Additional Problems for Self Practice (APSP)

2. Marked questions are recommended for Revision.

This Section is not meant for classroom discussion. It is being given to promote selfstudy and self testing amongst the Resonance students.

PART - I : PRACTICE TEST-1 (IIT-JEE (MAIN Pattern))

Max. Time : 1 Hr.

Max. Marks : 120

Important Instructions

1. The test is of $\mathbf{1}$ hour duration.
2. The Test Booklet consists of $\mathbf{3 0}$ questions. The maximum marks are 120.
3. Each question is allotted 4 (four) marks for correct response.
4. Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each question.
$1 / 4$ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
5. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 4 above.
6. 1 mole of N_{2} and 2 moles of H_{2} are allowed to react in a $1 \mathrm{dm}^{3}$ vessel. At equilibrium, 0.8 mole of NH_{3} is formed. The concentration of H_{2} in the vessel is
(1) 0.6 M
(2) 0.8 M
(3) 0.2 M
(4) 0.4 M

[k represents rate constant]
(1) $\frac{K_{A} \cdot K_{B}}{K_{C} \cdot K_{D}}$
(2) $\frac{K_{A} \cdot K_{D}}{K_{B} \cdot K_{C}}$
(3) $\frac{K_{B} \cdot K_{D}}{K_{A} \cdot K_{C}}$
(4) $\frac{K_{A} \cdot K_{C}}{K_{B} \cdot K_{D}}$
7. Select the reaction for which the equilibrium constant is written as $\left[M X_{3}\right]^{2}=K_{\text {eq. }}\left[M X_{2}\right]^{2}\left[X_{2}\right]$
(1) $M X_{3} \rightleftharpoons M X_{2}+\frac{1}{2} X_{2}$
(2) $2 \mathrm{MX}_{3} \rightleftharpoons 2 \mathrm{MX}_{2}+\mathrm{X}_{2}$
(3) $2 \mathrm{MX}_{2}+\mathrm{X}_{2} \rightleftharpoons 2 \mathrm{MX}_{3}$
(4) $M X_{2}+\frac{1}{2} X_{2} \rightleftharpoons M X_{3}$.
8. What should be the value of Kc for the reaction $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$, if the amount are $\mathrm{SO}_{3}=48$ $\mathrm{g}, \mathrm{SO}_{2}=12.8 \mathrm{~g}$ and $\mathrm{O}_{2}=9.6 \mathrm{~g}$ at equilibrium and the volume of the container is one litre?
(1) 64
(2) 0.30
(3) 42
(4) 8.5
9. The equilibrium constant $\left(\mathrm{K}_{\mathrm{p}}\right)$ for the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is 16. If the volume of the container is reduced to one half its original volume, the value of K_{p} for the reaction at the same temperature will be :
(1) 32
(2) 64
(3) 16
(4) 4
10. $\quad 4.5$ moles each of hydrogen and iodine heated in a sealed ten litre vessel. At equilibrium 3 moles of HI were found. The equilibrium constant for $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is :
(1) 1
(2) 10
(3) 5
(4) 0.33
11. In a 20 litre vessel initially each have $1-1$ mole $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O} \mathrm{CO}_{2}$ is present, then for the equilibrium of $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$ following is true :
(1) H_{2}, more then 1 mole
(2) $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}$ less then 1 mole
(3) $\mathrm{CO}_{2} \& \mathrm{H}_{2} \mathrm{O}$ both more than 1 mole
(4) All of these

8．At 1000 K ，the value of K_{p} for the reaction $\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$ is 0.05 atmosphere．The value of K_{c} in terms of R would be ：
（1） 20000 R
（2） 0.02 R
（3） $5 \times 10^{-5} \mathrm{R}$
（4） $5 \times 10^{-5} \times \mathrm{R}^{-1}$

9．In which of the following reactions is $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$ ？
（1） $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$
（2） $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
（3） $2 \mathrm{BrCl}(\mathrm{g}) \rightleftharpoons \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$
（4） $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{g})$

