 4/120] ng is : ain) 2018 Online (15-04-18), 4/120] $Cl_4]^{2-} > [NiCl_4]^{2-} > [ZnCl_4]^{2-}$ $Cl_4]^{2-} > [NiCl_4]^{2-} > [ZnCl_4]^{2-}$

20.	M (Metal ion) + L (Liga absorption). If 'M' and		nd point is estimated the and only 'L' abso	ain) 2018 Online (16-04-18), 4/120] spectrophotometrically (through light rbs, then the titration plot between
	$(1) \stackrel{\uparrow}{A} _{V \text{ (Ligand)}}$	(2) A V (Ligand)	(3) A V (Ligand)	$(4) \stackrel{\uparrow}{\longrightarrow} V (Ligand) \rightarrow$
21.	,			shape are respectively :
21.	 (1) sp³d, trigonal bipyra (3) dsp², square planar 	amidal		lain) 2018 Online (16-04-18), 4/120] ral
22.	Which of the following	complexes will show ge		
	(1) Potassium tris(oxala(2) Pentaaquachloroch(3) Aquachlorobis(ethy(4) Potassium amminer	romium(III)chloride lenediamine)cobalt(II) c		lain) 2018 Online (16-04-18), 4/120]
23.	incorrect statement reg (1) Δ_0 value for (A) is le (2) both absorb energie (3) Δ_0 values of (A) and	parding them is : less than that of (B). les corresponding to the	[JEE(Ma ir complementary color n the energies of viole	nd yellow coloured respectively. The ain) 2019 Online (09-01-19), 4/120] ors. et and yellow light, respectively.
24.	•	the region of green, blu	ue and red respective [JEE(Ma	monodentate ligands L_1 , L_2 and L_3 ly. The increasing order of the ligand ain) 2019 Online (09-01-19), 4/120]
	(1) L ₁ < L ₂ < L ₃	(2) L ₃ < L ₂ < L ₁	(3) L ₂ < L ₁ < L ₃	(4) $L_3 < L_1 < L_2$
25.	The complex that has h	nighest crystal field split	• • • • •	lain) 2010 Onling (00 01 10) 1/120]
	(1) K2[CoCl4] (3) [Co(NH3)5Cl]Cl2		[JEE(w (2) [Co(NH ₃) ₅ (H ₂ O (4) K ₃ [Co(CN) ₆]	lain) 2019 Online (09-01-19), 4/120])]Cl₃
26.	Wilkinson catalyst is : (1) [(Et₃P)₃IrCl] (Et = C (3) [(Ph₃P)₃RhCl]	2H5)	[JEE(Ma (2) [(Et₃P)₃RhCl] (4) [(Ph₃P)₃IrCl]	ain) 2019 Online (10-01-19), 4/120]
27.	The total number of iso	mers for a square plan		
	(1) 16	(2) 4	[JEE(N (3) 12	lain) 2019 Online (10-01-19), 4/120] (4) 8
28.	The difference in the octahedral complexes (1) Co ²⁺	•		I ion in its high-spin and low-spin ain) 2019 Online (10-01-19), 4/120] (4) Ni ²⁺

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala	war Road, Kota (Raj.) – 324005
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 49
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 49

Coord	dination Compounds			八_	
29.	A reaction of cobalt(II	I) chloride and ethylene	ediamine in a 1 : 2 mo	ole ratio generates two isomeric	
	products A (violet col	oducts A (violet coloured) and B(green coloured). A can show optical activity, but, B is optically			
	inactive. What type of i	somers does A and B re	present? [JEE(Main)	2019 Online (10-01-19), 4/120]	
	(1) Ionisation isomers		(2) Linkage isomer		
	(3) Coordination isome	rs	(4) Geometrical isome	ers	
30.	Match the metals (colu	mn I) with the coordination		ne (s) (column II):) 2019 Online (11-01-19), 4/120]	
	(column I)		(column II)	· · · ·	
	Metal		Coordination compo	ound(s)/enzyme(s)	
	(A) Co		(i) Wilkinson cata		
	(B) Zn		(ii) Chlorophyll		
	(C) Rh		(iii) Vitamin B ₁₂		
	(D) Mg		(iv) Carbonic anh	ydrase	
	(1) (A)-(i);(B)-(ii);(C)-(iii);(D)-(iv)	(2) (A)-(iv);(B)-(iii);(C)-	-(i);(D)-(ii)	
	(3) (A)-(iii);(B)-(iv);(C)-((i);(D)-(ii)	(4) (A)-(ii);(B)-(i);(C)-(i	v);(D)-(iii)	
31.	The coordination numb	per of Th in K4[Th(C2O4)4	(OH ₂) ₂] is: [JEE(Main)	2019 Online (11-01-19), 4/120]	
	$(C_2O_4^{2-} = Oxalato)$				
	(1) 14	(2) 10	(3) 6	(4) 8	
32.	The number of bridging	g CO ligand(s) and Co-C	to bond (s) in Co ₂ (CO) ₈ ,	respetively are :	
			[JEE(Main) 2019 Online (11-01-19), 4/120]	
	(1) 4 and 0	(2) 0 and 2	(3) 2 and 1	(4) 2 and 0	
33.	The metal d-orbitals the	at are directly facing the	ligands in K ₃ [Co(CN) ₆] a	are :	
			[JEE(Main) 2019 Online (12-01-19), 4/120]	
	(1) d _{xz} , d _{yz} and d _{z²}	(2) d_{xy} and $d_{x^2-y^2}$	(3) d_{xy} , d_{xz} and d_{yz}	(4) $d_{x^2-y^2}$ and d_{z^2}	
34.	Mn ₂ (CO) ₁₀ is an organo	ometallic compound due	to the presence of :		
-	_(•) 2019 Online (12-01-19), 4/120]	
	(1) Mn – C bond	(2) C – O bond	(3) Mn – O bond	(4) Mn – Mn bond	
35.	The magnetic moment	t of an octahedral homo	leptic Mn(II) complex is	5.9 BM. The suitable ligand for	
	this complex is:		, .) 2019 Online (12-01-19), 4/120]	
	(1) Ethylenediamine	(2) CN⁻	(3) NCS ⁻	(4) CO	
36.	The following ligand is	:	[JEE(Main) 2	019 Online (08-04-19)S1, 4/120]	
			NEt ₂		
		N			
		\rightarrow	"⊶∕⊖∕⊷		
		Ŕ	X		
	(1) bidentate	(2) hexadentate	(3) tridentate	(4) tetradentate	

