Exercise-1

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Atomic and Ionic radius

A-1. Explain why cations are smaller and anions larger in radii than their parent atoms ?

- A-2. The atomic radii of palladium and platinum are nearly same. Why ?
- A-3. In the ionic compound KF, the K⁺ and F⁻ ions are found to have practically identical radii, about 1.34 Å each. What can you predict about the relative atomic radii of K & F ?

Section (B) : Ionisation energy

- B-1. Why second ionization enthalpy is always higher than the first ionisation enthalpy for every element ?
- B-2. The first ionization enthalpy of carbon is greater than that of boron, whereas the reverse is true for second ionization enthalpy. Explain.
- B-3. Among the elements B, Al, C and Si, (i) which element has the highest first ionisation enthalpy ?(ii) which element has the most metallic character ?Justify your answer in each case.

Section (C) : Electron gain enthalpy

- **C-1.** Be and Ne have positive values of electron gain enthalpy against the general trend in their period in Modern periodic table. Explain.
- C-2. Nitrogen has positive electron gain enthalpy whereas oxygen has negative. However, oxygen has lower ionisation enthalpy than nitrogen. Explain.

Section (D) : Electronegativity

- D-1. Among alkali metals, which element do you expect to be least electronegative ?
- D-2. Explain the following according to Modern periodic table :
 - (a) Electronegativity of elements increase on moving from left to right in a period.
 - (b) Ionisation enthalpy decrease in a group from top to bottom.

PART - II : ONLY ONE OPTION CORRECT TYPE

Section (A) : Atomic and Ionic radius

- A-1.> Select correct statement about radius of an atom :
 - (A) Values of Vander waal's radii is larger than those of covalent radii because the Vander waal's forces are much weaker than the forces operating between atoms in a covalently bonded molecule.
 - (B) The metallic radii is smaller than the Vander waal's radii, since the bonding forces in the metallic crystal lattice are much stronger than the Vander waal's forces.
 - (C) Both (A) & (B)
 - (D) None of these

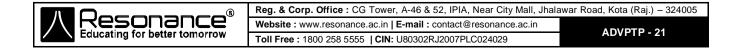
 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVPTP - 19

A-2. Match the correct atomic radius with the element :


A-2.	Match the corr								
	S.No.	Element		Code		tomic ra	dius (pi	m)	
	(i)	Be		p)	74				
	(ii)	C		<u>q)</u>	88				
	(iii)	0	(1			11			
	(iv)	B		s)	77				
	(v) (A) (i) – r, (ii) –	N (iii) t (ii	(t)		(B) (i)		o (iii)	r(ix)	
	(A) (i) - i, (ii) - i, (
A-3.	Choose the co (A) 72, 160		f atomic ra) 160, 160		ne and (C) 72,		n pm) ou	t of the (D) 160	options given below : 0, 72
A-4.	The size of iso	electronic sp	ecies O ⁻² ,	F ⁻ and Na⁺	is affe	cted by :			
	(A) nuclear cha	-				,			
	(B) valence pri	ncipal quant	um numbe	er (n)					
	(C) electron-el	ectron intera	ction in the	e outer orbit	als				
	(D) none of the	e factors bec	ause their	size is the s	same.				
A-5.🕿	Which of the fo	llowing orde	er of atomic	c / ionic radi	us is no	ot correc	t ?		
	(A) F < Cl < Br	< I (B) Y ³⁺ > Sr ²⁻	+ > Rb+	(C) Nb	o ≈ Ta		(D) Li :	> Be > B
Conti	on (D) i lonio	otion one							
	on (B) : Ionis		•••		at in role	ation to i	i ti		
B-1.3	Which one of t	-					onisation	n enthal	ру ?
	(A) Ionization e						d on rei	moval	of electron from core of
	noble gas conf		in ionizau		y 15 CA	penence	u on rei	novaru	
	(C) End of vale	-	ns is marke	ed by a big i	ump in	ionizatio	n enthal	va	
					-				orbitals having higher n
	value.			Ū					
B-2.	The first ionisa	tion ontholni	oc(in o)/)	of N 8 O or	o rococ	octivoly a	ivon hv		
D-2.	(A) 14.6, 13.6	•) 13.6, 14.0		•	.6, 13.6	iven by		.6, 14.6
	(A) 14.0, 13.0	(D	/ 13.0, 14.0	0	(0) 13.	0, 10.0		(D) 14.	.0, 14.0
B-3.	The first ionisa	tion enthalpi	es of Na, I	Mg, Al and S	Si are ir	n the ord	er :		
	(A) Na < Mg >	Al < Si (B) Na > Mg	> Al > Si	(C) Na	< Mg < /	Al < Si	(D) Na	> Mg > Al < Si
B-4.a	Which represe	nts alkali me	etals (i.e. 1 ^s	st group met	tals) ba	sed on (IE)₁ and	(IE) ₂ va	llues (in kJ/mol) ?
	-	(IE)1 (IE)2				(IE)1	(IE)2	
	(A) X	500 10	00		(B)	Υ	600	2000	
	(C) Z	550 75	00		(D)	Μ	700	1400	
B-5 >>	Which of the fo	ollowing rela	tion is corr	rect with res	spect to	n first (I)	and sec	ond (II)	ionization enthalpies of
DUIG	potassium and	-				, mot (1)			
	(A) $I_{Ca} > II_{K}$) Iк > Iса		(C) IIca	» > ∏k		(D) IIk	> IIca
	(A) $I_{Ca} > II_{K}$ (B) $I_{K} > I_{Ca}$ (C) $II_{Ca} > II_{K}$ (D) $II_{K} > II_{Ca}$								
Section	on (C) : Elect	tron gain	enthalpy	/					
C-1.		ens, the cor	rect order	of amoun	t of en	nergy rel	eased i	n electr	ron gain (electron gain
	enthalpy) is:								
	(A) F > Cl > Br	> I (B) F < Cl < I	Br < I	(C) F <	cCl > Br	>	(D) Cl	> Br > F > I
									awar Road, Kota (Raj.) – 324005
\mathbb{Z}	Educating for better	tomorrow		ww.resonance.ac 800 258 5555				.ac.in	ADVPTP - 20
					0000				