10． K for the synthesis of HI is $50 . \mathrm{K}$ for dissociation of HI is ：
（1） 50
（2） 5
（3） 0.2
（4） 0.02

11．The equilibrium constant of the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 64 ．If the volume of the container is reduced to one fourth of its original volume，the value of the equilibrium constant will be
（1） 16
（2） 32
（3） 64
（4） 128

12．In equilibrium $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
The equilibrium constant may change when
（1） $\mathrm{CH}_{3} \mathrm{COO}^{-}$is added
（2） $\mathrm{CH}_{3} \mathrm{COOH}$ is added
（3）Catalyst is added
（4）Mixture is heated

13．In the gaseous reaction， $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$ ，the moles／litre of $\mathrm{N}_{2}, \mathrm{O}_{2}$ and NO respectively are 0.25 ， 0.05 and 1.0 at equilibrium．The initial concentration of N_{2} and O_{2} will be respectively ：（Assume that initially，only N_{2} and O_{2} are present）
（1） $0.75 \mathrm{~mol} / \mathrm{litre}, 0.55 \mathrm{~mole} / \mathrm{litre}$
（2） $0.50 \mathrm{~mole} / \mathrm{litre}, 0.75 \mathrm{~mole} / \mathrm{litre}$
（3） $0.25 \mathrm{~mole} / \mathrm{litre}, 0.50 \mathrm{~mole} / \mathrm{litre}$
（4） $0.25 \mathrm{~mole} / \mathrm{litre}, 1.0$ mole／litre

14．In the following reaction started only with $A_{8}, 2 A_{8}(g) \rightleftharpoons 2 A_{3}(g)+3 A_{2}(g)+A_{4}(g)$ mole fraction of A_{2} is found to 0.36 at a total pressure of 100 atm at equilibrium．The mole fraction of $\mathrm{A}_{8}(\mathrm{~g})$ at equilibrium is ：
（1） 0.28
（2） 0.72
（3） 0.18
（4）None of these

15．In a 0.25 litre tube dissociation of 4 moles of NO is take place．If its degree of dissociation is 10% ．The value of K_{p} for reaction $2 \mathrm{NO} \rightleftharpoons \mathrm{N}_{2}+\mathrm{O}_{2}$ is ：
（1）$\frac{1}{(18)^{2}}$
（2）$\frac{1}{(8)^{2}}$
（3）$\frac{1}{16}$
（4）$\frac{1}{32}$

16．For the given reaction at constant pressure，

	$\mathrm{n} \mathrm{A}(\mathrm{g}) \rightleftharpoons$	\rightleftharpoons
Initial moles	1	0
Moles at equilibrium	$1-\alpha$	
M	α / n	

Then the correct relation between initial density $\left(d_{i}\right) \&$ final density $\left(d_{f}\right)$ of the system is
（1）$\left[\frac{n-1}{n}\right]\left[\frac{d_{f}-d_{i}}{d_{f}}\right]=\alpha$
（2）$\frac{n}{n-1} \frac{\left[d_{f}-d_{i}\right]}{d_{f}}=\alpha$
（3）$\left[\frac{n-1}{n}\right]\left[\frac{d_{i}-d_{f}}{d_{i}}\right]=\alpha$
（4）$\frac{1}{(n-1)}\left[\frac{d_{i}-d_{f}}{d_{i}}\right]=\alpha$

17．On decomposition of $\mathrm{NH}_{4} \mathrm{HS}$ ，the following equilibrium is established ：

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

If the total pressure is P atm，then the equilibrium constant K_{p} is equal to
（1）P atm
（2） $\mathrm{P}^{2} \mathrm{~atm}^{2}$
（3） $\mathrm{P}^{2} / 4 \mathrm{~atm}^{2}$
（4） 2 P atm