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala	war Road, Kota (Raj.) – 324005
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 50
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 50

37. The correct order of the spin-only magnetic moment of metal ions in the following low-spin complexes, [V(CN)₆]⁴⁻, [Fe(CN)₆]⁴⁻, [Ru(NH₃)₆]³⁺, and [Cr(NH₃)₆]²⁺ is : [JEE(Main) 2019 Online (08-04-19)S1, 4/120]

(1) $V^2 > Cr^{2+} > Ru^3 > Fe^{2+}$ (3) $V^2 > Ru^{3+} > Cr^{2+} > Fe^{2+}$ (4) $Cr^{2+} > V^{2+} > Ru^{3+} > Fe^{2+}$

- **38.** The compound that inhibits the growth of tumors is : **[JEE(Main) 2019 Online (08-04-19), 4/120]** (1) cis-[Pd(Cl)₂(NH₃)₂] (2) cis-[Pt(Cl)₂(NH₃)₂] (3) trans-[Pt(Cl)₂(NH₃)₂] (4) trans-[Pd(Cl)₂(NH₃)₂]
- **39.** The calculated spin-only magnetic moments (BM) of the anionic and cationic species of $[Fe(H_2O)_6]_2$ and $[Fe(CN)_6]$, **[JEE(Main) 2019 Online (08-04-19)S2, 4/120]** (1) 0 and 5.92 (2) 4.9 and 0 (3) 0 and 4.9 (4) 2.84 and 5.92

(3) d_{xz} and d_{vz}

- 40. The degenerate orbitals of $[Cr(H_2O)_6]^{3+}$ are : (1) d_{-2} and d_{xz} (2) d_{yz} and d_{-2}
- **41.** The one that will show optical activity is : (en = ethane-1,2-diamine)

- 42. [JEE(Main) 2019 Online (09-04-19)S2, 4/120] The correct statements among I to III are (I) Valence bond theory cannot explain the color exhibited by transition metal complexes. (II) Valence bond theory can predict quantitatively the magnetic properties of transition metal complexes. (III) Valence bond theory cannot distinguish ligands as weak and strong field ones. (1) (I) and (III) Only (2) (I) and (II) Only (3) (I), (II) and (III) (4) (II) and (III) Only 43. Three complexes, [CoCl(NH₃)₅]²⁺ (I), [Co(NH₃)₅ H₂O]³⁺(II) and [Co(NH₃)₆]³⁺ (III) absorb light in the visible region. The correct order of the wavelength of light absorbed by them is : [JEE(Main) 2019 Online (10-04-19)S1, 4/120] (1) (|||) > (|) > (||)(2) (II) > (I) > (III)(3) (I) > (II) > (III)(4) (III) > (II) > (I)44. [JEE(Main) 2019 Online (10-04-19)S1, 4/120]
 - I4.The species that can have a trans-isomer is :[JEE(I)(en = ethane-1,2-diamine, ox=oxalate)(1) [Pt(en)Cl₂](2) [Pt(en)₂Cl₂]²⁺(3) [Zn(en)Cl₂]
- Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

一

[JEE(Main) 2019 Online (09-04-19)S1, 4/120]

[JEE(Main) 2019 Online (09-04-19)S1, 4/120]

(4) d_{y^2} and d_{xy}

(4) $[Cr(en)_2(ox)]^+$

- 45.
 The INCORRECT statement is :
 [JEE(Main) 2019 Online (10-04-19)S2, 4/120]
 - (1) the gemstone, ruby, has Cr^{3+} ions occupying the octahedral sites of beryl.
 - (2) the spin-only magnetic moments of $[Fe(H_2O)_6]^{2+}$ and $[Cr(H_2O)_6]^{2+}$ are nearly similar
 - (3) the color of $[CoCl(NH_3)_5]^{2+}$ is violet as it absorbs the yellow light
 - (4) the spin-only magnetic moment of $[Ni(NH_3)_4(H_2O)_2]^{2+}$ is 2.83 BM
- 46. The crystal field stabilization energy (CFSE) of [Fe(H₂O)₆]Cl₂ and K₂[NiCl₄] respectively are :