C-2.24	Which of the following F, P, S, Cl.	will have the most negat	ive electron	n gain enthalpy	and which the least negative ?
	(A) P, Cl	(B) CI, F	(C) Cl, S		(D) CI, P
C-3.১	The order of electron g (A) O > S > Se	gain enthalpy (magnitude (B) S > Se > O			(D) S > O > Se
C-4.	(i) 1s ² 2s ² 2p ⁶	is the correct order of ind	(iii) 1s ² 2s creasing ter (B) (i) < (i	² 2p ⁶ 3s ¹	(iv) 1s ² 2s ² 2p ⁵
C-5.	.,	alpy may be positive for s ain enthalpy always rema			ments.
Section	on (D) : Electroneg	ativity			
D-1.	Which of the following	is affected by the stable	electron co	nfiguration of a	an atom ?
	(a) Electronegativity	(b) Ionisation enthalpy	(4	c) Electron gai	n enthalpy
	Correct answer is : (A) only electronegativ (C) both electron gain	ity enthalpy and ionisation e		B) only ionisati D) all of the ab	
D-2.	(A) decrease from carl(B) increase from carb(C) increase upto oxyg		oto fluorine.		
D-3.	Correct order of electro	onegativity of N, P, C and (B) C > Si > N > P	d Si on Pau	ling scale is :	(D) N > C > P > Si
D-4.	The correct order of el (A) F > Cl > O > S (C) Be < B < N < C	ectronegativity on Paulin	(B) Li > N	la > K > Rb > ((A) and (B)	Cs
D-5.১	Which of the following	is most electronegative	element.		
	(A) Li	(B) Mg	(C) H		(D) Na

PART - III : MATCH THE COLUMNS

1. Match the column.

	Column-l		Column-II
(A)	$O(g) + e^- \longrightarrow O^-(g)$	(p)	Positive Electron gain enthalpy
(B)	$O^{-}(g) + e^{-} \longrightarrow O^{2-}(g)$	(q)	Negative Electron gain enthalpy
(C)	$Na^{-}(g) \longrightarrow Na(g) + e^{-}$	(r)	Exothermic
(D)	$Mg^{+}(g) + e^{-} \longrightarrow Mg(g)$	(s)	Endothermic

Exercise-2

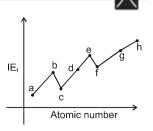
> Marked questions are recommended for Revision.

PART - I : ONLY ONE OPTION CORRECT TYPE

1.24	When the following five anions are arranged in order of decreasing ionic radius, the correct seque is:					
	(A) Se ^{2–} , I [–] , Br [–] , O ^{2–} , F [–] (C) Se ^{2–} , I [–] , Br [–] , F [–] , O ^{2–}		(B) I [−] , Se ^{2−} , Br [−] , F [−] , O ^{2−} (D) I [−] , Se ^{2−} , Br [−] , O ^{2−} , F [−]			
2.	In which of the following (A) MnO2	g compounds, mangane (B) KMnO₄	se shows maximum radio (C) MnO	us ? (D) K₃[Mn(CN)₀]		
3.24	Which of the following is (1) Be⁺ > Be (A) 2, 3	s the correct order of ior (2) Be > Be ⁺ (B) 3, 4	nisation enthalpy ? (3) C > Be (C) 1, 3	(4) B > Be (D) 1, 4		
4.24	Considering the elemer (A) B > Al > Mg > K	nts B, Al, Mg, and K, the (B) Al > Mg > B > K	correct order of their me (C) Mg > Al > K > B	tallic character is : (D) K > Mg > Al > B		
5.	electron affinity of fluori (A) the atomic number of (B) fluorine being the fir (C) chlorine can accome (D) small size, high electron	ne is less than that of ch of fluorine is less than th est member of the family modate an electron bett ctron density and an inc	nlorine because : hat of chlorine. behaves in an unusual n er than fluorine by utilisin	g its vacant 3d–orbital. n makes addition of an electron		
6.24	Which one of the following arrangements represents the correct order of electron gain enthalpy (with negative sign) of the given atomic species ? (A) $CI < F < S < O$ (B) $O < S < F < CI$ (C) $S < O < CI < F$ (D) $F < CI < O < S$					
7.24	 Which of the following statement is INCORRECT ? (A) The tendency to attract bonded pair of electron in case of hybrid orbitals follow the order : sp > sp² > sp³ (B) Alkali metals generally have negative value of electron gain enthalpy. (C) Cs⁺(g) releases more energy upon gain of an electron than Cl(g). (D) The electronegativity values for 2p-series elements is less than that for 3p-series elements on account of small size and high inter electronic repulsions. 					
	PART - II : S	INGLE AND DOU	JBLE VALUE INT	EGER TYPE		
1.	If internuclear distance between A atoms in A ₂ is 10Å and between B atoms in B ₂ is 6Å, then calculate internuclear distance between A and B in Å. [Electronegativity difference between A and B has negligible value].					
2.2	Report atomic number of	of the element having la	rgest size among the foll	owing :		

Ni, Cu, Zn

3. How many of following atoms have maximum ionization energy than boron. (i) Be (ii) N (iii) P


(iv) Ga

(v) S

(vi) Mg

Resonance®	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005				
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVPTP - 22			
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVPTP - 22			

4. Where a, b, c, d, e, f, g, h are 3^{rd} period elements. If difference between atomic number of elements b and e is x and difference between atomic number of elements c and f is y. What is the value of x - y.