18．At room temperature，the equilibrium constant for the reaction $P+Q \rightleftharpoons R+S$ was calculated to be 4．32．At $425^{\circ} \mathrm{C}$ the equilibrium constant became 1.24×10^{-2} ．This indicates that the reaction
（1）is exothermic
（2）is endothermic
（3）is difficult to predict
（4）no relation between $\Delta \mathrm{H}$ and K

19．Calculate $\Delta \mathrm{G}^{\circ}$ for conversion of oxygen to ozone $3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g})$ at 298 K ，if K_{p} for this conversion is 2.47×10^{-29}
（1） $163 \mathrm{~kJ} \mathrm{~mol}^{-1}$
（2） $2.4 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}$
（3） $1.63 \mathrm{~kJ} \mathrm{~mol}^{-1}$
（4） $2.38 \times 10^{6} \mathrm{~kJ} \mathrm{~mol}^{-1}$

20．For the reaction， $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\ell), \Delta \mathrm{H}=$ positive ．
At equilibrium which factor will not effect the concentration of NH_{3} is ：
（1）change in pressure
（2）change in volume
（3）catalyst
（4）None of these

21．The effect of adding krypton（Kr）gas on position of equilibrium，keeping the volume of the system constant is
（1）If $\Delta n=0$ ，backward reaction is favoured．
（2）If，$\Delta \mathrm{n}=+\mathrm{ve}$ ，forward reaction is favoured
（3）If $\Delta \mathrm{n}=-\mathrm{ve}$ ，forward reaction is favoured
（4）No effect whatever be the value of Δn

22．Le－Chatelier＇s principle is applicable only to a
（1）System in equilibrium
（2）Irreversible reaction
（3）Homogeneous reaction
（4）Heterogeneous reaction

23．＇a＇moles of PCl_{5} ，undergoes，thermal dissociation as ： $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ ，the mole fraction of PCl_{3} at equilibrium is 0.25 and the total pressure is 2.0 atmosphere．The partial pressure of Cl_{2} at equilibrium is：
（1） 2.5
（2） 1.0
（3） 0.5
（4）None

24．The value of ΔG° for the phosphorylation of glucose in glycolysis is $15 \mathrm{~kJ} /$ mole．Find the value of K_{c} at 300 K．
（1）e^{6}
（2） $10^{-\frac{6}{2.303}}$
（3）$\frac{1}{e^{-6}}$
（4） $10^{\frac{2.303}{6}}$

25．Which of the following statements is correct for a reversible process in a state of equilibrium ？
（1）$\Delta G=2.30 R T \log K$
（2）$\Delta G^{\circ}=-2.30 R T \log K$
（3）$\Delta G^{\circ}=2.30 R T \log \mathrm{~K}$
（4）$\Delta G=-2.30 R T \log K$

26．For the following isomerisation reaction
cis－butene－ $2 \rightleftharpoons$ trans－butene－2 $\quad \mathrm{K}_{\mathrm{P}}=1.732$

Which of the following statement is true at point＇ A ＇？
（1）$Q>K_{p}$
（2）$Q<K_{p}$
（3） $\mathrm{Q}=\mathrm{K}=1$
（4） $\mathrm{Q}=\mathrm{K}=1.732$

27．The following equilibrium exists in a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ ．

$$
\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})} ; \quad \Delta \mathrm{H}_{25^{\circ} \mathrm{C}}=3.5 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

A change that will shift the equilibrium to the right is
（1）decrease in temperature
（2）increase in temperature
（3）addition of $\mathrm{NH}_{4} \mathrm{Cl}$ crystals to the reaction mixture
（4）addition of $\mathrm{NH}_{4} \mathrm{OH}$ solution to the reaction mixture．
28．For the reaction ： $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
The backward reaction at constant temperature is favoured by
（1）introducing chlorine gas at constant volume
（2）introducing an inert gas at constant pressure
（3）increasing the volume of the container
（4）introducing PCl_{5} at constant volume