[JEE(Main) 2019 Online (10-04-19)S2, 4/120]

- (1) $-0.4\Delta_0$ and $-1.2 \Delta_t$ (2) $-2.4\Delta_0$ and $-1.2 \Delta_t$ (3) $-0.4\Delta_0$ and $-0.8 \Delta_t$ (4) $-0.6\Delta_0$ and $-0.8 \Delta_t$
- 47.
 The complex ion that will lose its crystal field stabilization energy upon oxidation of its metal to +3 state is
 [JEE(Main) 2019 Online (12-04-19)S1, 4/120]

48. Complete removal of both the axial ligands (along , the z-axis) from an octahedral complex leads to which of the following splitting patterns ? (relative orbital energies not on scale)

[JEE(Main) 2019 Online (12-04-19)S1, 4/120]

- 49.The coordination numbers of Co and Al in $[Co(Cl)(en)_2]Cl$ and $K_3[Al(C_2O_4)_3]$, respectively, are :
(en = ethane-1, 2-diamine)[JEE(Main) 2019 Online (12-04-19)S2, 4/120](1) 3 and 3(2) 5 and 6(3) 6 and 6(4) 5 and 3
- **50.** The compound used in the treatment of lead poisoning is :

[JEE(Main) 2019 Online (12-04-19)S2, 4/120] (3) desferrioxime B (4) Cis-platin

(1) D-penicillamine (2) EDTA

Answers

EXERCISE - 1

PART – I $K_2SO_4.Cr_2(SO_4)_3 \stackrel{aq.}{=} 2K^+(aq) + 2Cr^{3+}(aq) + 4SO_4^{2-}$ A-1. So chrome alum is a double salt. It when dissolved in water gives its constituent ions. Hence it gives the test of K⁺, Cr³⁺ and SO₄²⁻ ions. $CuSO_{4}.4NH_{3} [Cu(NH_{3})_{4}] SO_{4} \implies [Cu(NH_{3})_{4}]^{2+} (aq) + SO_{4}^{2-} (aq)$ As copper (II) is present in coordination sphere it will not give the test of Cu²⁺ ion. A-2. The coordination number of the central atom/ion is determined by the number of sigma bonds between the ligands and the central atom/ions i.e. the number of ligand donor atoms to which the metal is directly attached. The oxidation number of the central atom is defined as the charge it would carry if all the ligands are removed along with the electron pairs that are shared with the central atom. Complex **Coordination Number Oxidation State** (a) [AgCl₂]⁻ 2 1 $[Cr(H_2O)_5Cl]^{2+}$ (b) 6 3 [Co(NCS)4]2-4 2 (c) [Co(NH₃)₃(NO₂)₃] 6 3 (d) 3 (e) [Fe(EDTA)]-6 [Cu(en)₂]SO₄ 4 2 (f) K[Pt(NH₃)Cl₅] 6 4 (g) A-3. (A) methyl isocyanide, monodentate. (B) acetylacetonato, bidentate (C) azido, monodentate (D) diethylenetriamine, tridentate (E) ethylenediamine tetraacetato, hexadentate (F) ethylenediamine triacentato, pentadentate (G) oxalato, bidentate (H) dimethylglyoximato (I) isocyanido, monodentate (J) nitrito, monodentate (K) oxido, monodentate (L) superoxido, monodentate (A) $M \leftarrow N \leq_{O}^{O}$ nitrito-N $M \leftarrow O - N = O$ A-4. nitrito-O (B) M ← SCN thiocyanato or thiocyanato-S, M ← NCS isothiocyanato or thiocyanato-N (C) dithioxalate or (D) $M \leftarrow OCN$ cyanato-O or cyanato-N, $M \leftarrow NCO$ isothiocyanato or thiocyanato-N thionitrito-N or , $M \leftarrow SON$ thionitrito-S (E) $M \leftarrow NOS$ A-5. (a)

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala	awar Road, Kota (Raj.) – 324005
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 53

[Pt(en)2]2+

 $[Fe(C_2O_4)_3]^{3-}$

八

The ligands, oxalate and ethylenediamine are bidentate as each ligand has two donor atoms. So in 1st case the number of chelate rings (five membered) are three where as in 2nd case the number of chelate rings (five membered) are two.

The coordination number and oxidation state of iron are six and +3 respectively and the coordination number and oxidation state of platinum are four and +2 respectively.