- **5.** Values of IE₁, IE₂, IE₃ of an element are 9.3, 18.2 and 553.8 eV. Predict group number in Modern Periodic Table.
- $\begin{array}{ll} \textbf{6.} & A^{-}\left(g\right) \rightarrow A^{2+}\left(g\right) & \Delta H = 1100 \text{ KJ/mol} \\ A\left(g\right) \rightarrow A^{2+}\left(g\right) & \Delta H = 1200 \text{ KJ/mol} \\ \text{Electron gain enthalphy of A is P x 10}^2 \text{ KJ/mol. What is the value of P ?} \end{array}$
- 7.★ The electron gain enthalpy of a hypothetical element 'A' is -3 eV per atom. How much energy in kCal is released when 10 g of 'A' are completely converted to A⁻ ions in gaseous state ? (Take : 1 eV per atom = 23 kCal mol⁻¹, Molar mass of A = 30 g)
- 8. What is atomic number of element which have maximum electron affinity in Modern Periodic table.
- How many of the following elements are more electronegative than Boron.
 (i) H
 (ii) Li
 (iii) Be
 (iv) C
 (v) N
 (vi) O
 (vii) F

PART - III : ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

1.	Which is/are the corre	ct order/s of atomic radiu	is ?				
	(A) Li < B < Be	(B) Be < B < Li	(C) Li > Be > B	(D) N > O > F			
2.	Which is/are the corre	ct order/s of atomic radiu	is ?				
	(A) Mn > Fe > Co	(B) Mn ≈ Fe ≈ Co	(C) Sc > Ti > V	(D) Zn < Cu < Ni			
3.	Which of the following	orders is(are) correct fo	r size :				
	(A) AI ≈ Ga		(B) $Te^{2-} > I^- > Cs^+ > E$	3a ²⁺			
	(C) $Cr^{3+} < Cr^{6+}$		(D) Pd ≈ Pt				
4.2	The ionic radii depend	s upon in the following fa	actors :				
	(A) Charge on cation						
	(B) Charge on anion						
	(C) Shell number of va	lence shell electron(s) o	f the ion.				
	(D) Effective nuclear c	harge					
5.	Which of the following	statements is/are correct	et ?				
	(A) The second ionization enthalpy of oxygen element is greater than that of fluorine element.						
	(B) The third ionization enthalpy of phosphorus is greater than that of aluminium.						
	(C) The first ionization	enthalpy of aluminium is	s slightly greater than tha	at of gallium.			
	(D) The second ionize	tion ontholoy of conner i	a greater then that of zin	•			

- (D) The second ionization enthalpy of copper is greater than that of zinc.
- 6. Which of the following elements will gain one electron more readily in comparison to other elements of their group ?

(A) S(g)	(B) N(g)	(C) O(g)	(D) Cl (g)	
	Reg. & Corp. Offic	ce : CG Tower, A-46 & 52, IPIA	, Near City Mall, Jhalawar Ro	ad, Kota (Raj.) – 324005
	Website : www.res	onance.ac.in E-mail : contact@	Presonance.ac.in	ADVPTP - 23
Educating for better tomorrow	Toll Free : 1800 25	58 5555 CIN: U80302RJ2007PL	_C024029	ADVPTP - 23

7. Which of the following is/are correct order/s of electron affinity.
(A) N < C < O < F
(B) P < Si < S < Cl
(C) Si < P < S < Cl
(D) C < N < O < F

8. Which of the following is correct order of electronegativity :

(A) Cs > Rb > Na (B) Li < Be < B (C) C < N < O

9. Choose the correct statement(s) :

(A) In general more the ionisation energy more will be electronegativity.

(B) Electronegativity increase means metallic character increases.

- (C) In general lower will be the ionisation energy, easier will be to remove electron.
- (D) Electron affinity of S is less than that of Cl.

PART - IV : COMPREHENSION

Read the following passage carefully and answer the questions.

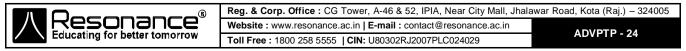
Comprehension #1

It is not possible to measure the atomic radius precisely since the electron cloud surrounding the atom does not have a sharp boundary. One practical approach to estimate the size of an atom of a non-metallic element is to measure the distance between two atoms when they are bound together by a single bond in a covalent molecule and then dividing by two. For metals we define the term "metallic radius" which is taken as half the internuclear distance separating the metal cores in the metallic crystal. The van der waal's radius represents the over all size of the atoms which includes its valence shell in a non bonded situation. It is the half of the distance between two similar atoms in separate molecules in a solid. The atomic radius decreases across a period and increases down the group. Same trends are observed in case of ionic radius. Ionic radius of the species having same number of electrons depends on the number of protons in their nuclei. Sometimes, atomic and ionic radii give unexpected trends due to poor shielding of nuclear charge by d- and f-orbital electrons. Now answer the following three questions :

1. Which of the following relations is correct, if considered for the same element :

(A) rVanderwaal > rCovalent > rMetallic	(B) $r_{Covalent} > r_{Metallic} > r_{Vanderwaal}$
(C) IVanderwaal > IMetallic > ICovalent	(D) $r_{Metallic} > r_{Covalent} > r_{Vanderwaa}$

2. K^+ , Cl^- , Ca^{2+} , S^{2-} ions are isoelectronic. The decreasing order of their size is : (A) $Ca^{2+} > K^+ > Cl^- > S^{2-}$ (B) $S^{2-} > Cl^- > K^+ > Ca^{2+}$ (C) $K^+ > Cl^- > Ca^{2+} > S^{2-}$ (D) $S^{2-} > Cl^- > Ca^{2+} > K^+$


3. Select the INCORRECT option regarding atomic/ionic sizes :

(A) Zn > Cu	(B) Pb ²⁺ > Pb ⁴⁺	(C) $Zr \approx Hf$	(D) N ^{3–} < Al ³⁺
-------------	---	---------------------	--

Comprehension # 2

The periodicity is related to the electronic configuration. That is, all chemical and physical properties are a manifestation of the electronic configuration of the elements.