29．Find out $\ln \mathrm{K}_{\text {eq }}$ for the formation of NO_{2} from NO and O_{2} at 298 K
$\mathrm{NO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{NO}_{2} \mathrm{~g}$
Given ：

$$
\begin{aligned}
& \Delta G_{i}^{\circ}\left(\mathrm{NO}_{2}\right)=52.0 \mathrm{KJ} / \mathrm{mole} \\
& \Delta \mathrm{G}_{\ddagger}^{\circ}(\mathrm{NO})=87.0 \mathrm{KJ} / \mathrm{mole} \\
& \Delta \mathrm{G}_{\ddagger}^{\circ}\left(\mathrm{O}_{2}\right)=0 \mathrm{KJ} / \mathrm{mole}
\end{aligned}
$$

（1）$\frac{35 \times 10^{3}}{8.314 \times 298}$
（2）$-\frac{35 \times 10^{3}}{8.314 \times 298}$
（3）$\frac{35 \times 10^{3}}{2.303 \times 8.314 \times 298}$
（4）$\frac{35 \times 10^{3}}{2 \times 298}$

30．If a reaction vessel at $400^{\circ} \mathrm{C}$ is charged with equimolar mixture of CO and steam such that $\mathrm{PcO}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=4$ bar what will be that partial pressure of H_{2} at equilibrium
$\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$
$K_{P}=9$
（1） 0.3 bar
（2） 0.4 bar
（3） 0.2 bar
（4） 0.1 bar

Practice Test－1（IIT－JEE（Main Pattern）） OBJECTIVE RESPONSE SHEET（ORS）

Que．	1	2	3	4	5	6	7	8	9	10
Ans．										
Que．	11	12	13	14	15	16	17	18	19	20
Ans．										
Que．	21	22	23	24	25	26	27	28	29	30
Ans．										

PART－II ：NATIONAL STANDARD EXAMINATION IN CHEMISTRY（NSEC）STAGE－I

1．If the equilibrium constant for the reaction 0.125 ．
［NSEC－2000］

$$
\mathrm{P}_{4(g)}+6 \mathrm{Cl}_{2(g)} \rightleftharpoons 4 \mathrm{PCl}_{3(g)}
$$

The value of equilibrium for this reaction $4 \mathrm{PCl}_{3(g)} \rightleftharpoons \mathrm{P}_{4(g)}+6 \mathrm{Cl}_{2(g)}$ ．
（A） 0.25
（B） 8
（C） 0.125
（D） 6

2．The free energy change for a reversible reaction at equilibrium is ：
［NSEC－2000］
（A）very large positive
（B）positive
（C）zero
（D）negative

3．Pure ammonia is placed in a vessel at a temperature where its dissociation constant is appreciable．At equilibrium ：
［NSEC－2001］
（A）concentration of ammonia does not change with pressure．
（B）its degree of dissociation，a does not change with pressure．
（C）K_{p} does not change significantly with pressure．
（D）concentration of hydrogen is less than that of nitrogen．
4．One mole of ethyl alcohol was treated with one mole of acetic acid at $25^{\circ} \mathrm{C}$ ．Two－third of the acid changes into ester at equilibrium．The equilibrium constant for the reaction will be ：
［NSEC－2001］
（A） 3
（B） 2
（C） 1
（D） 4

5．The relationship between equilibrium constants K_{p} and K_{c} for a gaseous reaction is ：
［NSEC－2001］
（A） $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} \cdot \mathrm{R}(\mathrm{T})^{\Delta \mathrm{n}}$
（B） $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}} \cdot(\mathrm{RT})^{\Delta \mathrm{n}}$
（C） $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} .(\mathrm{RT})^{\Delta \mathrm{n}}$
（D） $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} / \mathrm{RT}^{\Delta \mathrm{n}}$