- (b) $K_2[Ni(CN)_4] \stackrel{aq.}{\longrightarrow} 2K^+(aq) + [Ni(CN)_4]^{2-}(aq)$ $[Cr(en)_3]Cl_3 \stackrel{aq.}{\longrightarrow} [Cr(en)_3]^{3+}(aq) + 3Cl^-(aq)$ $Fe_4[Fe(CN)_6]_3 \stackrel{aq.}{\longrightarrow} 4Fe^{3+}(aq) + 3[Fe(CN)_6]^{4-}(aq)$ $[PtCl_2(en)_2] (NO_3)_2 \stackrel{aq.}{\longrightarrow} [PtCl_2(en)_2]^{2+} (aq) + 2(NO_3)^-(aq)$ So, $[Ni(CN)_4]^{2-}$, $[Cr(en)_3]^{3+}$, $3[Fe(CN)_6]^{4-}$ and $[PtCl_2(en)_2]^{2+}$ are coordination entities and K⁺, Cl⁻, Fe³⁺ and NO_3⁻ are counter ions.
- (c) Coordination compounds are acid-base adduct. Cations are electron deficient, therefore, are called Lewis acids where as ligands are electrons donors, therefore, are called as Lewis base.

		Lewis Acid	LEWIS BASE
(i)	[HgBr ₄] ²⁻	Hg ²⁺	4Br⁻
(ii)	[Ni(H ₂ O) ₆] ²⁺	Ni ²⁺	6H ₂ O
(iii)	[PdCl ₂ (NH ₃) ₂]	Pd ²⁺	2CI ⁻ & 2NH ₃
(iv)	[AI(OH) ₄] ⁻	Al ³⁺	4OH [_]
(v)	[Ag(CN) ₂] ⁻	Ag⁺	2CN⁻
(vi)	[Cr(CO) ₆]	Cr ⁰	6CO

B-1.

(a)	[Co(NH ₃) ₆]Cl ₃	Hexaamminecobalt(III) chloride
(b)	[Rh(NH₃)₅I]I₂	Pentaammineiodidorhodium(III) iodide
(c)	[Fe(CO)₅]	Pentacarbonyliron(0)
(d)	[Fe(C ₂ O ₄) ₃] ³⁻	Trioxalatoferrate(III) ion OR Tris(oxalato)ferrate(III) ion
(e)	[Cu(NH ₃) ₄]SO ₄	Tetraamminecopper(II) sulphate
(f)	Na[Cr(OH)₄]	Sodium tetrahydroxidochromate(III)
(g)	[Co(gly) ₃]	Triglycinatocobalt(III) OR Tris(glycinato)cobalt(III)
(h)	[Fe(H ₂ O) ₅ (SCN)] ²⁺	Pentaaquathiocyanato-S-iron(III) ion
(i)	K ₂ [Hgl ₄]	Potassium tetraiodidomercurate(II)
(j)	Co[Hg(SCN) ₄]	Cobalt(II) tetrathiocyanato-S-mercurate(II)
(k)	Fe ₄ [Fe(CN) ₆] ₃	Iron(III) hexacyanidoferrate(II)
(I)	K ₃ [Co(NO ₂) ₆]	Potassium hexanitrito–N–cobaltate(III)
(m)	[Ni(dmg)₂]	Bis(dimethylglyoximato)nickel(II)
(n)	K ₂ [PtCl ₆]	Potassium hexachloridoplatinate(IV)
(o)	Na₂[Fe(CN)₅NO⁺]	Sodium pentacyanidonitrosoniumferrate(II)
(p)	[Fe(H ₂ O) ₅ (NO ⁺)]SO ₄	Pentaaquanitrosoniumiron(I) sulphate
(q)	[Cu(CN) ₄] ^{3–}	Tetracyanidocuperate(I) ion
(r)	(NH ₄) ₂ [PtCl ₆]	Ammonium hexachloridoplatinate(IV)

B-2.

(2)	[CoBr(en) ₂ (ONO)] ⁺¹	Bromidobis(ethylenediamine)nitrito-O-cobalt(III)
(a)		
(b)	[Co(NH ₃)₅(CO ₃)]Cl	Pentaamminecarbonatocobalt(III) chloride
(c)	[Co(en) ₃] ₂ (SO ₄) ₃	Tris(ethylenediamine)cobalt(III) sulphate or Tris(ethane-1, 2-diamine)cobalt(III) sulphate.
(d)	[Cr(CO) ₅ (PPh ₃)]	Pentacarbonyltriphenylphosphinechromium(0)
(e)	Ba[Zr(OH) ₂ (ONO) ₂ (ox)]	Barium dihydroxidodinitrito-O-oxalatozirconate(IV)
(f)	[(CO)₅Mn-Mn(CO)₅]	Decacarbonyldimanganese(0)
(g)	[Co(NH ₃) ₆][Co(ONO) ₆]	Hexaamminecobalt(III) hexanitrito-O-cobaltate(III)
(h)	[Pt(NH ₃) ₄ Cl ₂][PtCl ₄]	Tetraamminedichloridoplatinum(IV) tetrachloridoplatinate(II)
(i)	[(NH ₃) ₅ Co-NH ₂ -Co(NH ₃) ₄ (H ₂ O)]Cl ₅	Pentaamminecobalt(III) -μ- amidotetraammineaquacobalt(III) chloride
(j)	Cr(π-C ₆ H ₆) ₂	Bis(η ⁶ -benzene)chromium(0)
(k)	[Co(NH ₃) ₄ (OH ₂) ₂][BF ₄] ₃	Tetraamminediaquacobalt(III) tetrafluoridoborate(III)
(I)	[Co(NH ₃) ₆][Co(C ₂ O ₄) ₃]	Hexaamminecobalt(III) trioxalatocobaltate(III)

B-3.

