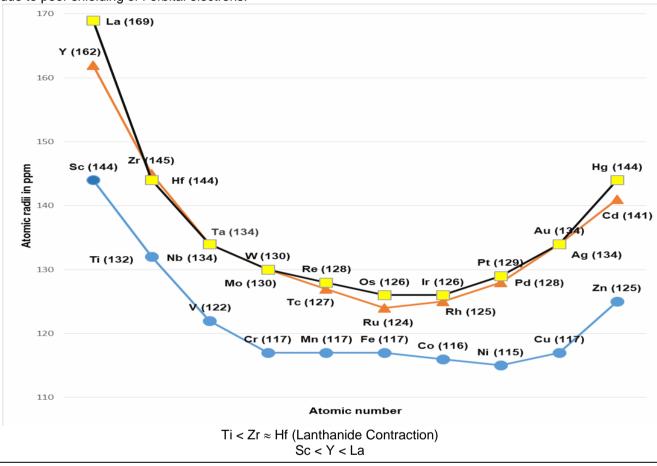
### DPP No. # B1(JEE-MAIN)


| Total N | Marks : 64                                                                                                                                                                                                                                                             |                                                     | ,                                                                                                    |                      | Max.                            | Fime : 40 min.                               |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|----------------------------------------------|--|--|
|         | choice Objective ('–1'<br>NFO : 4 Questions ('–1                                                                                                                                                                                                                       |                                                     |                                                                                                      | (3 marks<br>(4 marks |                                 | [48, 32]<br>[16, 08]                         |  |  |
| 1.      | The number of d-electro<br>(A) d-electrons in Fe (A<br>(C) p-electrons in Cl <sup>-</sup> (A                                                                                                                                                                           |                                                     | o that of the :<br>(B) p-electrons<br>(D) d-electrons                                                | · ·                  |                                 | ,                                            |  |  |
| 2.      | Because of lanthanoid contraction, which of the following pairs of elements have nearly same atom radii ? (Numbers in the parenthesis are atomic numbers).<br>(A) Zr (40) and Nb (41)<br>(B) Zr (40) and Hf (72)<br>(C) Zr (40) and Ta (73)<br>(D) Ti (22) and Zr (40) |                                                     |                                                                                                      |                      |                                 |                                              |  |  |
| 3.      | Which of the following (<br>(A) ns <sup>2</sup> np <sup>6</sup>                                                                                                                                                                                                        | electronic configuration r<br>(B) ns²np⁵            | epresent noble g<br>(C) ns²np⁴                                                                       |                      | D) ns²np³                       |                                              |  |  |
| 4.      | Which of the following (<br>(A) Cu, Ag, Au                                                                                                                                                                                                                             | group of transition metals<br>(B) Ru, Rn, Pd        | s is called coinag<br>(C) Fe, Co, Ni                                                                 |                      | D) Os, IR, Pt                   |                                              |  |  |
| 5.      | Outemost configuration<br>(A) 4s <sup>2</sup> , 3d <sup>5</sup>                                                                                                                                                                                                        | for Z = 25 is :<br>(B) 5s², 4d⁵                     | (C) 4s <sup>2</sup> , 3d <sup>3</sup>                                                                | (                    | D) 4s², 3d¹                     |                                              |  |  |
| 6.      | 3d <sup>10</sup> shows :                                                                                                                                                                                                                                               | nd Cu are 28 and 29 res                             |                                                                                                      | -                    |                                 | s², 2p <sup>6</sup> , 3s², 3p <sup>6</sup> , |  |  |
|         | (A) Ni                                                                                                                                                                                                                                                                 | (B) Ni <sup>2+</sup>                                | (C) Cu <sup>2+</sup>                                                                                 | (                    | D)Cu⁺                           |                                              |  |  |
| 7.      | Which group of atoms I<br>(A) Na, K, Rb, Cs                                                                                                                                                                                                                            | nave nearly same atomic<br>(B) Li, Be, B, C         | c radius :<br>(C) Fe, Co, Mn                                                                         | (                    | D) F, Cl, Br, I                 |                                              |  |  |
| 8.      | For the valence electro<br>(A) Be > B > C > N                                                                                                                                                                                                                          | n of the following elemer<br>(B) N > C > B > Be     | nt which is the co<br>(C) Be > N > C                                                                 |                      | easing order o<br>D) N > Be > E |                                              |  |  |
| 9.      | Which of the following (A) Cu                                                                                                                                                                                                                                          | element as configuration<br>(B) Sc                  | [Ar] 4s²3d¹<br>(C) Ni                                                                                | (                    | (D) Pt                          |                                              |  |  |
| 10.2    |                                                                                                                                                                                                                                                                        | alpies of Na, Mg, Al and<br>(B) Na > Mg > Al > Si   |                                                                                                      |                      | D) Na > Mg >                    | Al < Si                                      |  |  |
| 11.     |                                                                                                                                                                                                                                                                        | f the following electroni                           | c configuration l                                                                                    | has the lo           | west first ion                  | isation enthalpy                             |  |  |
|         | among the following :<br>(A) 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>5</sup>                                                                                                                                                                                           | (B) 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>3</sup> | (C) 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3                                                | 3S <sup>1</sup> (    | D) 1s²2s²2p <sup>6</sup>        |                                              |  |  |
| 12.2    | If the value of IE <sub>1</sub> for He<br>He (g) $\longrightarrow$ He <sup>2+</sup> (g) +                                                                                                                                                                              | e-atom is 24.6 eV, then t                           | he energy requir                                                                                     | ed for the i         | reaction :                      |                                              |  |  |
|         | (A) 79 eV<br>(C) 147 eV                                                                                                                                                                                                                                                | 20 15.                                              | (B) 38.2 eV<br>(D) Cannot be                                                                         | determined           | d since data is                 | s insufficient.                              |  |  |
| 13.     | The correct sequence $(A) Br^- > Cl^- > S^{2-} > O^2$<br>(C) Br^- > S^{2-} > Cl^- > F^-                                                                                                                                                                                |                                                     | following is :<br>(B) Br <sup>-</sup> > S <sup>2-</sup> ><br>(D) S <sup>2-</sup> > Br <sup>-</sup> > |                      |                                 |                                              |  |  |
| 14.     | Which is correct trend $c$<br>(A) Li < Be < B < C < N<br>(C) Li < B < Be < C < C                                                                                                                                                                                       | < 0 < F < Ne                                        | (B) Li < Be < B<br>(D) Li < B < Be                                                                   |                      |                                 |                                              |  |  |
| 15.     | Which of the following a (A) Na                                                                                                                                                                                                                                        | atoms has the highest fir<br>(B) K                  | st ionization ener<br>(C) Li                                                                         |                      | D) Rb                           |                                              |  |  |
| 16.     | Which of the following I<br>(A) F                                                                                                                                                                                                                                      | nave less ionisation ener<br>(B) B                  | gy than oxygen '<br>(C) N                                                                            |                      | D) Ne                           |                                              |  |  |



# ChemINFO

Daily Self-Study Dosage for mastering Chemistry

As we move along the lanthanoid series, the nuclear charge increases by one unit at each successive element. The new electron is added into the same subshell (4f). As a result, the attraction on the electrons by the nucleus increases and this tends to decrease the size. Further, as the new electron is added into the f-subshell, there is imperfect shielding of one electron by another in this subshell due to the shapes of these f-orbitals. This imperfect shielding is unable to counterbalance the effect of the increased nuclear charge. Hence, the net result is a contraction in the size. Thus covalent and ionic radii of Nb (5<sup>th</sup> period) and Ta (6<sup>th</sup> period) are approx equal due to poor shielding of f orbital electrons.



#### Memorize this theory as soon as you get the DPP. Revise it regularly and master this concept by practice.

| 17. | Which of the following | correct order of size : |                 |                 |
|-----|------------------------|-------------------------|-----------------|-----------------|
|     | (A) V < Nb < Ta        | (B) V < Nb < Ta         | (C) V < Nb = Ta | (D) V = Nb < Ta |
| 18. | Which of the following | element has highest siz | e:              |                 |

(A) W (B) Y (C) Zr (D) Fe

**19.** Which of the following statement is correct :

(A) Due to lanthanide contraction size of 3d series elements  $\approx$  4d series element  $% \left( A\right) =0$  .

- (B) Due to lanthanide contraction size of 4d series elements  $\approx$  5d series element.
- (C) Due to lanthanide contraction size of 3d series elements < 5d series element.
- (D) Due to lanthanide contraction size of 5d series element > 4d series elements.

# 20. Which of the following factors may be regarded as the main cause of lanthanide contraction ?(A) Greater shielding of 5d electrons by 4f electrons.

- (B) Poorer shielding of 5d electrons by 4f electrons.
- (C) Effective shielding of one of 4f electrons by another in the sub-shell.
- (D) Poor shielding of one of 4f electron by another in the sub-shell.

| Resonance®                    | Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala | war Road, Kota (Raj.) – 324005 |  |
|-------------------------------|------------------------------------------------------------------------|--------------------------------|--|
|                               | Website : www.resonance.ac.in   E-mail : contact@resonance.ac.in       | PAGE NO33                      |  |
| Educating for better tomorrow | Toll Free : 1800 258 5555   CIN: U80302RJ2007PLC024029                 | PAGE NO33                      |  |