6．For the gaseous reaction， $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}$ ，the equilibrium constant has the units ：［NSEC－2001］
（A） $\mathrm{mol}^{2} \mathrm{dm}^{-3}$
（B） $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$
（C） $\mathrm{dm}^{3} \mathrm{~mol}^{-2}$
（D） $\mathrm{mol}^{2} \mathrm{dm}^{-3}$
7. The equilibrium constant for the reaction $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightleftharpoons 2 \mathrm{HBr}$ is 67.8 at $300^{\circ} \mathrm{K}$. The equilibrium constant for the dissociation of HBr is :
[NSEC-2001]
(A) 0.0147
(B) 67.80
(C) 33.90
(D) 8.349
8. The equilibrium constant (K) for the reaction, $\mathrm{A}+2 \mathrm{~B} \rightleftharpoons 2 \mathrm{C}+\mathrm{D}$ is :
[NSEC-2001]
(A) $\frac{[C]^{2}[D]}{[A][2 B]}$
(B) $\frac{[2 \mathrm{C}][\mathrm{D}]}{[\mathrm{A}][2 \mathrm{~B}]}$
(C) $\frac{[C][D]}{[A][B]}$
(D) $\frac{[C]^{2}[D]}{[A][B]^{2}}$
9. The following pictures represents the equilibrium state for three different reactions of the type
[NSEC-2002]

$\left[\mathrm{A}_{2}+\mathrm{C}_{2} \rightleftharpoons 2 \mathrm{C}\right] \quad\left[\mathrm{A}_{2}+\mathrm{D}_{2} \rightleftharpoons 2 \mathrm{CD}\right]$

Which reaction has the largest equilibrium constant ?
(A) $\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons 2 \mathrm{AB}$
(B) $\mathrm{A}_{2}+\mathrm{C}_{2} \rightleftharpoons 2 \mathrm{AC}$
(C) $\mathrm{A}_{2}+\mathrm{D}_{2} \rightleftharpoons 2 \mathrm{AD}$
(D) none of these
10. Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is manufactrued by reaction of carbon monoxide with hydrogen in the presence of $\mathrm{ZnO} / \mathrm{Cr}_{2} \mathrm{O}_{3}$ catalyst.
[NSEC-2002]

$$
\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) ;\left[\Delta \mathrm{H}^{\circ}=-91 \mathrm{~kJ}\right]
$$

What happen to the amount of methanol when an equilibrium mixtrue of reactants and products is subjected to rise in temperature ?
(A) Amount of methanol will increase
(B) Amount of methanol will decrease
(C) Amount of methanol remain the same
(D) None of these
11. For the reversible reaction, $A+B \rightleftharpoons C$, the specific reaction rates for forward and reverse reactions are 1.25×10^{-3} and 2.75×10^{-5} respectively. The equilibrium constant for the reaction is: [NSEC-2002]
(A) 45.45
(B) 0.022
(C) 2.20
(D) 0.4545
12. The equilibrium constant for the gaseous reaction $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightleftharpoons 2 \mathrm{HCl}$ is given by
[NSEC-2002]
(A) $\mathrm{K}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{[\mathrm{HCI}]^{2}}$
(B) $\mathrm{K}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{2[\mathrm{HCl}]}$
(C) $\mathrm{K}=\frac{[\mathrm{HCl}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{Cl}_{2}\right]}$
(D) $\mathrm{K}=\frac{2[\mathrm{HCl}]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{Cl}_{2}\right]}$
13. For the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$, the units of K_{c} and K_{p} respectively are :
[NSEC-2003]
(A) $\mathrm{mol}^{-2} \mathrm{~L}^{2}$ and bar-2
(B) $\mathrm{mol}^{-2} \mathrm{~L}^{2}$ and bar-1
(C) $\mathrm{mol}^{-1} \mathrm{~L}$ and bar-2
(D) $\mathrm{mol}^{-1} \mathrm{~L}^{-1}$ and bar-1
14. The equilibrium constant for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ is 70 at a certain temperature. Hence, equilibrium constant for the reaction $\mathrm{NH}_{3} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2}$ of the same temperature will be approximately
[NSEC-2004]
(A) 1.4×10^{-2}
(B) 1.2×10^{-1}
(C) 2.0×10^{-4}
(D) 2.9×10^{-2}.
15. For the reaction $4 \mathrm{NH}_{3(\mathrm{~g})}+7 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 4 \mathrm{NO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}, \mathrm{K}_{\mathrm{p}}$ is related to K_{c} by
[NSEC-2005]
(A) $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})$
(B) $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
(C) $K_{p}=K_{c}(R T)^{3}$
(D) $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} \mathrm{I}(\mathrm{RT})^{-1}$.
16. When $K_{c}>1$ for a chemical reaction,
[NSEC-2005]
(A) the equilibrium would be achieved rapidly
(B) the equilibrium would be achieved slowly
(C) product concentrations would be much greater than reactant concentrations at equilibrium
(D) reactant concentrations would be much greater then product concentrations at equilibrium.
17. Increased pressure shifts the equilibrium of the reaction : $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ so as to
[NSEC-2006]
(A) form more ammonia gas
(B) produce more $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$
(C) keep the conversion to ammonia unaltered
(D) produce more $\mathrm{H}_{2}(\mathrm{~g})$.
18. In which of the following reactions will an increase in volume of the reaction system favor the formation of the products ?
[NSEC-2007]
(A) $\mathrm{C}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})}$
(B) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}$
(C) $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
(D) $3 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{O}_{3(\mathrm{~g})}$
19. Which of the following changes the value of the equilibrium constant?
[NSEC-2007]
(A) change in concentration
(B) change in pressure
(C) change in volume
(D) none of these
20. Consider the equilibrium reaction:
[NSEC-2007]
$4 \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{~N}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$(\Delta \mathrm{H}=-1268 \mathrm{KJ})$