(a)	Tetraamminezinc(II) Nitrate	[Zn(NH ₃) ₄](NO ₃) ₂
(b)	TetracarbonyInickel(0)	[Ni(CO) ₄]
(C)	Potassium amminetrichloridoplatinate(II)	K[Pt(NH ₃)Cl ₃]
(d)	Dicyanidoaurrate(I) ion	[Au(CN) ₂] ⁻
(e)	Sodium hexafluoridoaluminate(III)	Na ₃ [AIF ₆]
(f)	Diamminesilver(I) ion	[Ag(NH ₃) ₂] ⁺

B-4.

υ τ.											
	(a)	Diammi	netriaquahydro	xidochr	omium(III) n	itrate		[Cr(NH ₃)2	2(H2O)3(OH)](N	IO 3)2	
	(b)	Barium	dihydroxidodin	Ba[Zr(OF	Ba[Zr(OH) ₂ (ONO) ₂ (ox)]						
	(c)	Dibromi	dotetracarbony	[Fe(Br) ₂ ([Fe(Br) ₂ (CO) ₄]						
	(d)	Ammon	ium diamminet	(NH ₄)[Cr(NH3)2(NCS)4]						
	(e)	Pentaar	nminedinitroge	[Ru(NH₃)	5N2]Cl2						
	(f)	Tetrakis	(pyridine)platir	[Pt(Py) ₄][B(ph) ₄] ₂							
	(g)	Tetrapyridineplatinum(II) tetrachloridoplatinate(II)							[Pt(py) ₄][PtCl ₄]		
C-1.	(a) – i (e) – i	iv, (b) – viii, iii, (f) – v,			(c) - i, $(d) - vii,(g) - ii,$ $(h) - vi$						
C-2.	0.007	5.									
C-3.	(a) (e)	36 36	(b) (f)	36 36		(c) (g)	36 54	(d) (h)	36 86		
C-4.	ii < i <	: iv < iii.									

D-1. (i) $[Cr(NH_3)_4Cl Br]Cl \stackrel{aq.}{\Longrightarrow} [Cr(NH_3)_4Cl Br]^+ + Cl^-; Ag^+ + Cl^- \longrightarrow AgCl \downarrow (white) ; soluble in dilute NH_3.$ $[Cr(NH_3)_4Cl_2]Br \stackrel{aq.}{\Longrightarrow} [Cr(NH_3)_4Cl_2]^+ + Br^-; Ag^+ + Br^- \longrightarrow AgBr \downarrow (yellow) ; soluble in conc. NH_3. So, A = [Cr(NH_3)_4Cl Br]Cl and B = [Cr(NH_3)_4Cl_2]Br.$

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala	awar Road, Kota (Raj.) – 324005	
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 55	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 55	

(ii) In both complexes chromium is in +3 oxidation state. Chromium with 3d³ configuration has 3 unpaired electrons with weak field as well as strong field ligand. So, the hybridisation scheme is as follow :

(iii) $\mu = \sqrt{n (n+2)} = \sqrt{15}$

(iv) EAN = 24 - 3 + 12 = 33

(v) Yes, both have two ions per formula unit.

D-2.

	Complex	Hybridization	Geometry
(a)	[NiBr ₄] ^{2–}	sp ³	Tetrahedral
(b)	[AuCl₄]⁻	dsp ²	square planar
(c)	[Pt(NH ₃) ₄] ²⁺	dsp ²	square planar

E-1. (i) potasium amminetetracyanidonitrosoniumchromate(I)

(ii) Octahedral

(iii) One unpaired electron

(v) EAN = $24 - 1 + 2 \times 6 = 35$

(iv) It is paramagnetic with one unpaired electron (vi) d^2sp^3

E-2.

E-4.

	Complex	Hybridization	Geometry
(a)	[Fe(CN) ₆] ^{3–}	d ² sp ³	octahedral
(b)	[MnBr ₄] ^{2–}	sp ³	Tetrahedral
(c)	[Fe(H ₂ O) ₆] ²⁺	sp ³ d ²	Octahedral
(d)	[Co(SCN) ₄] ²⁻	sp ³	Tetrahedral

E-3. Since ammonia is a strong field ligand so can pair up the electrons of Co(III), so will form an inner dorbital complex having zero magnetic moment while fluoride being a weak field ligand can not pair up electrons and forms outer d-complex with higher magnetic moment equal to four unpaired electrons.

M Resonance®	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005					
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in					
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 56				

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala	awar Road, Kota (Raj.) – 324005
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 57
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 57

F-1. As 3d⁶ configuration has higher CFSE as compared to 3d⁷ so it gets oxidised in presence of complexing reagent to easily have d²sp³ hybridisation.