The atomic and ionic radii generally decrease in a period from left to right. As a consequence, the ionization enthalpies generally increase and electron gain enthalpies become more negative across a period. In other words, the ionization enthalpy of the extreme left element in a period is the least and the electron gain enthalpy of the element on the extreme right is the highest negative. This results into

八

(D) CI > F > Br

high chemical reactivity at the two extremes and the lowest in the centre. Similarly down the group, the increase in atomic and ionic radii result in gradual decrease in ionization enthalpies and a regular decrease (with exception in some third period elements) in electron gain enthalpies in the case of main group elements.

The loss and gain of electrons can be co-related with the reducing and oxidising behaviour, and also with metallic and non-metallic character respectively, of the elements.

4. The correct order of the metallic character is :
(A) Al > Mg > Na > Si
(B) Na > Mg < Al > Si
(C) Na > Mg > Al > Si
(D) Al > Mg > Si > Na

5. Considering the elements B, C, N, F, and Si, the correct order of their non-metallic character is :

(A) B > C > Si > N > F	(B) Si > C > B > N
(C) F > N > C > B > Si	(D) F > N > C > Si

6. Which of the following statement is correct ?

(A) Ionisation enthalpies of elements decrease along a period and increase along a group in Modern periodic table.

> F > B

- (B) In the 3rd period of Modern periodic table, the two most reactive elements are sodium and fluorine.
- (C) Fluorine has the least negative electron gain enthalpy among all halogens.
- (D) Ionisation enthalpy of Pb is greater than that of Sn.

Comprehension # 3

Answer Q.7, Q.8 and Q.9 by appropriately matching the information given in the three columns of the following table.

Column-1		Column-2		Column-3		
(I)	Graphite	(i)	d-block elements	(P)	Liquid	
(11)	Transition elements	(ii)	Group-16	(Q)	6s ² 6p ⁴	
(111)	Amalgam	(iii)	Allotropicity	(R)	Lubricant	
(IV)	Polonium	(iv)	Mercury	(S)	Variable oxidation number.	

7.	For given content is co (A) (I), (iii), R	lumn-1, the correct comb (B) (II), (iv), R	bination is : (C) (II), (iii), S	(D) (IV), (iv), Q
8.	For iron the correct cor (A) (III), (iv), Q	nbination is : (B) (II), (i), S	(C) (IV), (i), Q	(D) (I), (ii), P
9.	The incorrect combina (A) (III), (iv), P	tion is : (B) (III), (i), S	(C) (II), (ii), S	(D) (IV), (ii), Q

Exercise-3

* Marked Questions may have more than one correct option.

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1. The incorrect statement among the following is :


[JEE-1997(Cancelled), 2/200]

- (A) the first ionization energy of AI is less than first ionization energy of Mg.
- (B) the second ionization energy of Mg is greater than second ionization energy of Na.
- (C) the first ionization energy of Na is less than first ionization energy of Mg.
- (D) the third ionization energy of Mg is greater than third ionization energy of Al.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005				
A Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVPTP - 25			
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVFIF-25			

Peri	odic Table & Periodicity	V			——————————————————————————————————————
2.	Arrange the following io	ns in order of their incr	easing size : Li+, Mg ²⁺ , I	<⁺, Al ³⁺ .	[JEE-1997, 1/100]
3.	 Assertion : F atom has Reason : Additional electrons in F atom. (A) Both Assertion and F (B) Both Assertion and F (C) Assertion is true but (D) Assertion is false but 	ectrons are repelled r Reason are true, and F Reason are true, but R Reason is false.	more effectively by 3p Reason is the correct ex	planation c	of Assertion.
4.	The correct order of rad (A) N < Be < B	ii is : (B) F⁻< O²⁻ < N³⁻	(C) Na < Li < K	(D) Fe ³	[JEE-2000, 1/35] ³⁺ < Fe ²⁺ < Fe ⁺⁴
5.	Assertion : The first ion Reason : 2p orbital is lo (A) Both Assertion and I (B) Both Assertion and I (C) Assertion is true but (D) Assertion is false bu	ower in energy than 2s. Reason are true and R Reason are true but Re Reason is false.	eason is the correct exp		
ð.	The set representing the (A) K > Na > Li	e correct order of first i (B) Be>Mg>Ca	onization potential is : (C) B > C > N	(D) Ge	[JEE-2001, 1/35] > Si > C
' .	Identify the least stable (A) Li⁻	ion amongst the follow (B) Be⁻	ing : (C) B⁻	(D) C [_]	[JEE-2002, 3/90]
3.	Among the following, the O, Cl,	e number of elements F, N, P,	showing only one non-z Sn, Tl, Na,	ero oxidati T I	on state is : [JEE 2010, 3/163]
	PART - II : JEE (MAIN) / AIEEE	PROBLEMS (PF	REVIOU	S YEARS)
		JEE(MAIN) OFF	LINE PROBLEMS		
I .	Which one of the followi (1) Li ⁺	ng ions has the highes (2) B ³⁺	t value of ionic radius ? (3) O ^{2–}	(4) F [−]	[AIEEE-2004, 3/225]
2.	The formation of the our shown below : $O_{(g)} + e^{-} = O^{-}_{(g)}$	xide ion O ²⁻ (g) require ; ∆H° = – 142 kJmol ⁻¹	s first an exothermic a	nd then a	n endothermic step a
	$O^{-}(g) + e^{-} = O^{2-}$ This is because : (1) oxygen is more elect (2) oxygen has high elect (3) O^{-} ion will tend to res (4) O^{-} ion has comparat	ctron affinity. sist the addition of ano	ther electron.		[AIEEE-2004, 3/225]
3.	In which of the following			the propert	y indicated against it ? [AIEEE-2005, 3/225]
	 (1) Al³⁺ < Mg²⁺ < Na⁺ < I (2) B < C < N < O - incr (3) I < Br < F < CI - incr (4) Li < No < K < Bb is 	easing first ionisation easing electron gain e	enthalpy nthalpy (with negative si	gn)	[· ······ 2000, 0/220]
	(4) LI < Na < K < KD – II	ncreasing metallic radi	JS		