Periodic Table

# DPP No. # B2 (JEE- ADVANCED)

| Total  | Marks : 44                                                                                                                                                                                                                                                                                                                                                               | -                                                                      | Ν                                                           | lax. Time : 28 min.    |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|------------------------|--|--|--|--|
| Intege | ble choice objective ('–1' negative marking) G<br>er type Questions ('–1' negative marking) Q.6<br>n the Following (no negative marking) Q.10                                                                                                                                                                                                                            | to Q.9                                                                 | (4 marks, 2 min.)<br>(4 marks, 3 min.)<br>(8 marks, 6 min.) | ) [16, 12]             |  |  |  |  |
| 1.*    | In which of the following reaction size of products<br>(A) Ne(g) + $e^- \rightarrow Ne^-$ (g)<br>(C) $O^{-2}_{(g)} \rightarrow O^{(g)} + e^-$                                                                                                                                                                                                                            | uct ion is less than<br>(B) Na(g) → Na<br>(D) Mg <sup>++</sup> (g) + e | a+ (g) + e-                                                 |                        |  |  |  |  |
| 2.*¤   | <ul> <li>Which of the following statements is/are correct for mononuclear isoelectronic species :</li> <li>(A) They have same number of electrons.</li> <li>(B) They have different number of protons.</li> <li>(C) Their ionic radii decreases with increase in nuclear charge.</li> <li>(D) They have same ionic radii due to same number of filled shells.</li> </ul> |                                                                        |                                                             |                        |  |  |  |  |
| 3.*>   | Poor shielding of nuclear charge by d or f –<br>facts :<br>(A) Atomic radius of Nb (4–d series) is compa<br>(B) The I <sup>st</sup> ionisation energy of cxopper is less<br>(C) Atomic radius of Al and Ga are nearly san<br>(D) The I <sup>st</sup> ionisation energy for Au is greater                                                                                 | arable to that of Ta<br>s than that of Zinc<br>ne.                     |                                                             | which of the following |  |  |  |  |
| 4.*    | The ionization potential order for which set is<br>(A) Li > K > Cs (B) B > Li > K                                                                                                                                                                                                                                                                                        | correct :<br>(C) Cs > Li > B                                           | (D) Cs <                                                    | Li < K                 |  |  |  |  |
| 5.*    | Which of the following elements have approx<br>(A) Sc (B) Fe                                                                                                                                                                                                                                                                                                             | similar atomic radi<br>(C) Ni                                          | i :<br>(D) Cu                                               |                        |  |  |  |  |
| 6.     | The five successive ionisation energies for a respectively. what are the number of valence                                                                                                                                                                                                                                                                               |                                                                        |                                                             | 5 and 32800 KJ/mole    |  |  |  |  |
| 7.2a   | In the given, how many atoms have greater fi<br>Li Be C N O F                                                                                                                                                                                                                                                                                                            | rst ionisation energ<br>He                                             | jies than Boron ?                                           |                        |  |  |  |  |
| 8.2    | Find out the total numbers of ions/atoms havi<br>Al <sup>3+</sup> , Mg <sup>2+</sup> , S <sup>2–</sup> , O <sup>2–</sup> , F <sup>–</sup> , Br <sup>–</sup> , I <sup>–</sup> , F, C                                                                                                                                                                                      | ng greater radii tha                                                   | n oxygen atom.                                              |                        |  |  |  |  |
| 9.     | How many number of unpaired number of ele                                                                                                                                                                                                                                                                                                                                | ctrons present in p                                                    | hosphrous :                                                 |                        |  |  |  |  |
| 10.    | Which of the following options is not correctly                                                                                                                                                                                                                                                                                                                          | matched :                                                              |                                                             |                        |  |  |  |  |

|     | (Element / elements)                                                                         |     | (IUPAC group number in Modern periodic table) |
|-----|----------------------------------------------------------------------------------------------|-----|-----------------------------------------------|
| (A) | An element whose fourth shell contains two p-electrons                                       | (p) | 14 <sup>th</sup> group                        |
| (B) | An element whose valence shell contains one unpaired p-<br>electron                          | (q) | 17 <sup>th</sup> group                        |
| (C) | An element which receives last electron in $(n - 1)$ d-subshell                              | (r) | 8 <sup>th</sup> group                         |
| (D) | An element with the ground-state electron configuration [Ar]4s <sup>2</sup> 3d <sup>10</sup> | (s) | 10 <sup>th</sup> group                        |



| Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala | war Road, Kota (Raj.) – 324005 |
|------------------------------------------------------------------------|--------------------------------|
| Website : www.resonance.ac.in   E-mail : contact@resonance.ac.in       | PAGE NO34                      |
| Toll Free : 1800 258 5555   CIN: U80302RJ2007PLC024029                 | FAGE NO34                      |

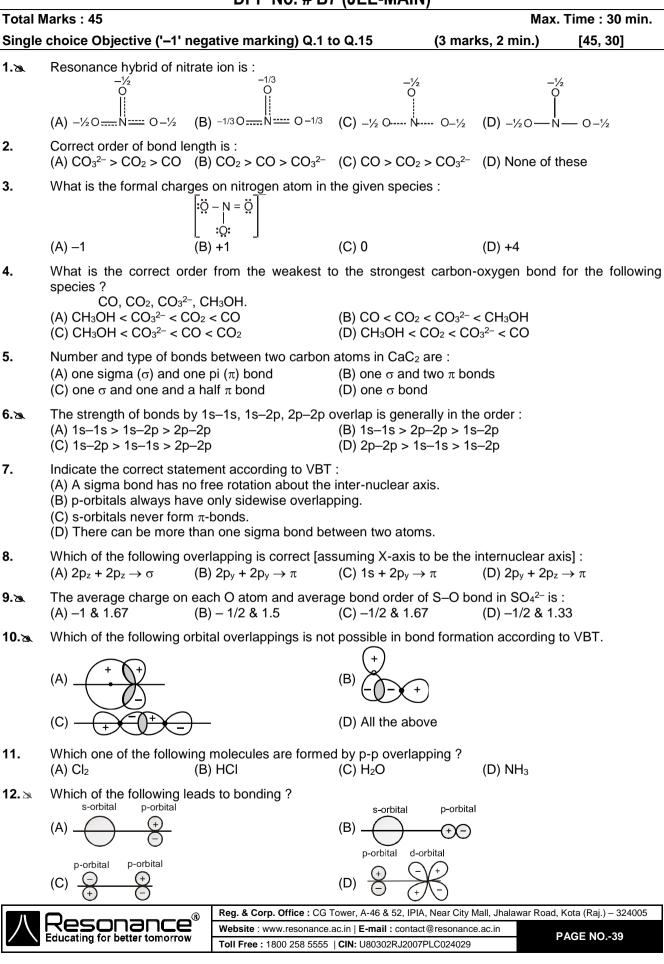
### DPP No. # B3 (JEE-MAIN)

| <b>Fotal</b> | Marks: 60                                                                                    |                                                                          |                                                                                                                          | ·           | Max.                                                                     | Time : 40 min.       |
|--------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------|----------------------|
| Single       | e choice Objective ('–1' neg                                                                 | ative marking) Q.1 t                                                     | o Q.20                                                                                                                   | (3 marl     | ks, 2 min.)                                                              | [60, 40]             |
| I.           | The chemical name of NaA<br>(A) Sodium Aluminite<br>(C) Sodium pyroaluminate                 | AIO2 is :                                                                | (B) Sodium Met<br>(D) Sodium hyp                                                                                         |             |                                                                          |                      |
| 2.24         | (A) NaN₃ Sơ                                                                                  | nemical name is not c<br>nemical Name<br>odium azide<br>dic Acid         | orrectly matched<br><b>Chemcial Forn</b><br>(B) Ba(NO <sub>2</sub> ) <sub>2</sub><br>(D) H <sub>2</sub> SiO <sub>3</sub> |             | emical formula<br><b>Chemical Na</b><br>Barium Nitrite<br>Meta Silicic A | ime                  |
| 3.           | The chemical name of Mg(<br>(A) Magnesium chlorite<br>(C) Magnesium chlorate                 | [CIO3)2 is -                                                             | (B) Magnesium<br>(D) Magnesium                                                                                           |             |                                                                          |                      |
| 4.           | The chemical name of Ca(<br>(A) Calcium chloride (B                                          | ClO <sub>2</sub> ) <sub>2</sub> is -<br>) Calcium chlorite               | (C) Calcium chl                                                                                                          | orate       | (D) Calcium p                                                            | perchlorate          |
| 5.29         | The chemical name of BaC<br>(A) Barium metachromite<br>(C) Barium dichromate                 | CrO4 is :                                                                | (B) Barium chro<br>(D) Barium chro                                                                                       |             |                                                                          |                      |
| ð.           | The chemical name of K <sub>2</sub> N<br>(A) Potassium permangana<br>(C) Potassium metamanga | ate                                                                      | (B) Potassium r<br>(D) Potassium r                                                                                       |             |                                                                          |                      |
| 7.           | The chemical name of Co(<br>(A) Cobalt (II) metaborate<br>(C) Cobalt (III) metaborate        |                                                                          | (B) Cobalt (II) c<br>(D) Cobalt (II) F                                                                                   |             |                                                                          |                      |
| 3.           | The chemical formula of Pe<br>(A) K <sub>2</sub> O <sub>2</sub> (B                           | otassium superoxide<br>) K <sub>2</sub> O                                | is<br>(C) KO <sub>2</sub>                                                                                                |             | (D) KO3                                                                  |                      |
| .2           | The chemical formula of Pl<br>(A) H <sub>3</sub> PO <sub>4</sub> (B                          | hosphorous acid is -<br>) H₃PO₃                                          | (C) H <sub>3</sub> PO <sub>2</sub>                                                                                       |             | (D) H <sub>2</sub> PO <sub>3</sub>                                       |                      |
| 0.           | The chemical formula of P:<br>(A) $H_2S_2O_7$ (B)                                            | yrosulphuric acid is -<br>) H <sub>2</sub> S <sub>2</sub> O <sub>5</sub> | (C) H <sub>2</sub> S <sub>2</sub> O <sub>6</sub>                                                                         |             | (D) H <sub>2</sub> S <sub>2</sub> O <sub>4</sub>                         |                      |
| 1.2          | Pb has stable oxidation sta<br>(A) +4 (B                                                     | ate :<br>) +2                                                            | (C) +3                                                                                                                   |             | (D) +6                                                                   |                      |
| 2.           | Cr has stable oxidation sta<br>(A) +4 (B                                                     | te :<br>) +2                                                             | (C) +3                                                                                                                   |             | (D) +6                                                                   |                      |
| 3.2          | In NalO oxidation number (<br>(A) +4 (B                                                      | of lodine is :<br>) +2                                                   | (C) +3                                                                                                                   |             | (D) +1                                                                   |                      |
| 4.           | Which of the following has<br>(A) Na (B                                                      | stable oxidation state<br>) N                                            | e zero -<br>(C) Pb                                                                                                       |             | (D) F                                                                    |                      |
| 5.           | With respect to oxygen ma<br>(A) Halogen family (B                                           | ximum oxidation stat<br>) oxygen family                                  | e is shown by :<br>(C) nitrogen fan                                                                                      | nily        | (D) Boron fan                                                            | nily                 |
| 6.           |                                                                                              | ainst which of the foll<br>yroselenate<br>phosphate                      | owing chemical f<br>(B) Ni(HSO <sub>3</sub> ) <sub>2</sub><br>(D) CsOBr                                                  | Nickel(     | ?<br>II) metasulphite<br>bromite                                         | 9                    |
| 17.          | Which of following anion ha<br>(A) S <sub>2</sub> O <sub>7</sub> <sup>2–</sup> (B            | as pyro-preffix :<br>) SO₅²⁻                                             | (C) S <sub>2</sub> O <sub>8</sub> <sup>2-</sup>                                                                          |             | (D) SO <sub>3</sub> <sup>2–</sup>                                        |                      |
| 8.           | What is the formula of alun<br>(A) Al(AsO <sub>3</sub> ) (B                                  | ninium arsenite :<br>) Al(AsO₄)                                          | (C) AIAsO <sub>5</sub>                                                                                                   |             | (D) AIAsO4                                                               |                      |
|              |                                                                                              | Reg. & Corp. Office : CG                                                 | Tower, A-46 & 52, IPIA,                                                                                                  | Near City N | Iall, Jhalawar Road,                                                     | Kota (Raj.) – 324005 |
| Л            | Resonance®                                                                                   | Website : www.resonance.                                                 | ac.in   E-mail : contact@                                                                                                | @resonance  | e.ac.in                                                                  |                      |
|              | Educating for better tomorrow                                                                | Toll Free : 1800 258 5555                                                | CIN: U80302RJ2007P                                                                                                       | LC024029    |                                                                          | AGE NO35             |