- F-2. yellow colour
- **F-3.** (a) CN⁻, F⁻ (b) (i) 0 (ii) 0 (iii) 0 (iv) 0
- G-1. (i) Linkage (ii) Coordination (iii) Ionisation (iv) Hydrate
- G-2. (a) There are three constitutional isomers (i) [Ru(NH₃)₅(NO₂)]Cl (ii) [Ru(NH₃)₅Cl](NO₂) or [Ru(NH₃)₅Cl]ONO (iii) [Ru(NH₃)₅ ONO]Cl (i) & (ii) are ionisation isomers (i) & (iii) are linkage isomers H₃N » SCN NCS NH₃ H₂N NCS (b) (i) (ii) (iii) SCN NCS SCN H₂N H₃N H₃N ----cis trans cis H₃N NH_3 NCS NH_3 SCN SCN (vi) (iv) (v) H₃N NCS H₃N NCS H_3N NCS trans trans cis
- G-3. (a) Two (b) None (c) Two (d) None (e) Two (f) None
- **G-4.** (a) No ; (b) Yes ; (c) Yes ; (d) Yes ; (e) Yes ; (f) No.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala	awar Road, Kota (Raj.) – 324005
A Resonance [®]	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 58
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 58

PART - III

1. (A - p,r,t); (B - p,s,t); (C - p,r,t); (D - q,r)

2. (A - p,q,r); (B - q,r,s); (C - p,q,r,s); (D - p,q)

	EXERCISE - 2									
PART - I										
1.	(B)	2.	(C)	3.	(A)	4.	(B)	5.	(D)	
6.	(D)	7.	(D)	8.	(C)	9.	(D)	10.	(B)	
11.	(B)	12.	(A)	13.	(A)					
				PA	RT - II					
1.	13	2.	05	3.	26	4.	(40 + 20) m	nl = 60 ml		
5.	4 (i, iii, iv, vii)	6.	3 (a, c, d)	7.	2 (i & v)	8.	4			
9.	4 (0 + 0 + 2 +	0 + 2 = 4	4)	10.	4	11.	12			

Cool	Coordination Compounds								八
PART - III									
1.	(BCD)	2.	(BC)	3.	(ABCD)	4.	(B)	5.	(BD)
6.	(ABCD)	7.	(BD)	8.	(AB)	9.	(ACD)	10.	(BCD)
11.	(BCD)	12.	(C)						
				ΡΑ	RT - IV				
1.	(D)	2.	(C)	3.	(B)	4.	(A)	5.	(A)
6.	(B)	7.	(A)	8.	(C)	9.	(A)	10.	(B)
11.	(C)								

EXERCISE – 3

PART - I

1. IUPAC name is :

Potassium amminetatracyanidonitrosoniumchromate(I)

or Potassium amminetatracyanidonitrocyliumchromate(I).

Let n is the number of unpaired electron in the chromium ion.

Since $\mu = \sqrt{n(n+2)}$ or $1.73 = \sqrt{n(n+2)}$ B.M. or $1.73 \times 1.73 = n^2 + 2n$. Hence n = 1.

As the CN^- and NH_3 are strong fields ligands, they compel for pairing of electrons. So,

$$[Cr(NO)(CN)_4(NH_3)]^{2-} = \underbrace{1 \downarrow 1 \downarrow 1}_{(1 \downarrow 1)} \underbrace{1 \downarrow 1}_{(1 \coprod 1)} \underbrace{1}_{(1 \downarrow 1)} \underbrace{1}_{(1 \coprod 1)} \underbrace{1}_{$$

Hence, the oxidation state of chromium is +1 (having $3d^5$ configuration). So according to charge on the complex NO should be NO⁺ and the structure of this complex is octahedral with d^2sp^3 hybridisation as given below

(C)

2. (D) **3.**

4.

Ni²⁺ + 2dmg $\xrightarrow{NH_4OH}$ [Ni(dmg)₂] \downarrow (bright red).

It acquires stability through chelation and intra molecular H-bonding.

In $[Ni(dmg)_2]$ the nickel is in +2 oxidaiton state and to have square planar geometry because of chelation the pairing of electrons takes place. So

dsp²-hybridisation

As all electrons are paired, so complex is diamagnetic. Nickel with coordination number four will have the structure as given below.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005				
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 60			
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 60			