Peri	dic Table & Periodicity
4.	 Which of the following factors may be regarded as the main cause of lanthanide contraction ? (1) Greater shielding of 5d electrons by 4f electrons. (2) Poorer shielding of 5d electron by 4f electrons. (3) Effective shielding of one of 4f electrons by another in the sub-shell. (4) Poor shielding of one of 4f electron by another in the sub-shell.
5.	The lanthanide contraction is responsible for the fact that :[AIEEE-2005, 3/225](1) Zr and Y have about the same radius(2) Zr and Nb have similar oxidation state(3) Zr and Hf have about the same radius(4) Zr and Zn have same oxidation state.
6.	The increasing order of the first ionization enthalpies of the elements B, P, S and F (lowest first) is : [AIEEE-2006, 4/220]
	(1) $F < S < P < B$ (2) $P < S < B < F$ (3) $B < P < S < F$ (4) $B < S < P < F$
7.	Lanthanoid contraction is caused due to : [AIEE-2006, 4/220] (1) the appreciable shielding on outer electrons by 4 <i>f</i> electrons from the nuclear charge (2) the appreciable shielding on outer electrons by 5 <i>f</i> electrons from the nuclear charge (3) the same effective nuclear charge from Ce to Lu (4) the imperfect shielding on outer electrons by 4 <i>f</i> electrons from the nuclear charge
8.	The set representing the correct order of ionic radius is : (1) $Na^{+} > Li^{+} > Mg^{2+} > Be^{2+}$ (2) $Li^{+} > Na^{+} > Mg^{2+} > Be^{2+}$ (3) $Mg^{2+} > Be^{2+} > Li^{+} > Na^{+}$ (4) $Li^{+} > Be^{2+} > Na^{+} > Mg^{2+}$ [AIEEE-2009, 4/144]
9.	The correct sequence which shows decreasing order of the ionic radii of the elements is :
	$ \begin{array}{l} \text{[AIEEE-2010, 4/144]} \\ (1) \ \text{Al}^{3+} > \ \text{Mg}^{2+} > \ \text{Na}^{+} > \ \text{F}^{-} > \ \text{O}^{2-} \\ (3) \ \text{Na}^{+} > \ \text{F}^{-} > \ \text{Mg}^{2+} > \ \text{O}^{2-} > \ \text{Al}^{3+} \\ \end{array} \begin{array}{l} \text{(2) } \ \text{Na}^{+} > \ \text{Mg}^{2+} > \ \text{Al}^{3+} > \ \text{O}^{2-} > \ \text{F}^{-} \\ (4) \ \text{O}^{2-} > \ \text{F}^{-} > \ \text{Na}^{+} > \ \text{Mg}^{2+} > \ \text{Al}^{3+} \end{array} $
10.	The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is: (1) $F > Cl > Br > l$ (2) $Cl > F > Br > l$ (3) $Br > Cl > l > F$ (4) $l > Br > Cl > F$
11.	The increasing order of the ionic radii of the given isoelectronic species is : (1) Cl^- , Ca^{2+} , K^+ , S^{2-} (2) S^{2-} , Cl^- , Ca^{2+} , K^+ (3) Ca^{2+} , K^+ , Cl^- , S^{2-} (4) K^+ , S^{2-} , Ca^{2+} , Cl^- (5) Ca^{2+} , K^+ , Cl^- , S^{2-} (4) K^+ , S^{2-} , Ca^{2+} , Cl^-
12.	Which of the following represents the correct order of increasing first ionization enthalpy for Ca, Ba, S,
	Se and Ar ? (1) Ca < S < Ba < Se < Ar
13.	The first ionisation potential of Na is 5.1 eV. The value of electron gain enthalpy of Na ⁺ will be :
	[JEE(Main)-2013, 4/120] (1) -2.55 eV (2) -5.1 eV (3) -10.2 eV (4) +2.55 eV
14.	The ionic radii (in Å) of N ³⁻ , O ²⁻ and F ⁻ are respectively : [JEE(Main)-2015, 4/120] (1) 1.36, 1.40 and 1.71 (2) 1.36, 1.71 and 1.40 (3) 1.71, 1.40 and 1.36 (4) 1.71, 1.36 and 1.40
15.	Which of the following atoms has the highest first ionization energy?[JEE(Main)-2016, 4/120](1) Na(2) K(3) Sc(4) Rb
16.	The group having isoelectronic species is : (1) O^- , F^- , Na, Mg ⁺ (2) O^{2-} , F^- , Na, Mg ²⁺ (3) O^- , F^- , Na ⁺ , Mg ²⁺ (4) O^{2-} , F^- , Na ⁺ , Mg ²⁺