| DPPs B   | BOOKL                   | ET-2                                      |                                     |                                     |                                                                                   |                               |                                 |                              |                     |        | VIKA                          | AS (JA)   | CHEMISTRY                                    |
|----------|-------------------------|-------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|---------------------------------|------------------------------|---------------------|--------|-------------------------------|-----------|----------------------------------------------|
| 19.      | Mato                    | h the col                                 | umn:                                |                                     |                                                                                   |                               |                                 |                              |                     |        |                               |           |                                              |
|          |                         |                                           | as of an                            |                                     | Name                                                                              |                               |                                 |                              |                     |        |                               |           |                                              |
|          | (P)                     |                                           | osphite i                           |                                     |                                                                                   |                               |                                 |                              |                     |        |                               |           |                                              |
|          | (Q)                     |                                           | osphate                             |                                     | <u>, , , , , , , , , , , , , , , , , , , </u>                                     |                               |                                 |                              |                     |        |                               |           |                                              |
|          | (R)                     |                                           | osphate                             |                                     |                                                                                   |                               |                                 |                              |                     |        |                               |           |                                              |
|          | (S)                     | P                                         | nosphate<br>Q                       | ion (d<br>R                         | ) PO <sub>4</sub> 3-<br>S                                                         |                               |                                 | Р                            | Q                   | R      | )                             | S         |                                              |
|          | (A)                     | г<br>С                                    | a                                   | b                                   | d                                                                                 |                               | (B)                             | г<br>а                       | b                   | C      |                               | d         |                                              |
|          | (C)                     | b                                         | C                                   | a                                   | d                                                                                 |                               | (D)                             | d                            | c                   | a      |                               | b         |                                              |
| 20.      | . ,                     | t is the fo                               | ormula of                           | sodium                              | hypophosph                                                                        |                               | ( )                             |                              |                     |        |                               |           |                                              |
|          | (A) N                   | laH <sub>2</sub> PO <sub>2</sub>          |                                     | (B) Na                              | a <sub>2</sub> HPO <sub>3</sub>                                                   |                               | (C) Na                          | <sub>3</sub> PO <sub>3</sub> |                     | (      | D) Na⊦                        | I2PO3     |                                              |
|          |                         |                                           |                                     | D                                   | PP No. # I                                                                        | B4 (R                         | EVIS                            | ION D                        | PP)                 |        |                               |           |                                              |
| Total N  | larks                   | : 44                                      |                                     |                                     |                                                                                   |                               |                                 |                              |                     |        |                               | Max. T    | īme : 28 min.                                |
| Integer  | <sup>,</sup> type       | Questio                                   | ons ('–1'                           | negative                            | ive marking<br>e marking) (<br>marking) Q.                                        | Q.6 to                        |                                 |                              | (4 m                | arks   | , 2 mir<br>, 3 mir<br>, 6 mir | ı.)       | [20, 10]<br>[16, 12]<br>[08, 06]             |
| 1.*æ     | (A) E<br>(B) F<br>(C) A | lectropos<br>Reactivity<br>Atomic ra      | sitive cha<br>decreas<br>dii increa | aracter ir<br>ses from<br>ases as t | mon to both<br>hcreases dow<br>top to botton<br>he atomic nu<br>s on moving       | wn the<br>n in the<br>umber   | groups<br>ese gro<br>increas    | s.<br>Jups.<br>Ses.          | nents i             | n the  | period                        | lic table | e are :                                      |
| 2.*      | Whic<br>(A) F           |                                           | following                           | have m<br>(B) B                     | ore ionisatio                                                                     |                               | gy than<br>(C) N                | ı oxyger                     | י ?                 | ([     | D) C                          |           |                                              |
| 3.*>     | (A) S                   | ct equatio<br>5⁻(g) —→<br>√(g) —→         | • S <sup>2–</sup> (g)               | ng endot                            | hermic step                                                                       |                               |                                 | ⁺(g) + C<br>⁺(g) —           |                     |        | laCI(s)                       |           |                                              |
| 4.*      | (A) E<br>(B) S<br>(C) E | Same as o<br>Energy re                    | nagnitud<br>elelctron<br>quired to  | e but op<br>affinity o<br>remove    | posite in sigr<br>of the elemer                                                   | nt<br>e elect                 | ron froi                        | m an isc                     | blated              | gase   | ous ato                       | om in it: | the element<br>s ground state<br>the element |
| 5.*      | (A) T<br>(B) T<br>(C) T | The secor<br>The first ic<br>The first ic | nd ioniza<br>onization<br>onization | tion enth<br>enthalp<br>enthalp     | ents is/are co<br>nalpy of oxyg<br>y of phospho<br>y of aluminiu<br>y of copper i | jen ele<br>orus is<br>im is s | ment is<br>greater<br>lightly g | r than th<br>greater t       | hat of a<br>than th | alumi  | nium.                         |           | ment.                                        |
| 6.24     |                         |                                           |                                     |                                     | onic species<br>P <sup>3–</sup> , Al <sup>3+</sup> & N                            |                               |                                 |                              |                     |        |                               |           |                                              |
| 7.24     |                         | e followin<br>9, 17, 25                   | -                                   | •                                   | nic number i<br>38                                                                | s giver                       | ר), how                         | many e                       | elemer              | nts be | long to                       | o d-bloc  | sk ?                                         |
| 8.       | lf oxi                  | dation st                                 | ate of Cl                           | atom in                             | HCIO4 (perc                                                                       | hloric                        | acid) is                        | +X, wri                      | te the              | value  | e of X.                       |           |                                              |
| 9.2      |                         |                                           |                                     |                                     | tive electron<br>it has total p                                                   |                               |                                 |                              |                     |        |                               |           | most shell total                             |
| 10       |                         |                                           |                                     | -                                   | r                                                                                 | -                             | ,                               |                              | -                   |        |                               | •         |                                              |
| 10.<br>[ | iviato                  | h the col                                 |                                     |                                     |                                                                                   |                               | Colur                           | nn-ll                        |                     |        |                               |           |                                              |
|          | (A)                     |                                           |                                     | ofionis                             | ation energy                                                                      | (p)                           |                                 | <u> </u>                     |                     |        |                               |           |                                              |
| -        | (A)<br>(B)              |                                           | -                                   |                                     | ron affinity                                                                      | (p)<br>(p)                    |                                 | < 3 < 3                      |                     |        |                               |           |                                              |
| ŀ        | (D)<br>(C)              |                                           | -                                   | of atom                             |                                                                                   | (q)<br>(r)                    |                                 | Mg < Al                      |                     |        |                               |           |                                              |
| ļ        |                         |                                           | <u> </u>                            |                                     | 10 3120                                                                           |                               |                                 | -                            |                     |        |                               |           |                                              |
|          | (D)                     | increasi                                  | ng order                            | OI ∠eff.                            |                                                                                   | (s)                           | O² < 1                          | 0- < 0 -                     | < 0+                |        |                               |           |                                              |

|                               | Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala | war Road, Kota (Raj.) – 324005 |
|-------------------------------|------------------------------------------------------------------------|--------------------------------|
|                               | Website : www.resonance.ac.in   E-mail : contact@resonance.ac.in       | PAGE NO36                      |
| Educating for better tomorrow | Toll Free : 1800 258 5555   CIN: U80302RJ2007PLC024029                 | FAGE NO30                      |