rosy red ppt

10.(B)11.(A - p,q,s); (B - p,r,s); (C - q,s); (D - q,s);12.(C)13.(B)14.(B)15.(A)16.(CD)17.(A)18.(C)19.(B)20.(B)21.322.(B)23.(C)24.625.(D)26.(C)27.(B)28.(BD)29.830.431.(B)32.433.334.(6)35.(B)36.(5)37.(A)38.(BC)39.140.299241.(ABD)42.(C)43.(600)FIRT1.(3)2.(1)3.(2)4.(3)5.(4)6.(3)7.(2)8.(2)9.(3)10.(1)11.(1)12.(4)13.(3)14.(2)15.(1)16.(2)17.(3)28.(1)9.(2)20.(1)21.(3)22.(3)23.(3)24.(4)25.(4)26.(3)27.(1)38.(2)39.(Bonus)40.(3)31.(2)32.(3)34.(1)35.(3)(4)34.(1)35.(3)36.(4)37.(1)38.(2)39.(Bonus)40.(3)(3)	5.	(A)	6.	(A)	7.	(A)	8.	(C)	9.	(C)
14. (B) 15. (A) 16. (CD) 17. (A) 18. (C) 19. (B) 20. (B) 21. 3 22. (B) 23. (C) 24. 6 25. (D) 26. (C) 27. (B) 28. (BD) 29. 8 30. 4 31. (B) 32. 4 33. 3 34. (6) 35. (B) 36. (5) 37. (A) 38. (BC) 39. 1 40. 2992 41. (ABD) 42. (C) 43. (600) 7. (3) 2. (1) 3. (2) 4. (3) 5. (4) 6. (3) 7. (2) 8. (2) 9. (3) 10. (1) 11. (1) 12. (4 13. (3) 14. (2) 15. (1) 14. (1) 12. (3) 18. (4) 19. (2) <t< th=""><th>10.</th><th>(B)</th><th>11.</th><th>(A - p,q,s); (B</th><th colspan="6">(A - p,q,s); (B - p,r,s); (C - q,s); (D - q,s)</th></t<>	10.	(B)	11.	(A - p,q,s); (B	(A - p,q,s); (B - p,r,s); (C - q,s); (D - q,s)					
19. (B) 20. (B) 21. 3 22. (B) 23. (C) 24. 6 25. (D) 26. (C) 27. (B) 28. (B) 29. 8 30. 4 31. (B) 32. 4 33. 3 34. (6) 35. (B) 36. (5) 37. (A) 38. (BC) 39. 1 $40.$ 2992 $41.$ (ABD) $42.$ (C) $43.$ (BO) PART - II1. (3) $2.$ (1) $3.$ (2) $4.$ (3) $5.$ (4) 6. (3) $7.$ (2) $8.$ (2) $9.$ (3) $10.$ (1) 11. (1) $12.$ (4) $13.$ (3) $14.$ (2) $20.$ (1) 16. (2) $17.$ (3) $28.$ (1) $29.$ (4) $30.$ (3) 21. (3) $22.$ (3) $23.$ (3) $24.$ (4) $30.$ (3) 26. (3) $27.$ (3) $28.$ (1) $34.$ (1) $35.$ (3) 31. (2) $32.$ (3) $38.$ (2) $39.$ $(Bonus)$ $40.$ (3) 36. (4) $37.$ (1) $38.$ (2) $39.$ $(Bonus)$ $40.$ (3)	13.	(B)								
24. 6 25. (D) 26. (C) 27. (B) 28. (BD) 29. 8 30. 4 31. (B) 32. 4 33. 3 34. (6) 35. (B) 36. (5) 37. (A) 38. (BC) 39. 1 40. 2992 41. (ABD) 42. (C) 43. (6.00) FART - II 1. (3) 2. (1) 3. (2) 4. (3) 5. (4) 6. (3) 7. (2) 8. (2) 9. (3) 10. (1) 11. (1) 12. (4) 13. (3) 14. (2) 15. (1) 16. (2) 17. (3) 18. (4) 19. (2) 20. (1) 21. (3) 22. (3) 23. (3) 24. (4) 25. (4) 26. (3) 27. (3) 28.	14.	(B)	15.	(A)	16.	(CD)	17.	(A)	18.	(C)
29. 8 30. 4 31. (B) 32. 4 33. 3 34. (6) 35. (B) 36. (5) 37. (A) 38. (BC) 39. 1 40. 2992 41. (ABD) 42. (C) 43. (600) FART - II 1. (3) 2. (1) 3. (2) 4. (3) 5. (4) 6. (3) 7. (2) 8. (2) 9. (3) 10. (1) 11. (1) 12. (4) 13. (3) 14. (2) 15. (1) 16. (2) 17. (3) 18. (4) 19. (2) 20. (1) 21. (3) 27. (3) 28. (1) 29. (4) 30. (3) 26. (3) 27. (3) 28. (1) 29. (4) 30. (3) 31. (2) 32. (3) 33.	19.	(B)	20.	(B)	21.	3	22.	(B)	23.	(C)
34. (6) 35. (B) 36. (5) 37. (A) 38. (BC) 39. 1 40. 2992 41. (ABD) 42. (C) 43. (6.00) FART-II 1. (3) 2. (1) 3. (2) 4. (3) 5. (4) 6. (3) 7. (2) 8. (2) 9. (3) 10. (1) 11. (1) 12. (4) 13. (3) 14. (2) 15. (1) 16. (2) 17. (3) 28. (1) 19. (2) 20. (1) 21. (3) 22. (3) 23. (3) 24. (4) 25. (4) 21. (3) 22. (3) 23. (4) 34. (1) 35. (3) 21. (3) 22. (3) 23. (3) 24. (4) 30. (3) 21. (3) 22. (3) 33.	24.	6	25.	(D)	26.	(C)	27.	(B)	28.	(BD)