JEE(MAIN) ONLINE PROBLEMS

1.	Which of the following array of the given species O^{2-} , S (1) $O^{2-} < N^{3-} < S^{2-} < P^{3-}$ (3) $N^{3-} < O^{2-} < P^{3-} < S^{2-}$		(2) O ^{2–} <	- ·	t to largest) of ionic radii Online (15-04-14), 4/120]
2.	Which one of the following (1) Li ⁺ (2)	has largest ionic radi O_2^{2-}	ius ? (3) B ³⁺	[JEE(Main) 2014 (4) F	Online (19-04-14), 4/120]
3.	In the long form of the period the element present in : (1) Group 17 and period 6 (3) Group 16 and period 6	odic table, the valenc	(2) Grou	•	n of 5s ² 5p ⁴ corresponds to Inline (10-04-15), 4/120]
4.	The following statements c	oncern elements in tl	he periodi		following is true? Dnline (10-04-16), 4/120]
	 (1) The Group 13 elements (2) All the elements in Group (3) Elements of Group 16 h corresponding periods. (4) For Group 15 elements 	up 17 are gases. have lower ionization		values compared to	those of Group 15 in the
5.	Consider the following ioniz				
	-	Element Ionizatio	n enthalp 2 nd	oy (kJ/mol) 3 rd	
		A 899	1757	14847	
	-	B 737	1450	7731	
	Which of the following state (1) Both 'A' and 'B' belong t (2) Both 'A' and 'B' belong t (3) Both 'A' and 'B' belong t (4) Both 'A' and 'B' belong t	to group-1 where 'B' (to group-2 where 'A' (to group-2 where 'B' (comes be comes be comes be	low 'A'. low 'B'. low 'A'.	aline (08-04-17), 4/120]
6.	The electronic configuration	n with the highest ion			lline (09-04-17), 4/120]
	(1) [Ne] $3s^2 3p^1$ (2)	[Ne] 3s ² 3p ²	(3) [Ne]		Ar] $3d^{10} 4s^2 4p^3$
7.	For Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ ;	the correct order of	-		
	(1) O ^{2−} < F [−] < Na ⁺ < Mg ²⁺ (3) Mg ²⁺ < Na ⁺ < F [−] < O ^{2−}		(2) Na+ -	[JEE(Main) 2019 Or < Mg²⁺ < F⁻ < O²⁻ < O²⁻ < Na⁺ < F⁻	lline (15-04-18), 4/120]
8.	In general, the properties th are : (1) atomic radius and elect (3) electron gain enthalpy a	ronegativity	(2) elect		nline (09-01-19), 4/120] nic radius
9.	The effect of lanthanoid co	ntraction in the lantha		-	and large means : Iline (10-01-19), 4/120]
	 (1) increase in atomic radii (2) decrease in both atomic (3) increase in both atomic (4) decrease in atomic radi 	e and ionic radii and ionic radii	c radii		
10.	The electronegativity of alu (1) Lithium (2)	minium is similar to : Carbon	(3) Boro	,	iline (10-01-19), 4/120] Beryllium
Л	Resonance®				alawar Road, Kota (Raj.) – 324005
\mathbb{Z}	Educating for better tomorrow	Website : www.resonance.a Toll Free : 1800 258 5555	-		ADVPTP - 28
L					