# DPP No. # B5 (JEE-MAIN)


| Total I | Marks: 60                                                                                                                                            |                                                        |                                                         | /             |                     | Max. T      | ime : 40 min.       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------|---------------------|-------------|---------------------|
| Single  | choice Objective ('-1' neg                                                                                                                           | gative marking) Q.1 t                                  | o Q.20                                                  | (3 mar        | ks, 2 mi            | n.)         | [60, 40]            |
| 1.      | Electrovalent bond formati<br>(A) Ionization energy (B                                                                                               | ion depends on<br>3) Electron affinity                 | (C) Lattice ene                                         | rgy           | (D) All             | the three   | e above             |
| 2.2     | In the given bonds which c<br>(A) Cs–Cl (B                                                                                                           | one is most ionic<br>3) Li–Cl                          | (C) C–Cl                                                |               | (D) H–              | CI          |                     |
| 3.      | Which of the following is a<br>(A) CH <sub>4</sub> (B                                                                                                | n electrovalent linkage<br>3) MgCl <sub>2</sub>        | e<br>(C) SiCl₄                                          |               | (D) BF              | 3           |                     |
| 4.      | Molten sodium chloride co<br>(A) Free electrons<br>(C) Free molecules                                                                                | nducts electricity due                                 | to the presence<br>(B) Free ions<br>(D) Atoms of se     |               | nd chlori           | ne          |                     |
| 5.æ     | When metals combine with<br>(A) Lose electrons<br>(C) Remain electrically neu                                                                        |                                                        | al atom tends to<br>(B) Gain electro<br>(D) None of the | ons           |                     |             |                     |
| 6.      | Which of the following com<br>(A) KI (B                                                                                                              | npounds is ionic<br>3) CH4                             | (C) Diamond                                             |               | (D) H <sub>2</sub>  |             |                     |
| 7.      | Indicate the nature of bond<br>(A) Covalent in CCl <sub>4</sub> and e<br>(C) Covalent in both CCl <sub>4</sub> a                                     | electrovalent in CaH <sub>2</sub>                      | (B) Electrovale<br>(D) Electrovale                      |               |                     |             |                     |
| 8.      | Which of the following com (A) $H_2$ (B                                                                                                              | npounds are covalent<br>3) CaO                         | (C) KCl                                                 |               | (D) Na              | 2 <b>S</b>  |                     |
| 9.      | The nature of bonding in g<br>(A) Covalent (B                                                                                                        | raphite is<br>3) Ionic                                 | (C) Metallic                                            |               | (D) Co              | ordinate    |                     |
| 10.১    | Which type of compounds<br>(A) Electrovalent compounds<br>(B) Covalent compounds<br>(C) Coordinate compounds<br>(D) All the three types of compounds | nds<br>s                                               |                                                         | iling poir    | nts                 |             |                     |
| 11.2    | Octet configuration can be<br>(A) loss of electrons (B                                                                                               | e achieved through :<br>3) gain of electrons           | (C) sharing of e                                        | electrons     | (D) A               | ll of thes  | е                   |
| 12.2    | What is the nature of chem<br>(A) Ionic (B                                                                                                           | nical bonding between<br>3) Covalent                   | Cs and F ?<br>(C) Coordinate                            |               | (D) Me              | tallic      |                     |
| 13.     | Which of the following spe<br>(A) SiF <sub>4</sub> (B                                                                                                | cies does not obey oc<br>3) PCl₅                       | tet rule :<br>(C) ICl                                   |               | (D) BF              | 4           |                     |
| 14.     | The molecule without any (A) $XeO_3$ (B                                                                                                              | lone pair around the c<br>3) XeO4                      | entral atom is :<br>(C) XeF <sub>6</sub>                |               | (D) Xe              | $O_2F_2$    |                     |
| 15.     | Which forms a crystal of N<br>(A) NaCl molecules (B                                                                                                  | laCl ?<br>3) Na⁺ and Cl⁻ ions                          | (C) Na and Cl a                                         | atoms         | (D) No              | ne of the   | ese                 |
| 16.     | Which one of the following $(A) B$ and $Cl_2$ $(B)$                                                                                                  | pairs of elements is n<br>3) K and O <sub>2</sub>      | nost likely to for<br>(C) O2 and Cl2                    |               | ic comp<br>(D) Al a |             |                     |
| 17.     | Example of super octet mo<br>(A) SF <sub>6</sub> (B                                                                                                  | olecule is :<br>3) PCl₅                                | (C) IF7                                                 |               | (D) All             | of these    |                     |
| <u></u> |                                                                                                                                                      | Reg. & Corp. Office : CG T                             | ower, A-46 & 52, IPIA                                   | , Near City N | Iall, Jhalaw        | ar Road, Ko | ota (Raj.) – 324005 |
| $\land$ |                                                                                                                                                      | Website : www.resonance.a<br>Toll Free : 1800 258 5555 |                                                         |               | e.ac.in             | PA          | GE NO37             |

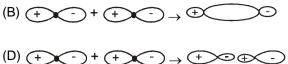
| DPPs   | BOOKLET-2                                                                               |             |                                                                              |                                                  | VI                                              | (AAS (JA)                             | CHEMISTRY                        |
|--------|-----------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|---------------------------------------|----------------------------------|
| 18.    |                                                                                         |             | volved in the bond fo                                                        |                                                  |                                                 |                                       |                                  |
|        | (A) 2                                                                                   | (B)         |                                                                              | (C) 10                                           | (D) 6                                           |                                       |                                  |
| 19.    | The octet rule is no<br>(A) CO <sub>2</sub>                                             | •           | l in :<br>BCl₃                                                               | (C) PCI₅                                         | (D) (B)                                         | ) and (C)                             | both                             |
| 20.    | In which of the follo                                                                   | owing aci   | d suffix name used i                                                         | s "ic" acid.                                     |                                                 |                                       |                                  |
|        | (A) HNO <sub>2</sub>                                                                    | (B)         | H <sub>3</sub> PO <sub>3</sub>                                               | (C) H <sub>3</sub> PO <sub>2</sub>               | (D) HC                                          | CIO <sub>4</sub>                      |                                  |
|        |                                                                                         | ]           | OPP No. # B6 (J                                                              | EE-ADVANC                                        | ED)                                             |                                       |                                  |
|        | Marks : 39                                                                              |             |                                                                              |                                                  |                                                 |                                       | ime : 25 min.                    |
| Intege | ble choice objective<br>er type Questions ('<br>Listing (-1 negativ                     | -1' nega    | tive marking) Q.6 to                                                         |                                                  | (4 marks, 2 m<br>(4 marks, 3 m<br>(3 marks, 3 m | in.)                                  | [20, 10]<br>[16, 12]<br>[03, 03] |
| 1.*    | Resonating structu<br>(A) Atomic arrange<br>(C) Total charge                            |             | nave same :                                                                  | (B) Electronic a<br>(D) Sigma bond               |                                                 |                                       |                                  |
| 2.*    | The molecule with (A) XeO3                                                              | •           | around the central a XeO <sub>4</sub>                                        | atom is :<br>(C) XeF <sub>6</sub>                | (D) Xe                                          | 02F2                                  |                                  |
| 3.*    | pi bond results due<br>(A) d <sub>xy</sub> and p <sub>y</sub> alon                      |             | ap of :                                                                      | (B) d <sub>x<sup>2</sup>-y<sup>2</sup></sub> and | p <sub>y</sub> along x-axis                     |                                       |                                  |
|        | (C) d <sub>xy</sub> and p <sub>x</sub> alon                                             | g y-axis    |                                                                              | (D) $d_{x^2-v^2}$ and                            | l p <sub>y</sub> along y-axis                   |                                       |                                  |
| 4.*    | Which of the follow                                                                     | ving Lewi   | s diagram is/are corr                                                        | ect ?                                            |                                                 |                                       |                                  |
|        | (A) Na⁺[:̈́Ö́ – ̈́Ć̣⊧]⁻                                                                 | (B)         | :Ċi:<br> <br>:Ċ! – Ċ – Ċ!:<br> <br>:Ċ!:                                      | (C) :ö: c:::ö:                                   | (D) H                                           | H H<br>   <br>- <u>N</u> - <u>N</u> - | - H                              |
| 5.*    | The incorrect orde                                                                      | r of increa | asing bond order :                                                           |                                                  | NH                                              |                                       |                                  |
|        | (A) CO < CO <sub>2</sub> < CO<br>(C) CIO <sup>-</sup> < CIO <sub>2</sub> <sup>-</sup> < | ``          | ) bond)<br>ClO₄⁻ (Cl–O bond)                                                 |                                                  | <br> ²− < R–C–NH₂ (<br>²− < SO₃²− (S–O          |                                       | d)                               |
| 6.     | The total number of                                                                     | of lone pa  | irs in chlorate ion is                                                       | :                                                |                                                 |                                       |                                  |
| 7.     | XeF <sub>4</sub> CI                                                                     |             | g species the centra<br>F <sub>2</sub> SeO <sub>2</sub><br>XeOF <sub>2</sub> | l atom has two lo<br>XeF₃⁺                       | one pairs of elec<br>NH <sub>2</sub> -          | etrons ?<br>CIOF <sub>3</sub>         |                                  |
| 8.     | In how many of the<br>(i) XeF4<br>(vi) XeOF4                                            | (ii)        | pecies there is no lor<br>NH <sub>3</sub><br>) ICl <sub>3</sub>              | ne pair on the ce<br>(iii) SO₂<br>(viii) IF⁊     | ntral atom.<br>(iv) NO₃⁻<br>(ix) SO₄²-          | (v) O₃<br>(x) XeC                     | )3                               |
| 9.     | What is the formal                                                                      | charge o    | n Xe atom in XeF4.                                                           |                                                  |                                                 |                                       |                                  |
| 10.🄈   | Match the species                                                                       | in colum    | n (I) with their chara                                                       | cteristics in colur                              | mn (II) :                                       |                                       |                                  |
|        | Column-I                                                                                |             | olumn-II                                                                     |                                                  |                                                 |                                       |                                  |
|        | $\begin{array}{c c} (P) & BH_4^- \\ \hline (O) & ICI_4^+ \\ \end{array}$                | 1           | bond pair and 3 lone                                                         |                                                  |                                                 |                                       |                                  |
|        | $\begin{array}{c c} (Q) & ICl_{2^+} \\ \hline (R) & ICl_{2^-} \\ \end{array}$           |             | bond pair and no lor<br>bond pair and 1 lone                                 | -                                                |                                                 |                                       |                                  |
|        | (N) ICl <sub>2</sub><br>(S) ICl <sub>4</sub> -                                          | . ,         | bond pair and 1 lone                                                         | •                                                |                                                 |                                       |                                  |
|        |                                                                                         | (5) 4       | bond pair and 2 lone                                                         | e pair on central                                | atom                                            |                                       |                                  |
|        | (A) P = 2; Q = 4; R<br>(C) P = 2; Q = 1; R                                              |             |                                                                              | (B) P = 2; Q = 4<br>(D) P = 2; Q = 4             |                                                 |                                       |                                  |
|        |                                                                                         |             | Reg. & Corp. Office : CG                                                     | Tower, A-46 & 52. IPIA                           | , Near City Mall. Jhalav                        | var Road. Kot                         | a (Raj.) – 324005                |
| 八      | Resonan<br>Educating for better ton                                                     |             | Website : www.resonance.                                                     |                                                  | -                                               |                                       | GE NO38                          |
|        | Loucating for better ton                                                                | IUTOW       | Toll Free : 1800 258 5555                                                    | <b>CIN:</b> U80302RJ2007F                        | PLC024029                                       |                                       | 5E NO50                          |

#### DPPs BOOKLET-2

DPP No. # B7 (JEE-MAIN)

VIKAAS (JA) | CHEMISTRY




#### **DPPs BOOKLET-2**

VIKAAS (JA) | CHEMISTRY

 $\odot \oplus \frown$ 



$$\begin{array}{c} (A) & \underbrace{+} & \underbrace{-} & + & \underbrace{\odot} \rightarrow \underbrace{+} & \underbrace{\odot} \rightarrow \underbrace{+} & \underbrace{\odot} \rightarrow \underbrace{+} & \underbrace{\odot} \rightarrow \underbrace{+} & \underbrace{-} & \underbrace{+} & \underbrace{+}$$



-

 $) \rightarrow (\pm)$ 

)+(+)

14. Total number of bond pair of electrons and lone pair of electrons in CO2 are-(B) 4, 4 (D) 3, 6 (A) 2, 8 (C) 4, 7

- 15. Which of the following statement is correct ?
  - (A) Octet rule is followed by N in NO<sub>2</sub>.
  - (B) BF<sub>3</sub> is hypervalent species and PF<sub>5</sub> is hypovalent species.
  - (C) SO<sub>3</sub> does not follow octet rule.
  - (D) BCl<sub>3</sub> has lone pair of electrons on boron.