39. 1 40. 2992 41. (ABD) 42. (C) 43. (6.00) PART - II 1. (3) 2. (1) 3. (2) 4. (3) 5. (4) 6. (3) 7. (2) 8. (2) 9. (3) 10. (1) 11. (1) 12. (4) 13. (3) 14. (2) 15. (1) 16. (2) 17. (3) 18. (4) 19. (2) 20. (1) 21. (3) 22. (3) 23. (3) 24. (4) 25. (4) 21. (3) 22. (3) 28. (1) 29. (4) 30. (3) 21. (3) 22. (3) 28. (1) 29. (4) 30. (3) 26. (3) 27. (3) 28. (1) 29. (Bonus) 40. (3) 31. (2) 32. (3) 38.	29.	8	30.	4	31.	(B)	32.	4	33.	3
PART - II1. (3)2. (1)3. (2)4. (3)5. (4)6. (3)7. (2)8. (2)9. (3)10. (1)11. (1)12. (4)13. (3)14. (2)15. (1)16. (2)17. (3)18. (4)19. (2)20. (1)21. (3)22. (3)23. (3)24. (4)25. (4)26. (3)27. (3)28. (1)29. (4)30. (3)31. (2)32. (3)33. (4)34. (1)35. (3)36. (4)37. (1)38. (2)39. (Bonus)40. (3)41. (4)42. (1)43. (3)44. (2)45. (1)	34.	(6)	35.	(B)	36.	(5)	37.	(A)	38.	(BC)
1.(3)2.(1)3.(2)4.(3)5.(4)6.(3)7.(2)8.(2)9.(3)10.(1)11.(1)12.(4)13.(3)14.(2)15.(1)16.(2)17.(3)18.(4)19.(2)20.(1)21.(3)22.(3)23.(3)24.(4)25.(4)26.(3)27.(3)28.(1)29.(4)30.(3)31.(2)32.(3)33.(4)34.(1)35.(3)36.(4)37.(1)38.(2)39.(Bonus)40.(3)41.(4)42.(1)43.(3)44.(2)45.(1)	39.	1	40.	2992	41.	(ABD)	42.	(C)	43.	(6.00)
6. (3) 7. (2) 8. (2) 9. (3) 10. (1) 11. (1) 12. (4) 13. (3) 14. (2) 15. (1) 16. (2) 17. (3) 18. (4) 19. (2) 20. (1) 21. (3) 22. (3) 23. (3) 24. (4) 25. (4) 26. (3) 27. (3) 28. (1) 29. (4) 30. (3) 31. (2) 32. (3) 33. (4) 34. (1) 35. (3) 36. (4) 37. (1) 38. (2) 39.(Bonus)40. (3) 41. (4) 42. (1) 43. (3) 44. (2) 45. (1)					PAI	RT - II				
11.(1)12.(4)13.(3)14.(2)15.(1)16.(2)17.(3)18.(4)19.(2)20.(1)21.(3)22.(3)23.(3)24.(4)25.(4)26.(3)27.(3)28.(1)29.(4)30.(3)31.(2)32.(3)33.(4)34.(1)35.(3)36.(4)37.(1)38.(2)39.(Bonus)40.(3)41.(4)42.(1)43.(3)44.(2)45.(1)	1.	(3)	2.	(1)	3.	(2)	4.	(3)	5.	(4)
16.(2)17.(3)18.(4)19.(2)20.(1)21.(3)22.(3)23.(3)24.(4)25.(4)26.(3)27.(3)28.(1)29.(4)30.(3)31.(2)32.(3)33.(4)34.(1)35.(3)36.(4)37.(1)38.(2)39.(Bonus)40.(3)41.(4)42.(1)43.(3)44.(2)45.(1)	6.	(3)	7.	(2)	8.	(2)	9.	(3)	10.	(1)
21. (3) 22. (3) 23. (3) 24. (4) 25. (4) 26. (3) 27. (3) 28. (1) 29. (4) 30. (3) 31. (2) 32. (3) 33. (4) 34. (1) 35. (3) 36. (4) 37. (1) 38. (2) 39. (Bonus) 40. (3) 41. (4) 42. (1) 43. (3) 44. (2) 45. (1)	11.	(1)	12.	(4)	13.	(3)	14.	(2)	15.	(1)
26.(3)27.(3)28.(1)29.(4)30.(3)31.(2)32.(3)33.(4)34.(1)35.(3)36.(4)37.(1)38.(2)39.(Bonus)40.(3)41.(4)42.(1)43.(3)44.(2)45.(1)	16.	(2)	17.	(3)	18.	(4)	19.	(2)	20.	(1)
31. (2) 32. (3) 33. (4) 34. (1) 35. (3) 36. (4) 37. (1) 38. (2) 39. (Bonus) 40. (3) 41. (4) 42. (1) 43. (3) 44. (2) 45. (1)	21.	(3)	22.	(3)	23.	(3)	24.	(4)	25.	(4)
36. (4) 37. (1) 38. (2) 39. (Bonus) 40. (3) 41. (4) 42. (1) 43. (3) 44. (2) 45. (1)	26.	(3)	27.	(3)	28.	(1)	29.	(4)	30.	(3)
41. (4) 42. (1) 43. (3) 44. (2) 45. (1)	31.	(2)	32.	(3)	33.	(4)	34.	(1)	35.	(3)
	36.	(4)	37.	(1)	38.	(2)	39.	(Bonus)	40.	(3)
46. (3) 47. (4) 48. (1) 49. (2) 50. (2)	41.	(4)	42.	(1)	43.	(3)	44.	(2)	45.	(1)
	46.	(3)	47.	(4)	48.	(1)	49.	(2)	50.	(2)

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005				
Resonance [®]	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVCOR - 61			
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVCOR - 61			

八