Which change will cause the reaction to shift to the right?
(A) Increase the temperature
(B) Decrease the volume of the container.
(C) Add a catalyst to speed up the reaction.
(D) Remove the gaseous water by allowing it to react and be absorbed by KOH .
21. At a given temperature the equilibrium constants of the gaseous reactions
$\mathrm{NO}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \stackrel{\mathrm{K}_{1}}{\rightleftharpoons} \mathrm{NO}_{2(\mathrm{~g})}$
$2 \mathrm{NO}_{2(\mathrm{~g})} \stackrel{\mathrm{K}_{2}}{\rightleftharpoons} 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$ are related as :
[NSEC-2008]
(A) $\mathrm{K}_{1}=2 \mathrm{~K}_{2}$
(B) $K_{1}=1 / K_{2}$
(C) $K_{1}=\sqrt{K_{2}}$
(D) $\mathrm{K}_{1}=1 / \sqrt{\mathrm{K}_{2}}$
22. For the reaction $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
[NSEC-2009]
(A) $K_{p}=K_{c}$
(B) $K_{p}>K_{c}$
(C) $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
(D) $K_{c}=\sqrt{K_{p}}$
23. If the equilibrium constants of the reactions,
[NSEC-2009]

$$
2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \quad \text { and } \quad \mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3}
$$

are K_{1} and K_{2} respectively, the correct relation between the two equilibrium constant is,
(A) $\mathrm{K}_{2}=\left(\mathrm{K}_{1}\right)^{-1}$
(B) $K_{2}=\sqrt{\frac{1}{K_{1}}}$
(C) $\mathrm{K}_{2}=\left(\frac{1}{\mathrm{~K}_{1}}\right)^{2}$
(D) $\sqrt{K_{1}}$
24. The equilibrium constant K_{c} for the reaction,
[NSEC-2009]
$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(A) $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NaHCO}_{3}\right]^{2}}$
(B) $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{NaHCO}_{3}\right]^{2}}$
(C) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
(D) $\mathrm{K}_{\mathrm{c}}=\mathrm{p}_{\mathrm{CO} 2} \times \mathrm{p}_{\mathrm{H} 2 \mathrm{O}}$
25. For the following reaction, the value of K changes with
[NSEC-2010]
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
$\Delta \mathrm{H}=+180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(A) change in pressure
(B) change in concentration of oxygen
(C) introduction of $\mathrm{NO}(\mathrm{g})$
(D) change in temperature
26.* The formation of ammonia from nitrogen and hydrogen gases can he written by the following two equations
(a) $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})$
(b) $\frac{1}{3} \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \frac{2}{3} \mathrm{NH}_{3}(\mathrm{~g})$