### DPP No. # B8 (JEE-MAIN)

| Total  | Marks : 45                                                                                                                                                                                                                                                                                 |                                                                            | <b>x x</b>                                                      | Max. Time : 30 min.                                                                          |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| Single | e choice Objective ('–1' neg                                                                                                                                                                                                                                                               | ative marking) Q.1 to                                                      | o Q.15 (3 ma                                                    | rks, 2 min.) [45, 30]                                                                        |  |  |  |
| 1.     | In which of the following, 'N<br>(A) NH <sub>3</sub> (B                                                                                                                                                                                                                                    | N' atom is sp² hybridis<br>3) NH₄⁺                                         | ed :<br>(C) NH₂⁻                                                | (D) NOCI                                                                                     |  |  |  |
| 2.2    | The hybridization of carbor $(A) sp^3 - sp^3$ (B                                                                                                                                                                                                                                           | n atoms in C <sub>2</sub> –C <sub>3</sub> sing<br>3) sp² – sp              | le bond of $HC^4 \equiv C^2 - CH^2$<br>(C) sp - sp <sup>2</sup> | $= \overset{1}{C}H_{2}$ is :<br>(D) sp <sup>3</sup> - sp                                     |  |  |  |
| 3.     | In C <sub>3</sub> O <sub>2</sub> , the hybridization s (A) sp (B                                                                                                                                                                                                                           | state of carbon is :<br>3) sp <sup>2</sup>                                 | (C) sp <sup>3</sup>                                             | (D) sp and sp <sup>2</sup> both                                                              |  |  |  |
| 4.     | Carbon atoms in C <sub>2</sub> (CN) <sub>2</sub> a<br>(A) All sp-hybridised (B                                                                                                                                                                                                             | are :<br>3) All sp²-hybridised                                             | (C) All sp <sup>3</sup> -hybridised                             | (D) sp and sp <sup>2</sup> -hybridised.                                                      |  |  |  |
| 5.     | $BF_3 + F^- \rightarrow BF_4^-$<br>What is the hybridiation sta<br>(A) sp <sup>2</sup> , sp <sup>3</sup> (B                                                                                                                                                                                | ate of B in BF₃ and BF<br>b) sp³, sp³                                      |                                                                 | (D) sp³, sp³d                                                                                |  |  |  |
| 6.     | Which starred carbon atom                                                                                                                                                                                                                                                                  | n in the following mole                                                    | cules show sp <sup>3</sup> hybridis                             | sation :                                                                                     |  |  |  |
|        | (A) CH₃ <sup>*</sup> CHO (B                                                                                                                                                                                                                                                                | ) CH₃ČOCI                                                                  | (C) CH <sub>3</sub> COČH <sub>2</sub> CI                        | (D) CH <sub>3</sub> <sup>*</sup> COOCH <sub>3</sub>                                          |  |  |  |
| 7.     | The hybridisation of P in pr<br>(A) I in $IC\ell_4^-$ (B                                                                                                                                                                                                                                   | hosphate ion (PO <sub>4</sub> <sup>3–</sup> ) i<br>b) S in SO <sub>3</sub> | s the same as :<br>(C) N in NO₃⁻                                | (D) S in SO <sub>3</sub> <sup>2–</sup>                                                       |  |  |  |
| 8. 🕿   | ions is (assume all hybrid o                                                                                                                                                                                                                                                               | orbitals are exactly eq<br>eF₄ I₃⁻<br>III                                  | uivalent) :<br>NCl₃<br>IV                                       | rid orbitals in below molecules /<br>BeCl <sub>2</sub> (g)<br>V<br>(D) II < IV < III < I < V |  |  |  |
| 9.2    | Total number of bonds in H<br>(A) 8 (B                                                                                                                                                                                                                                                     | HC≡C−C≡CH <b>?</b><br>5) 9                                                 | (C) 10                                                          | (D) 11                                                                                       |  |  |  |
| 10.    | Consider the following statements :<br>In $CH_2 = CH - C \equiv C - H$<br>1. There are 6 $\sigma$ and 3 $\pi$ bonds.<br>2. Carbon I & II are sp <sup>2</sup> hybridised.<br>3. Carbon III & IV are sp hybridised.<br>The above statements 1, 2, 3 respectively are (T = True, F = False) : |                                                                            |                                                                 |                                                                                              |  |  |  |
|        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                      | ,                                                                          |                                                                 | Mall, Jhalawar Road, Kota (Raj.) – 324005                                                    |  |  |  |
| 八      |                                                                                                                                                                                                                                                                                            | ce.ac.in PAGE NO40                                                         |                                                                 |                                                                                              |  |  |  |

| DPPs             | BOOKLET-2                                                                                                                                                         |                                                                                                                                          |                                                            |             | VIKAAS (JA                                     | )   CHEMISTRY                                      |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------|------------------------------------------------|----------------------------------------------------|
| 11.24            | XeF <sub>2</sub> molecule is :<br>(A) Linear                                                                                                                      | (B) Triangular planar                                                                                                                    | (C) Pyramidal                                              |             | -<br>(D) Square pla                            | anar                                               |
| 12.              | Which of the following (A) H <sub>2</sub> S                                                                                                                       | molecules does not have<br>(B) C <sub>2</sub> H <sub>2</sub>                                                                             | e a linear arrange<br>(C) BeH2                             |             | toms ?<br>(D) CO <sub>2</sub>                  |                                                    |
| 13.              | Which of the following (A) $CO_3^{2-}$                                                                                                                            | g species is planar ?<br>(B) NH₃                                                                                                         | (C) PCI <sub>3</sub>                                       | (           | (D) SOCI <sub>2</sub>                          |                                                    |
| 14.2             | Which among the follo<br>(A) CCl₄                                                                                                                                 | owing have regular geom<br>(B) NF <sub>3</sub>                                                                                           | etry ?<br>(C) PF₃                                          | (           | (D) SCl4                                       |                                                    |
| 15.              | Hybridisation of centra                                                                                                                                           | al atom of each molecule                                                                                                                 | does not involve                                           | "d" orbital | s ?                                            |                                                    |
|                  | (A) XeF <sub>4</sub>                                                                                                                                              | (B) <sup> </sup> <sub>3</sub>                                                                                                            | (C) CO <sub>2</sub>                                        |             | (D) BrF₅                                       |                                                    |
|                  |                                                                                                                                                                   | DPP No. # B9 (、                                                                                                                          | JEE-ADVANC                                                 | ED)         |                                                |                                                    |
| Multip<br>Intege |                                                                                                                                                                   | 1' negative marking) Q.<br>negative marking) Q.7 1<br>arking) Q.10                                                                       |                                                            | (4 marks    | Max.`<br>s, 2 min.)<br>s 3 min.)<br>s, 3 min.) | Time : 24 min.<br>[24, 12]<br>[12, 09]<br>[03, 03] |
| 1.*              | The pair of species ha<br>(A) CF4, SF4                                                                                                                            | ving identical shapes for<br>(B) XeF <sub>2</sub> , CO <sub>2</sub>                                                                      | molecules of bot<br>(C) BF <sub>3</sub> , PCl <sub>3</sub> |             | is :<br>(D) PF5, IF3                           |                                                    |
| 2.*              | According to VSEPR t<br>(A) 120°                                                                                                                                  | heory in [IO <sub>2</sub> F <sub>2</sub> ] <sup>–</sup> ion the<br>(B) 90°                                                               | FÎF bond angle v<br>(C) 109°–28'                           |             | rly<br>(D) 180°                                |                                                    |
| 3.*              | Which of the following (A) H <sub>2</sub> O                                                                                                                       | are planar molecule.<br>(B) BF <sub>3</sub>                                                                                              | (C) CCl <sub>4</sub>                                       |             | (D) Benzene                                    |                                                    |
| 4.*              | Which of the following (A) H <sub>2</sub> O                                                                                                                       | molecules have a linear (B) $C_2H_2$                                                                                                     | arrangement of a (C) BeH <sub>2</sub>                      |             | (D) CO <sub>2</sub>                            |                                                    |
| 5.*              | A $\pi$ -bond may be form<br>approach each other a<br>(A) x-axis                                                                                                  | med between two p <sub>x</sub> orl<br>appropriately along :<br>(B) y-axis                                                                | oitals containing<br>(C) z-axis                            |             | ired electron<br>(D) any directi               |                                                    |
| 6.*a             |                                                                                                                                                                   | ecules among the followir<br>(B) NO                                                                                                      | . ,                                                        |             | (D) CO                                         |                                                    |
| 7.24             | Is a derivative of ami<br>atoms in given structu                                                                                                                  | no acid how many numi<br>re.                                                                                                             | ber of sp <sup>2</sup> hybrid                              | lised carbo | on 🚫                                           |                                                    |
| 8.≿              | In PCl₅ maximum how                                                                                                                                               | many atoms are in the s                                                                                                                  | ame plane.                                                 |             | Phenylth                                       | iohydration(PTH)                                   |
| 9.               |                                                                                                                                                                   | lowing species, bonding<br>O3 <sup>2-</sup> , PCl <sub>5</sub> (g), OF <sub>2</sub> , BF <sub>3</sub> , I                                |                                                            | excited st  | ate?                                           |                                                    |
| 10.১             | List I           (Compound)           (P)         CS2           (Q)         SO2         2           (R)         BF3         3           (S)         NH3         4 | and select the correct an<br>List II<br>(Shape)<br>1. Bent<br>2. Linear<br>3. Trigonal planer<br>4. Tetrahedral<br>5. Trigonal pyramidal | swer using the co                                          | odes giver  | n below the list                               | ts.                                                |

Codes:

| oouc | · · · |          |     |     |     |     |     |     |     |
|------|-------|----------|-----|-----|-----|-----|-----|-----|-----|
|      | (P)   | (Q)<br>1 | (R) | (S) |     | (P) | (Q) | (R) | (S) |
| (A)  | 2     | 1        | 3   | 5   | (B) | 1   | 2   | 3   | 5   |
| (C)  | 2     | 1        | 5   | 4   | (D) | 1   | 2   | 5   | 4   |
|      |       |          |     |     |     |     |     |     |     |

|  | Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 |           |  |  |
|--|------------------------------------------------------------------------------------------------------|-----------|--|--|
|  | Website : www.resonance.ac.in   E-mail : contact@resonance.ac.in                                     | PAGE NO41 |  |  |
|  | Toll Free : 1800 258 5555   CIN: U80302RJ2007PLC024029                                               | PAGE NO41 |  |  |