	The correct order of t	he atomic radii of C, Cs,		in) 2010 Online (11 01 10) 1/1201
	(1) C < S < Al <cs< td=""><td>(2) S < C < Al < Cs</td><td></td><td>in) 2019 Online (11-01-19), 4/120] Al (4) C < S < Cs < Al</td></cs<>	(2) S < C < Al < Cs		in) 2019 Online (11-01-19), 4/120] Al (4) C < S < Cs < Al
12.	The correct option wi	th respect to the Pauling		
	(1) Te > Se	(2) Ga < Ge	(3) Si < Al	in) 2019 Online (11-01-19), 4/120] (4) P > S
13.	The element with Z =	120 (not yet discovered		
	(1) transition metal(3) alkaline earth met	al	[JEE(Ma (2) alkali metal (4) inner-transitio	in) 2019 Online (12-01-19), 4/120] n metal
14.	The size of the iso-el	ectronic species Cl⁻, Ar a		-
	(1) Nuclear charge (3) azimuthal quantur	n number of valence she	(2) Principal quar	in) 2019 Online (08-04-19)S1, 4/120 atum number of valence shell ron interaction in the outer orbitals
15.	The element having g	greatest difference betwe		nd ionization energies, is :
	(1) Ba	(2) K	(3) Ca	in) 2019 Online (09-04-19)S1, 4/120 (4) Sc
16.	The pair that has sim	ilar atomic radii is :		in) 2040 Online (42,04,40) 52, 4/420
	(1) Ti and Hf	(2) Mo and W	(3) Sc and Ni	in) 2019 Online (12-04-19)S2, 4/120 (4) Mn and Re
17.	In comparison to bore	on, beryllium has :		
	(2) lesser nuclear cha(3) lesser nuclear cha	harge and lesser first ion arge and lesser first ioniz arge and greater first ion harge and greater first ion	zation enthalpy. ation enthalpy zation enthalpy	in) 2019 Onine (12-04-19)32, 4/120
18.	(2) lesser nuclear cha(3) lesser nuclear cha(4) greater nuclear c	arge and lesser first ioniz arge and greater first ion harge and greater first ion	zation enthalpy. ation enthalpy zation enthalpy nization enthalpy ine, chlorine, bromine	in) 2019 Online (12-04-19)S2, 4/120 e and iodine, respectively are : in) 2020 Online (07-01-20)S1_4/100
18.	(2) lesser nuclear cha(3) lesser nuclear cha(4) greater nuclear c	arge and lesser first ioniz arge and greater first ion harge and greater first ion halpy (in kJ/mol) of fluor and –349	zation enthalpy. ation enthalpy zation enthalpy nization enthalpy ine, chlorine, bromine	e and iodine, respectively are : in) 2020 Online (07-01-20)S1, 4/100 325 and –296
18. 19.	 (2) lesser nuclear cha (3) lesser nuclear cha (4) greater nuclear c The electron gain ent (1) -296, -325, -333 (3) -349, -333, -325 	arge and lesser first ioniz arge and greater first ion harge and greater first ion halpy (in kJ/mol) of fluor and –349 and –296 ement F & Cl, S & Se, a	zation enthalpy. ation enthalpy zation enthalpy nization enthalpy ine, chlorine, bromine [JEE(Ma (2) –333, –349, – (4) –333, –325, – nd Li & Na, respective	e and iodine, respectively are : in) 2020 Online (07-01-20)S1, 4/100 325 and –296 349 and –296 ely, the elements that release more in) 2020 Online (07-01-20)S2, 4/100
19.	 (2) lesser nuclear cha (3) lesser nuclear cha (4) greater nuclear c The electron gain ent (1) -296, -325, -333 (3) -349, -333, -325 Within each pair of elenergy upon an elect (1) Cl, S and Li (3) F, Se and Na 	arge and lesser first ioniz arge and greater first ion harge and greater first ion halpy (in kJ/mol) of fluor and –349 and –296 ement F & Cl, S & Se, a	zation enthalpy zation enthalpy zation enthalpy nization enthalpy ine, chlorine, bromine [JEE(Ma (2) –333, –349, – (4) –333, –325, – nd Li & Na, respectiv [JEE(Ma (2) F, S and Li (4) Cl, Se and Na Ig, Al and Si respecti	e and iodine, respectively are : in) 2020 Online (07-01-20)S1, 4/100 325 and –296 349 and –296 ely, the elements that release more in) 2020 Online (07-01-20)S2, 4/100 vely, are :
19.	 (2) lesser nuclear cha (3) lesser nuclear cha (4) greater nuclear c The electron gain ent (1) -296, -325, -333 (3) -349, -333, -325 Within each pair of elenergy upon an elect (1) Cl, S and Li (3) F, Se and Na 	arge and lesser first ioniz arge and greater first ioni harge and greater first ion halpy (in kJ/mol) of fluor and –349 and –296 ement F & CI, S & Se, a ron gain are :	zation enthalpy zation enthalpy zation enthalpy nization enthalpy ine, chlorine, bromine [JEE(Ma (2) –333, –349, – (4) –333, –325, – nd Li & Na, respectiv [JEE(Ma (2) F, S and Li (4) Cl, Se and Na Ig, Al and Si respecti	e and iodine, respectively are : in) 2020 Online (07-01-20)S1, 4/100 325 and –296 349 and –296 ely, the elements that release more in) 2020 Online (07-01-20)S2, 4/100 vely, are : in) 2020 Online (08-01-20)S1, 4/100 , 496
	 (2) lesser nuclear cha (3) lesser nuclear cha (4) greater nuclear c The electron gain ent (1) -296, -325, -333 (3) -349, -333, -325 Within each pair of el energy upon an elect (1) Cl, S and Li (3) F, Se and Na The first ionization er (1) 496, 577, 737, 78 (3) 496, 577, 786, 73 	arge and lesser first ioniz arge and greater first ioni harge and greater first ion halpy (in kJ/mol) of fluor and –349 and –296 ement F & CI, S & Se, a ron gain are :	zation enthalpy ation enthalpy zation enthalpy nization enthalpy ine, chlorine, bromine [JEE(Ma (2) -333, -349, - (4) -333, -325, - (4) -333, -325, - nd Li & Na, respective [JEE(Ma (2) F, S and Li (4) Cl, Se and Na (2) 786, 737, 577 (4) 496, 737, 577 following elements is	e and iodine, respectively are : in) 2020 Online (07-01-20)S1, 4/100 325 and –296 349 and –296 ely, the elements that release more in) 2020 Online (07-01-20)S2, 4/100 vely, are : in) 2020 Online (08-01-20)S1, 4/100 , 496 , 786 S :
19. 20.	 (2) lesser nuclear cha (3) lesser nuclear cha (4) greater nuclear c The electron gain ent (1) -296, -325, -333 (3) -349, -333, -325 Within each pair of el energy upon an elect (1) Cl, S and Li (3) F, Se and Na The first ionization er (1) 496, 577, 737, 78 (3) 496, 577, 786, 73 	arge and lesser first ioniz arge and greater first ioni harge and greater first ion halpy (in kJ/mol) of fluor and –349 and –296 ement F & CI, S & Se, a ron gain are : hergy (in kJ/mol) of Na, N 6 7 of the atomic radii of the (b) O) < (e)	zation enthalpy ation enthalpy zation enthalpy nization enthalpy ine, chlorine, bromine (JEE(Ma (2) -333, -349, - (4) -333, -325, - (4) -333, -325, - (4) -333, -325, - (4) -333, -325, - (JEE(Ma (2) F, S and Li (2) F, S and Li (2) F, S and Li (3) Cl, Se and Na (2) 786, 737, 577 (4) 496, 737, 577 (4) 496, 737, 577 (5) (4) 496, 737, 577	e and iodine, respectively are : in) 2020 Online (07-01-20)S1, 4/100 325 and -296 349 and -296 ely, the elements that release more in) 2020 Online (07-01-20)S2, 4/100 vely, are : in) 2020 Online (08-01-20)S1, 4/100 , 496 , 786 s : in) 2020 Online (08-01-20)S2, 4/100 d) Cl (e) Br < (d) < (e)
19. 20.	(2) lesser nuclear cha (3) lesser nuclear cha (4) greater nuclear cha (4) greater nuclear c The electron gain ent (1) -296 , -325 , -333 (3) -349 , -333 , -325 Within each pair of el energy upon an elect (1) Cl, S and Li (3) F, Se and Na The first ionization er (1) 496, 577, 737, 78 (3) 496, 577, 786, 73 The increasing order (a) C (1) (a) < (b) < (c) < (d) (3) (b) < (c) < (d) < (a)	arge and lesser first ioniz arge and greater first ioni harge and greater first ion halpy (in kJ/mol) of fluor and –349 and –296 ement F & CI, S & Se, a ron gain are : hergy (in kJ/mol) of Na, N 6 7 of the atomic radii of the (b) O) < (e)	zation enthalpy ation enthalpy zation enthalpy nization enthalpy ine, chlorine, bromine [JEE(Ma (2) $-333, -349, -$ (4) $-333, -325, -$ and Li & Na, respective [JEE(Ma (2) F, S and Li (4) Cl, Se and Na Ig, Al and Si respective [JEE(Ma (2) 786, 737, 577 (4) 496, 737, 577 (4) 496, 737, 577 following elements is [JEE(Ma (c) F (c) (2) (c) < (b) < (a) (4) (d) < (c) < (b) pectively, are :	e and iodine, respectively are : in) 2020 Online (07-01-20)S1, 4/100 325 and -296 349 and -296 ely, the elements that release more in) 2020 Online (07-01-20)S2, 4/100 vely, are : in) 2020 Online (08-01-20)S1, 4/100 , 496 , 786 s : in) 2020 Online (08-01-20)S2, 4/100 d) Cl (e) Br < (d) < (e)