The two equations have equilibrium constants K_{1} and K_{2}, respectively. The relationship between the equilibrium constants is
[NSEC-2010]
(A) $\mathrm{K}_{1}=\mathrm{K}_{2}^{2}$
(B) $\mathrm{K}_{1}{ }^{3}=\mathrm{K}_{2}{ }^{2}$
(C) $\mathrm{K}_{1}^{2 / 3}=\mathrm{K}_{2}$
(D) $\mathrm{K}_{1}=\mathrm{K}_{2}^{3 / 2}$
27. For the reaction $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}$ is 26 at $250^{\circ} \mathrm{C} . \mathrm{K}_{\mathrm{p}}$ at the same temperature is ($\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
[NSEC-2011]
(A) 4.6×10^{-3}
(B) 5.7×10^{-3}
(C) 6.0×10^{-3}
(D) 8.3×10^{-3}
28. At $445^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}$ for the following reaction is 0.020 .
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
A mixture of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI in a vessel at $445^{\circ} \mathrm{C}$ has the following concentrations:
[NSEC-2011]
$[\mathrm{HI}]=2.0 \mathrm{M},\left[\mathrm{H}_{2}\right]=0.50 \mathrm{M}$ and $\left[\mathrm{I}_{2}\right]=0.10 \mathrm{M}$. The statement that is true concerning the reaction quotient, Q_{c} is:
(A) $Q_{c}=K_{c}$; the system is at equilibrium
(B) Q_{c} is less than K_{c}; more H_{2} and I_{2} will be produced
(C) Q_{c} is less than K_{c}; more HI will be produced
(D) Q_{c} is greater than K_{c}; more H_{2} and I_{2} will be produced
29. The oxidation of SO_{2} by O_{2} is an exothermic reaction. The yield of SO_{3} can be maximized if :
(A) temperature is increased and pressure is kept constant
[NSEC-2012]
(B) temperature is decreased and pressure is increased
(C) both temperature and pressure are increased
(D) both temperature and pressure are decreased
30. In which of the following reaction is $K_{p}>K_{c}$
[NSEC-2012]
(A) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
(B) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
(C) $2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$
(D) $\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightleftharpoons \mathrm{PCl}_{5}$
31. The $\mathrm{Kp} / \mathrm{Kc}$ ratio for the reaction $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, at $127^{\circ} \mathrm{C}$ is: [NSEC-2013]
(A) 0.0301
(B) 0.0831
(C) 1.0001
(D) 33.26
32. Kp for the reaction given below is 1.36 at 499 K . Which of the following equaitons can be used to calculate K_{c} for this reaction?
[NSEC-2013]
$\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{3(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
(A) $\mathrm{K}_{\mathrm{c}}=\frac{[(0.0821) \times(499)]}{[1.36]}$
(B) $K_{c}=\frac{[(1.36) \times(0.0821)]}{[499]}$
(C) $\mathrm{K}_{\mathrm{c}}=\frac{[1.36]}{[(0.0821) \times(499)]}$
(D) $\mathrm{K}_{\mathrm{c}}=\frac{[(1.36) \times(499)]}{[0.0821]}$
33. At 700 K , for the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ the K_{p} is 3.2×10^{4}. At the same temperature the K_{P} for the reaction $\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+0.50 \mathrm{O}_{2}(\mathrm{~g})$ is :
[NSEC-2014]
(A) 3.125×10^{-5}
(B) 5.59×10^{-3}
(C) 1.79×10^{4}
(D) 1.79×10^{-2}
34. For the following reaction, formation of the product is favored by
[NSEC-2015]
$\mathrm{A}_{2}(\mathrm{~g})+4 \mathrm{~B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}_{4}(\mathrm{~g}), \Delta \mathrm{H}<0$
(A) Low temperature and high pressure
(B) High temperature and low pressure
(C) Low temperature and low pressure
(D) High temperature and high pressure
35. The equilibrium constant of the following isomerisation reaction at 400 K and 298 K are 2.07 and 3.42 respectively.