### DPP No. # B10 (JEE-MAIN)

|                               | Marks : 45<br>choice Objective ('–1' neg                                                                                                                                                             | ative marking) Q.1 t                                              |                                                           |                     | ,<br>(3 mar                    | Max.<br>ks, 2 min.)         | . Time : 30 min.<br>[45, 30] |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|---------------------|--------------------------------|-----------------------------|------------------------------|
| 1.                            | Select the correct order of I<br>CIO $_3^-$ ,BrO $_3^-$ ,IO $_3^-$                                                                                                                                   | bond angle of the foll                                            | owing spe                                                 | ecies.              |                                |                             |                              |
|                               | (A) $BrO_3^- > IO_3^- > CIO_3^-$ (B)                                                                                                                                                                 | ) $CIO_{3}^{-} > BrO_{3}^{-} > IO_{3}^{-}$                        | (C) $IO_3^-$                                              | $>$ BrO $_3^-$      | $> CIO_3^-$                    | (D) $IO_3^- < BrOkenset$    | $D_3^- < CIO_3^-$            |
| 2.                            | The bond angle in PH <sub>3</sub> wou<br>(A) 90° (B)                                                                                                                                                 | uld be expected to be<br>) 105°                                   | close to<br>(C) 109º                                      | 1                   |                                | (D) 120º                    |                              |
| 3.                            | Which of the following is the (A) $NH_3 < CH_4 < C_2H_2 < H_2$<br>(C) $C_2H_2 < CH_4 < H_2O < NH_3$                                                                                                  | 0                                                                 | der of bor<br>(B) H <sub>2</sub> O<br>(D) NH <sub>3</sub> | < NH <sub>3</sub>   | < CH4 <                        |                             |                              |
| 4.24                          | Maximum bond angle is pre<br>(A) BCl <sub>3</sub> (B)                                                                                                                                                | esent in<br>) BBr <sub>3</sub>                                    | (C) BF <sub>3</sub>                                       |                     |                                | (D) Same for                | all                          |
| 5.                            | Which of the following is co<br>(A) HF> HCl > HBr > HI<br>(C) HF > HBr > HCl > HI                                                                                                                    | orrect order of HX bor                                            | nd strengt<br>(B) HI ><br>(D) HCI                         | HBr > I             |                                |                             |                              |
| 6.24                          | Correct order of bond lengt<br>(A) $SO_3^{2-} > SO_4^{2-} > SO_3$<br>(C) $SO_3 > SO_3^{2-} > SO_4^{2-}$                                                                                              | h is                                                              | (B) SO4 <sup>2</sup><br>(D) None                          |                     |                                | 3                           |                              |
| 7.                            | The shape of $CH_3^+$ species<br>(A) Tetrahedral (B)                                                                                                                                                 | s is:<br>) Square planar                                          | (C) Trigo                                                 | onal pla            | inar                           | (D) Linear                  |                              |
| 8.                            | In BrF <sub>3</sub> molecule, the lone p<br>(A) Lone pair-lone pair repu<br>(B) Lone pair-lone pair repu<br>(C) Lone pair-bond pair rep<br>(D) Bond pair-bond pair rep                               | ulsion and lone pair-b<br>ulsion only<br>pulsion only             |                                                           |                     |                                |                             |                              |
| 9.2                           | Given a compound XeO <sub>2</sub> F <sub>2</sub><br>(A) sp <sup>3</sup> d, see-saw (B)                                                                                                               |                                                                   | Xe and s<br>(C) sp <sup>3</sup> ,                         |                     |                                |                             | / are :<br>p³d, tetrahedral  |
| 10.രൂ                         | VSEPR notation of PCI <sub>5</sub> , H<br>pair on central atom) :<br>PCI <sub>5</sub> $H_2O$ SF<br>(A) AX <sub>5</sub> AX <sub>2</sub> L AX<br>(C) AX <sub>5</sub> AX <sub>2</sub> L <sub>2</sub> AX | <b>-4</b><br>(4L                                                  | (B)                                                       | <b>PCI₅</b><br>AX₅L | atom, ><br>H₂O<br>AX₂<br>AX₂L₂ | <b>SF₄</b><br>AX₄L          | om and L is lone             |
| 11.                           | What is the formula of acyc (A) $Si_3O_9^{-6}$ (B)                                                                                                                                                   | clic trisilicate ?<br>) Si <sub>3</sub> O <sub>10</sub> -8        | (C) Si₃O                                                  | 11-6                |                                | (D) Si₃O <sub>9</sub> -8    |                              |
| 12.                           | Arrange the following comp<br>(A) $XeF_2 < XeF_4 < XeF_5^-$<br>(C) $XeF_2 < XeF_5^- < XeF_4$                                                                                                         |                                                                   | · · /                                                     | of F–Xe<br>₅⁻ < XeF | 4 < XeF                        | d angle : XeF               | 2, XeF₄, XeF₅⁻               |
| 13.                           | In $P_4 O_{10}$ molecule<br>(A) There are 4 P–P bond                                                                                                                                                 |                                                                   | (B) Ther                                                  | e are 8             | P–O bo                         | ond                         |                              |
|                               | (C) The POP bond angle is                                                                                                                                                                            |                                                                   |                                                           |                     |                                | om is sp <sup>3</sup> hybri |                              |
| 14.æ                          | In SO <sub>2</sub> molecule, there are<br>(A) $p\pi$ - $p\pi$ overlap between<br>(B) $sp^2$ - $p$ overlap between<br>(C) one by $p\pi$ - $p\pi$ overlap a<br>(D) both by $p\pi$ - $d\pi$ overlap     | S and O atoms<br>S and O atoms<br>and other by $p\pi$ – $d\pi$ or | verlap                                                    | . The tv            | vo π-bor                       | nds are formed              | i by :                       |
| 15.১                          | Which of the following has<br>(A) SF <sub>2</sub> (B)                                                                                                                                                | the smallest bond an<br>) SF₄                                     | gle?<br>(C) SF <sub>6</sub>                               |                     |                                | (D) two of the              | ese                          |
|                               | <b>n</b>                                                                                                                                                                                             | Reg. & Corp. Office : CG                                          | Tower, A-46 8                                             | 52, IPIA,           | Near City N                    | Iall, Jhalawar Road,        | Kota (Raj.) – 324005         |
| $\boldsymbol{\wedge}$         | Resonance                                                                                                                                                                                            | Website : www.resonance.                                          | ac.in   <b>E-mail</b>                                     | : contact@          | @resonance                     | e.ac.in                     | PAGE NO42                    |
| Educating for better tomorrow |                                                                                                                                                                                                      | Toll Free : 1800 258 5555                                         | CIN: U8030                                                | 2RJ2007P            | LC024029                       |                             | AGL NO42                     |

### DPP No. # B11 (JEE-ADVANCED)

| Total Marks : 44 Max. Time : 28 min.                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                    |                                                |        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------|--|--|--|--|
| Multiple choice objective ('-1' negative marking) Q.1 to Q.5(4 marks, 2 min.)[20, 10]Integer type Questions ('-1' negative marking) Q.6 to Q.9(4 marks, 3 min.)[16, 12]Match the Following(no negative marking) Q.10(8 marks, 6 min.)[08, 06] |                                                                                                                                                                                                                                                                                    |                                                |        |  |  |  |  |
| 1.*                                                                                                                                                                                                                                           | Which of the following orders of bond angle is/are not correct.(A) $NH_3 > PH_3 > AsH_3$ (B) $Cl_2O > Ol(C) CH_4 > SiH_4 > GeH_4(D) XeF_5^- > 2$                                                                                                                                   | <sup>F</sup> ₂ > H₂O<br>⟨eF₄ > XeOF₄ (F–Xe–F b | ond)   |  |  |  |  |
| 2.*&                                                                                                                                                                                                                                          | In which of the following species, one of bond angle is expected<br>(A) Cation of PCl <sub>5</sub> (B) $NO_2^-$ (C) $NO_2^+$                                                                                                                                                       |                                                |        |  |  |  |  |
| 3.*                                                                                                                                                                                                                                           | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                               | (D) LiAIH4                                     |        |  |  |  |  |
| 4.*                                                                                                                                                                                                                                           | Which of the following statements are incorrect ? (A) In $B_2H_6(g)$ there are four 2-center-2-electron bonds                                                                                                                                                                      |                                                |        |  |  |  |  |
|                                                                                                                                                                                                                                               | (B) In $(SiH_3)_3 \stackrel{\bullet}{P}$ there is significant back bonding                                                                                                                                                                                                         |                                                |        |  |  |  |  |
|                                                                                                                                                                                                                                               | (C) $(CH_3)_3 \overset{\bullet\bullet}{N}$ and $(SiH_3)_3 \overset{\bullet\bullet}{N}$ are pyramidal<br>(D) Al <sub>2</sub> Cl <sub>6</sub> (g) has 3-center-2-electron bonds                                                                                                      |                                                |        |  |  |  |  |
| 5.*                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                | angle) |  |  |  |  |
| 6.                                                                                                                                                                                                                                            | Number of shortest P–O bonds present in triphosphate ion P <sub>3</sub> 0                                                                                                                                                                                                          | D <sub>10</sub> <sup>5–</sup> is.              |        |  |  |  |  |
| 7.                                                                                                                                                                                                                                            | BrF <sub>3</sub> is a liquid which considerably undergoes self ionization<br>Based on VSEPR theory, number of 90 degree F-Br-F bond a<br>$2BrF_3 \rightleftharpoons [BrF_2]^+ + [BrF_4]^-$                                                                                         |                                                |        |  |  |  |  |
| 8.                                                                                                                                                                                                                                            | How many of the following species have all bonds of equal lends (a) $CIO_4^-$ (b) $NO_3^-$ (c) $AsO_4^{3-}$ (d) $CO_2$                                                                                                                                                             | gth ?<br>(e) SO <sub>3</sub> 2-                |        |  |  |  |  |
| 9.                                                                                                                                                                                                                                            | How many of the following are planar ?<br>XeF2, ClF3, H2O, [XeF5] <sup>-</sup> , I3 <sup>-</sup> , BCl3, XeF4, SF4, PCl5, SF6, IF7.                                                                                                                                                |                                                |        |  |  |  |  |
| 10.১                                                                                                                                                                                                                                          | Match the species in column (I) with their characteristics in colColumn–IColumn–I(Compound)(Bond angle)(A)CBr <sub>4</sub> (p)More than $109^{\circ}28'$ (B)OCl <sub>2</sub> (q)Less than $109^{\circ}28'$ (C)OF <sub>2</sub> (r)Equal to $109^{\circ}28'$ (D)BBr <sub>3</sub> (s) | umn (II) :                                     |        |  |  |  |  |