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

ADVPTP - 29

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

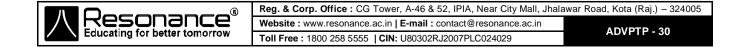
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Answers

EXERCISE - 1

PART - I

A-1. The ionic radius of a cation is always smaller than the parent atom because the loss of one or more electrons increases the effective nuclear charge (Z_{eff}). As a result, the force of attraction of nucleus for the remaining electrons increases and hence the electron cloud contracts and ionic radii decreases.


In contrast, the ionic radius of an anion is always larger than its parent atom because the addition of one or more electrons decreases the effective nuclear charge (Z_{eff}). As a result, the force of attraction of the nucleus for the remaining electrons decreases and hence electron cloud expands and the ionic radii increases.

- **A-2.** Due to lanthanide contraction (poor shielding of nuclear charge by 4f-electrons), atomic radii of 4d and 5d elements are nearly same.
- A-3. Atomic radius of K is larger than F because the size of cation is smaller than its parent atom while size of anion is bigger than its parent atom. Thus, atomic radii of K will be greater than 1.34 Å while atomic radii of F will be less than 1.34 Å.
- **B-1.** Electron is more tightly bound by the nucleus in an cation (i.e. M⁺) as the number of proton remains the same as in neutral atom whereas number of electron is one less than the proton. This increases the attraction between the valence shell electrons and the nucleus (Z_{eff} increases). So, second ionization enthalpy is always higher than the first ionisation enthalpy for every element.
- **B-2.** Carbon has higher IE₁ because of smaller atomic size and greater Z_{eff}. Removal of second electron from stable 1s² 2s² configuration in case of B⁺ requires greater energy. So, B has greater IE₂.
- **B-3.** (i) C (ii) Al
- **C-1.** In Be, the extra electron is to be added in 2p orbital because 2s orbital is completely filled and in Ne, it is to be added to a noble gas configuration. Since full-filled orbitals and noble gas configuration are more stable, reluctancy in accepting the electron is found. So, they have positive values of electron gain enthalpy.
- **C-2.** Nitrogen has stable half filled configuration 2s² 2p³. So removal of one electron will require more energy than oxygen. Similarly, in nitrogen, addition of one electron will require energy (endothermic) while in oxygen, addition of one electron will release energy (exothermic).
- D-1. Caesium (Cs).
- **D-2.** (a) On moving left to right in a period, tendency of an atom to attract the shared electron pair towards itself increases due to increasing Z_{eff}. So, electronegativity of elements increase on moving from left to right in a period.

(b) On moving top to bottom in a group, size increases due to addition of extra shells. So, attraction of nucleus outermost electron decreases. So, ionisation enthalpy decrease in a group from top to bottom.

				PAR	RT - 11				
A-1.	(C)	A-2.	(C)	A-3.	(A)	A-4.	(A)	A-5.	(B)
B-1.	(D)	B-2.	(A)	B-3.	(A)	B-4.	(C)	B-5.	(D)
C-1.	(C)	C-2.	(D)	C-3.	(B)	C-4.	(A)	C-5.	(D)
D-1.	(C)	D-2.	(B)	D-3.	(D)	D-4.	(B)	D-5.	(C)
				PAR	T - III				

1. (A - q,r) ; (B - p,s) ; (C - s) ; (D - q,r)

Per	iodic Table d	& Periodic	city						—八—
				EXER	CISE - 2				
				РА	RT - I				
1.	(D)	2.	(C)	3.	(C)	4.	(D)	5.	(D)
6.	(B)	7.	(D)						
				PA	RT - II				
1.	8	2.	30	3.	2 (i, ii)	4.	0	5.	2
6.	1	7.	23	8.	17	9.	5 (except ii, iii)		
				PAF	RT - III				
1.	(CD)	2.	(BC)	3.	(ABD)	4.	(ABCD)	5.	(ABD)
6.	(AD)	7.	(AB)	8.	(BC)	9.	(ACD)		
				PAF	RT - IV				
1.	(C)	2.	(B)	3.	(D)	4.	(C)	5.	(C)
6.	(D)	7.	(A)	8.	(B)	9.	(C)		
				EXER	CISE - 3	, ,			
				РА	RT - I				
1.	(B)	2.	Al ³⁺ < Mg ²⁺	- < Li ⁺ < K ⁺		3.	(C)	4.	(B)
5.	(C)	6.	(B)	7.	(B)	8.	2		
					RT - II				
			JEE(I	MAIN) OFF	LINE PROB	LEMS			
1.	(3)	2.	(3)	3.	(2)	4.	(4)	5.	(3)
6.	(4)	7.	(4)	8.	(1)	9.	(4)	10.	(2)
11. 16.	(3)	12.	(3)	13.	(2)	14.	(3)	15.	(3)
10.	(4)		IEE(EMS			
1.	(1)	2.	(2)	<u>(MAIN) ON</u> 3.	(4)	<u>- EIWI3</u> 4.	(3)	5.	(3)
6.	(3)	7.	(3)	8.	(4)	ч. 9.	(2)	10.	(4)
0. 11.	(3)	7. 12.	(3)	o. 13.	(2)	3. 14.	(2)	15.	(4)
16.	(1)	17.	(2)	18.	(3)	19.	(1)	20.	(2) (4)
21.	(2)	22.	(3)	10.	(~)	15.	(')	20.	(-)
4 1.	(2)	<i>LL</i> .	(2)						