### DPP No. # B12 (JEE-MAIN)

| Total Marks : 54 Max. Time : 3 |                                    |                                            |                                                        |                                 |                            |  |  |  |
|--------------------------------|------------------------------------|--------------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------|--|--|--|
| Single                         | e choice Objective ('–1' n         | egative marking                            | g) Q.1 to Q.18                                         | (3 marks, 2 min.) [54, 36]      |                            |  |  |  |
| 1.                             | Which one of the followi (A) $H_2$ | ng species is dia<br>(B) He <sub>2</sub> + | magnetic in nature?<br>(C) H <sub>2</sub> -            | (D) H <sub>2</sub> +            |                            |  |  |  |
| 2.                             | How many nodal plane i<br>(A) zero | s/are present in<br>(B) 1                  | σ <sub>1s</sub> bonding molecula<br>(C) 2              | r orbital ?<br>(D) 3            |                            |  |  |  |
| 3.                             |                                    |                                            |                                                        |                                 |                            |  |  |  |
| Л                              |                                    | Reg. & Corp. Of                            | fice : CG Tower, A-46 & 52, If                         | PIA, Near City Mall, Jhalawar R | Road, Kota (Raj.) – 324005 |  |  |  |
| /                              |                                    | Website : www.r                            | esonance.ac.in   E-mail : cont                         | act@resonance.ac.in             | PAGE NO43                  |  |  |  |
|                                | Educating for better tomorrow      | Toll Free : 1800                           | Toll Free : 1800 258 5555   CIN: U80302RJ2007PLC024029 |                                 |                            |  |  |  |

| DPP | s BOOKLET-2                                                                                                                                                                                          |                                                                                               |                                                    | VIKAAS (JA)   CHEMISTRY                        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|
| 4.  | According to molecular orb                                                                                                                                                                           | -                                                                                             | -                                                  |                                                |
|     | (A) LUMO level for C <sub>2</sub> mole<br>(C) In $C_2^{2-}$ ion there is one                                                                                                                         | •                                                                                             | ( )                                                |                                                |
| _   | () 2                                                                                                                                                                                                 |                                                                                               | (D) all the above are                              | correct.                                       |
| 5.  | Which of the following MO (A) $\sigma 2p_x$ (B)                                                                                                                                                      | has lowest energy fo<br>) σ*2p <sub>x</sub>                                                   | r B₂ molecule ?<br>(C) π2py                        | (D) π*2p <sub>y</sub>                          |
| 6.  | functions are added.<br><b>S</b> <sub>2</sub> : The electron density in<br><b>S</b> <sub>3</sub> : AntiBonding M.O. has<br><b>S</b> <sub>4</sub> : The energy of Bonding                             | creases between the<br>no nodal plane                                                         | e nuclei for Bonding M                             |                                                |
| 7.  | <ul> <li>(A) Be<sub>2</sub> is not a stable mole</li> <li>(B) He<sub>2</sub> is not stable, but He</li> <li>(C) Bond strength of N<sub>2</sub> is r</li> <li>(D) The order of energies of</li> </ul> | cule.<br>e <sub>2</sub> + is expected to exi<br>naximum amongst th<br>f molecular orbitals in | st.<br>le homonuclear diaton                       |                                                |
| 8.  | On the basis of MOT which<br>(A) The bond order for $C_2$ r<br>(B) The LUMO in $C_2$ molec<br>(C) The HOMO in $C_2$ molec<br>(D) None of the above is co                                             | nolecule is two and bule is $\sigma_{2p}$ bonding motule are $\pi$ type of anti               | ecular orbital                                     | ls<br>pital containing total 4 electrons       |
| 9.  | •                                                                                                                                                                                                    | rs of species would                                                                           | you expect to have la                              | argest difference in spin magnetic             |
|     | moment:<br>(A) $O_2$ , $O_2^+$ (B)                                                                                                                                                                   | ) O <sub>2</sub> ,O <sub>2</sub> <sup>2–</sup>                                                | (C) O <sub>2</sub> +, O <sub>2</sub> <sup>2-</sup> | (D) $O_2^-$ , $O_2^+$                          |
| 10. | The following graph is given                                                                                                                                                                         | between total energy                                                                          | y and E (kcal/mo                                   | le)                                            |
|     | distance between the t                                                                                                                                                                               | wo nuclei for s                                                                               | pecies 50-                                         |                                                |
|     | H <sub>2</sub> +, H <sub>2</sub> , He <sub>2</sub> + & He <sub>2</sub> . Which (                                                                                                                     | of the following state                                                                        | ments -                                            |                                                |
|     | is correct :                                                                                                                                                                                         |                                                                                               |                                                    | He <sub>2</sub>                                |
|     | (A) He <sub>2</sub> <sup>+</sup> is more stable than                                                                                                                                                 | H <sub>2</sub> +.                                                                             | 0                                                  |                                                |
|     | (B) Bond dissociation energy                                                                                                                                                                         | / of $H_{2^+}$ is more than                                                                   | bond                                               | $H_2^+$                                        |
|     | dissociation energy of He <sub>2</sub> +.                                                                                                                                                            |                                                                                               | _50 -   \                                          |                                                |
|     | (C) Since bond orders of                                                                                                                                                                             | $He_{2}^{+}$ and $H_{2}^{+}$ are                                                              |                                                    |                                                |
|     |                                                                                                                                                                                                      |                                                                                               |                                                    |                                                |
|     | hence both will have equal b                                                                                                                                                                         | ond dissociation ene                                                                          | rgy                                                | H <sub>2</sub>                                 |
|     | (D) Bond length of $H_{2^+}$ is less                                                                                                                                                                 | s than bond length of                                                                         | H <sub>2</sub> 100 - V                             |                                                |
| 11. | Which of the following has<br>(A) CN⁻ (B                                                                                                                                                             | 1.5 bond order : ) $O_2^-$                                                                    | (C) NO+                                            | (D) CN⊕                                        |
| 12. | Bond order in N <sub>2</sub> + ion is :<br>(A) 1 (B)                                                                                                                                                 | ) 2                                                                                           | (C) 2.5                                            | (D) 3                                          |
|     | R                                                                                                                                                                                                    | Reg. & Corp. Office : CG                                                                      | Tower, A-46 & 52, IPIA, Near C                     | tity Mall, Jhalawar Road, Kota (Raj.) – 324005 |
|     | <pre>Kesonance<sup>®</sup></pre>                                                                                                                                                                     | Wabsita : www.rosonanco                                                                       | ac.in   E-mail : contact@resona                    | anco ac in                                     |

| DPPs | BOOKLET-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         | VIKAAS (JA)   CHEMISTRY                                                                                                                      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 13.  | The main axis of diatomic molecule is z<br>(A) $\pi$ molecular orbital<br>(C) $\delta$ molecular orbital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) σ molecul                                                           |                                                                                                                                              |
| 14.  | Paramagnetism is observed in :<br>(A) N <sub>2</sub> (B) O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (C) He                                                                  | (D) O <sub>2</sub> <sup>2–</sup>                                                                                                             |
| 15.  | Which of the following forms only $\pi$ -bon (A) Li <sub>2</sub> (B) C <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d using Molecular orbit<br>(C) N <sub>2</sub>                           | al theory :<br>(D) O <sub>2</sub>                                                                                                            |
| 16.  | According to Molecular orbital theory, H<br>(A) $\pi 2p_x = \pi 2p_y$ (B) $\pi^* 2p_x = \pi *2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         | (D) σ* 2pz                                                                                                                                   |
| 17.  | $\begin{array}{l} Order of stability of $N_2$, $N_2^+$ and $N_2^-$ is : $$ (A) $N_2 > N_2^+ > N_2^-$ (B) $N_2^+ > N_2 > 1$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N_2^-$ (C) $N_2^- > N_2 >$                                             | > $N_2^+$ (D) $N_2^- = N_2^+ > N_2$                                                                                                          |
| 18.  | The bond order in NO is 2.5 while that<br>two species :<br>(A) Bond length in NO <sup>+</sup> is same as that<br>(C) Bond length in NO <sup>+</sup> is equal to that i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in F2. (B) Bond leng                                                    | the following statements is true for these<br>gth in NO is greater than in NO <sup>+</sup> .<br>gth in NO <sup>+</sup> is lesser than in NO. |
|      | DPP No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o. # B13 (JEE-MAI                                                       | N)                                                                                                                                           |
|      | Marks : 60<br>e choice Objective ('–1' negative markir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                       | Max. Time : 40 min.<br>(3 marks, 2 min.) [60, 40]                                                                                            |
| 1.   | In which of the following central atom is (A) $H_2S$ (B) $H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hybridised.<br>(C) PH <sub>3</sub>                                      | (D) AsH <sub>3</sub>                                                                                                                         |
| 2.   | In the trimer of SO <sub>3</sub> , How many $d\pi$ - $p\pi$ b (A) 2 (B) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onds are present.<br>(C) 6                                              | (D) None of these                                                                                                                            |
| 3.   | White phosphorus has :<br>(A) six P–P single bonds<br>(C) PPP angle of 60ºC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (B) four lone  <br>(D) all of thes                                      | pairs of electrons<br>e                                                                                                                      |
| 4.   | In $P_4S_3$ how many P–P bonds are prese<br>(A) 3 (B) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ent.<br>(C) 5                                                           | (D) 2                                                                                                                                        |
| 5. 🖎 | <ul> <li>Diamond is a hard substance because :</li> <li>(A) it has ionic bond.</li> <li>(B) it has planar arrangement of carbon</li> <li>(C) it has sp<sup>3</sup> hybridized carbon atoms of (D) it has sp<sup>2</sup> hybridized carbon atoms atoms atoms of (D) it has sp<sup>2</sup> hybridized carbon atoms atom</li></ul> | atoms.<br>which are arranged tetr                                       |                                                                                                                                              |
| 6.æ  | Graphite is a good conductor of heat an<br>(A) graphite has ionic bonds and diamo<br>(B) graphite has covalent bonds and dia<br>(C) graphite has delocalized electrons v<br>(D) graphite has sp <sup>3</sup> hybridized carbon a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd has covalent bonds<br>amond has ionic bonds<br>vhereas diamond has n | not.                                                                                                                                         |
| 7.   | Most recently developed carbon allotrop<br>(A) football (B) thin sheet of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         | Fullerene has shape of :<br>(D) none of these                                                                                                |
| 8.   | Two types of carbon-carbon covalent bo<br>(A) diamond (B) graphite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ond lengths are present<br>(C) C <sub>60</sub>                          | t in :<br>(D) benzene                                                                                                                        |
| 9.১  | Which of the following represents a pyro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | osilicate structure :                                                   |                                                                                                                                              |
|      | ○ — Oxygen 		 ● — Silicon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         | R                                                                                                                                            |
|      | (A) (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (C)                                                                     |                                                                                                                                              |
|      | Reg. & Corp. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Office : CG Tower, A-46 & 52, IP                                        | IA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005                                                                                      |

| DPPs I | BOOKLET-2                                                                                                                                                                       |                                                                                                                                                                         |                                                                                     | VIKAAS (JA)   CHEMISTRY                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|
| 10.    | Which is the hybridization o<br>(A) sp (B)                                                                                                                                      | f the central atom of sp <sup>2</sup>                                                                                                                                   | f SiO <sub>2</sub> :<br>(C) sp <sup>3</sup>                                         | (D) sp³d                                  |
| 11.    | Hydrogen forms bridge in th<br>(A) Hydrogen peroxide<br>(C) Diborane                                                                                                            | e chemical structure                                                                                                                                                    | e of :<br>(B) Lithium hydride<br>(D) Sodium peroxide                                |                                           |
| 12.    | In B <sub>2</sub> H <sub>6</sub> :<br>(A) There is a direct boron-t<br>(B) The structure is similar t<br>(C) The boron atoms are lin<br>(D) All the atoms are in one            | o that of C <sub>2</sub> H <sub>6</sub> .<br>ked through hydrog                                                                                                         | en bridges.                                                                         |                                           |
| 13.    | Which is not true about B <sub>2</sub> H<br>(A) Both 'B' atoms are sp <sup>3</sup> h<br>(B) Boron atom is in ground<br>(C) Two hydrogens occupy<br>(D) There are two, three cer | ybridised<br>state<br>special positions                                                                                                                                 | nds                                                                                 |                                           |
| 14.2   | For BF <sub>3</sub> molecule which of t<br>(A) B-atom is sp <sup>2</sup> hybridised<br>(B) There is a $P\pi$ - $P\pi$ back l<br>(C) Observed B-F bond len<br>(D) All of these   | l.<br>ponding in this mole                                                                                                                                              | cule.                                                                               | nd length.                                |
| 15.    | Respective order of strengtl<br>(A) $BF_3 < BCl_3 < BBr_3$ and E<br>(B) $BF_3 > BCl_3 > BBr_3$ and E<br>(C) $BF_3 > BCl_3 > BBr_3$ and E<br>(D) $BF_3 < BCl_3 < BBr_3$ and E    | BF <sub>3</sub> < BCl <sub>3</sub> < BBr <sub>3</sub><br>BF <sub>3</sub> > BCl <sub>3</sub> > BBr <sub>3</sub><br>BF <sub>3</sub> < BCl <sub>3</sub> < BBr <sub>3</sub> | nd Lewis acidic strength i                                                          | n boron trihalides is :                   |
| 16.    | The correct order of increas<br>(A) LiCl, NaCl, BeCl <sub>2</sub><br>(C) NaCl, LiCl, BeCl <sub>2</sub>                                                                          | ing covalent charac                                                                                                                                                     | ter is :<br>(B) BeCl₂, NaCl, LiCl<br>(D) BeCl₂, LiCl, NaCl                          |                                           |
| 17.    | When two ice cubes are pr<br>force is responsible for hold<br>(A) Vander Waal's forces<br>(C) Covalent attraction                                                               |                                                                                                                                                                         | her, they unite to form or<br>(B <b>)</b> Hydrogen bond<br>(D) Dipole-dipole attrac | ne cube. Which of the following<br>tion.  |
| 18.    | Which bond angle $\theta$ would below :                                                                                                                                         | result in maximun                                                                                                                                                       | n dipole moment for the                                                             | triatomic molecule XY <sub>2</sub> shown  |
|        | (A) $\theta = 90^{\circ}$ (B)                                                                                                                                                   | θ = 120°                                                                                                                                                                | γ<br>(C) θ = 150°                                                                   | (D) θ = 180°                              |
| 19.2   | The type of molecular force                                                                                                                                                     |                                                                                                                                                                         | t in the following compou                                                           |                                           |
|        | (A) Intermolecular H-bondin<br>(C) Both (A) and (B)                                                                                                                             | g<br>Q                                                                                                                                                                  | H<br>(B) Intramolecular H-bo<br>(D) None of these                                   | nding                                     |
| 20.    | Which among the following (A) SO <sub>3</sub> (B)                                                                                                                               | has the maximum v<br>NF₃                                                                                                                                                | alue of dipole moment ?<br>(C) NH <sub>3</sub>                                      | (D) N(SiH <sub>3</sub> ) <sub>3</sub>     |
|        |                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                     |                                           |
| Л      | Resonance®                                                                                                                                                                      |                                                                                                                                                                         |                                                                                     | /all, Jhalawar Road, Kota (Raj.) – 324005 |
|        |                                                                                                                                                                                 |                                                                                                                                                                         | .ac.in   E-mail : contact@resonance                                                 |                                           |

# DPP No. # B14 (JEE ADVANCED)

| Total Marks : 56 Max. Time : 34 min. |                                                                                                                                                                                                                                                                                                                       |                                                                                         |                                                  |                                                |                                      |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------|--|--|
| Multip<br>Intege                     | ble choice objective ('–1' ne<br>er type Questions ('–1' nega<br>the Following (no negative                                                                                                                                                                                                                           | tive marking) Q.9 to                                                                    |                                                  | (4 marks, 2 m<br>(4 marks 3 m<br>(8 marks, 6 m | iin.) [32, 16]<br>in.) [16, 12]      |  |  |
| 1.*                                  | The odd electron molecule(<br>(A) NO <sub>2</sub> (B)                                                                                                                                                                                                                                                                 | (s) among the followir<br>) NO                                                          | ng is/are :<br>(C) ClO <sub>2</sub>              | (D) C0                                         | D                                    |  |  |
| 2.*æ                                 | Which of the following is/ar<br>(A) XeF <sub>4</sub> (B)                                                                                                                                                                                                                                                              | e nonplanar molecule<br>)                                                               | e/s :<br>(C) CH₃⁻                                | (D) C                                          | ۶¥ ا                                 |  |  |
| 3.*                                  | Which of the following orde (A) $N_2^+ > N_2^-$ (B)                                                                                                                                                                                                                                                                   | ers is correct in respec<br>) O <sub>2</sub> + > O <sub>3</sub>                         | ct of bond dissoc<br>(C) NO <sup>+</sup> > NO    |                                                | $2 > C_2^+$                          |  |  |
| 4.*æ                                 | Which of the following is(ar<br>(A) AICl <sub>3</sub> (B)                                                                                                                                                                                                                                                             | e) electron-deficient o<br>) BeH <sub>2</sub>                                           | compounds ?<br>(C) B <sub>2</sub> H <sub>6</sub> | (D) Li <i>i</i>                                | AIH4                                 |  |  |
| 5.*                                  | CO <sub>3</sub> <sup>2–</sup> anion have which of<br>(A) Bonds of unequal length<br>(C) Resonance stabilization                                                                                                                                                                                                       | h                                                                                       |                                                  | ation of C atom<br>angles.                     | I                                    |  |  |
| 6.*                                  | Among the following molecules(i) $XeO_3$ (ii) $XeOF_4$ (iii) $XeO_2F_2$ (iv) $XeF_6$ those having different molecular geometry(SHAPE) but same number of lone pairs on X(A) (i)(B) (ii)(C) (iii)(D) (iv)                                                                                                              |                                                                                         |                                                  |                                                |                                      |  |  |
| 7.*æ                                 | According to molecular orb<br>(A) LUMO level for $C_2$ mole<br>(B) In $C_2$ molecule both the<br>(C) In $C_2^{2-}$ ion there is one of<br>(D) all the above are incorre                                                                                                                                               | ecule is a $\sigma 2p$ orbital<br>bonds are $\pi$ bonds<br>$\sigma$ and two $\pi$ bonds | e following(s) is                                | /are correct :                                 |                                      |  |  |
| 8.*                                  | Which of the following orde (A) $N_{2^+} > N_{2^-}$ (B)                                                                                                                                                                                                                                                               | ers is/are correct in res<br>) $O_2^+ > O_3$                                            | spect of bond dis<br>(C) NO <sup>+</sup> > NO    | ssociation energ<br>(D) Ca                     |                                      |  |  |
| 9.                                   | In cyclic trimer of SO $_3$ (i.e.                                                                                                                                                                                                                                                                                     | $S_3O_9$ ) the number of $c$                                                            | oxygen atoms be                                  | onded to each s                                | sulphur atom is :                    |  |  |
| 10.                                  | How many of the following<br>XeF <sub>2</sub> , CIF <sub>3</sub> , H <sub>2</sub> O, [X                                                                                                                                                                                                                               | are planar ?<br>⟨eF₅]⁻, I₃⁻, BCl₃, XeF₄                                                 | , SF4, PCl5, SF6                                 | , IF7.                                         |                                      |  |  |
| 11.                                  |                                                                                                                                                                                                                                                                                                                       | ving species contain I<br>H4P2O5<br>i) P4S3                                             | P–P bond(s) :<br>(iii) H4P2O7<br>(viii) P4O6     | (iv) (PO₃⁻)₃<br>(ix) P₄                        | (v) (PO <sub>3</sub> -) <sub>2</sub> |  |  |
| 12.                                  | How many of these species are paramagentic ? $O_2$ , $O_2^+$ , $O_2^-$ , $O_2^{2-}$ , $C_2$ , $B_2$ , $B_2$ , $Li_2$                                                                                                                                                                                                  |                                                                                         |                                                  |                                                |                                      |  |  |
| 13.                                  | Match the following :         List-I       List-II         (A)       BF <sub>3</sub> (p)       sp hybridization         (B) $(SiH_3)_3 N$ (q) $p\pi - p\pi$ back bond         (C)       B <sub>2</sub> H <sub>6</sub> (r) $p\pi - d\pi$ back bond         (D)       N <sub>3</sub> <sup></sup> (s)       3c - 2e bond |                                                                                         |                                                  |                                                |                                      |  |  |
| 八                                    |                                                                                                                                                                                                                                                                                                                       | Website : www.resonance.a                                                               | ac.in   <b>E-mail :</b> contact                  | @resonance.ac.in                               | PAGE NO47                            |  |  |
|                                      | Toll Free : 1800 258 5555   CIN: U80302RJ2007PLC024029                                                                                                                                                                                                                                                                |                                                                                         |                                                  |                                                |                                      |  |  |