$$
\text { cis-butene } \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \text { trans-butene }
$$

Which of the following is/are correct?
[NSEC-2017]
I. The reaction is exothermic
II. The reaction is endothermic
III. At $400 \mathrm{~K} 50 \%$ of cis-butene and 50% of trans-butene are present of equilibrium
IV. Both at 298 K and $400 \mathrm{~K}, \mathrm{k}_{1}=\mathrm{k}-1$
(A) I and IV
(B) II and IV
(C) I and III
(D) I only
36. Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is partially dimerised to $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}$ in the vapour phase. At a total pressure of 0.200 atm , acetic acid is 92.0% dimerized at 298 K .
The value of equilibrium constant of dimerisation under these conditions is
[NSEC-2017]
(A) 57.5
(B) 9.7
(C) 97
(D) 194

Resomance ${ }^{\circ}$
Reg. \& Corp. Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Educating for better tomorrow

PART - III : HIGH LEVEL PROBLEMS (HLP)

SUBJECTIVE QUESTIONS

1. In a vessel, two equilibrium are simultaneously established at the same temperature as follows:

$$
\begin{align*}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \tag{1}\\
& \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \tag{2}
\end{align*}
$$

Initially the vessel contains N_{2} and H_{2} in the molar ratio of $9: 13$. The equilibrium pressure is $7 \mathrm{P}_{0}$, in which pressure due to ammonia is P_{0} and due to hydrogen is $2 \mathrm{P}_{0}$. Find the values of equilibrium constants (Kp's) for both the reactions

ONLY ONE OPTION CORRECT TYPE

2. For the following gases equilibrium, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}$ is found to be equal to K c. This is attained when :
(A) $0^{\circ} \mathrm{C}$
(B) 273 K
(C) 1 K
(D) 12.19 K
3. Consider the following reversible gaseous reactions (at 298 K) :
(a) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
(b) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
(c) $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
(d) $X+Y \rightleftharpoons 4 Z$

Highest and lowest value of $\frac{K_{p}}{K_{c}}$ will be shown by the equilibrium
(A) d, b
(B) a, c
(C) a, b
(D) b, c7
4. For a container containing $A(g), B(g), C(g) \& D(g)$ with rigid walls, an experiment is carried upon. This experiment involves increase in temperature of container in steps of $1^{\circ} \mathrm{C}$ and system is allowed to attain equilibrium, followed by calculation of $\mathrm{K}_{1} \& \mathrm{~K}_{2}$ at each step, where $\mathrm{K}_{1} \& \mathrm{~K}_{2}$ are equilibrium constants for reaction (1) \& (2) respectively.

$$
\begin{align*}
& \mathrm{A}(\mathrm{~g})+\mathrm{AB}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{~g})+\mathrm{D}(\mathrm{~g}) \\
& \mathrm{C}(\mathrm{~g})+\mathrm{D}(\mathrm{~g}) \rightleftharpoons \mathrm{A}(\mathrm{~g})+2 \mathrm{~B}(\mathrm{~g})
\end{align*}
$$

Select the graph showing correct relationship -
(A)

(B)

(C)

(D)

5. If $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{CuSO}_{4} .3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{P}}=4 \times 10^{-4} \mathrm{~atm}^{2}$
at $25^{\circ} \mathrm{C}$. The efflorescent nature of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ can be noticed when vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ in atmosphere is
(A) $>15.2 \mathrm{~mm}$
(B) $<15.2 \mathrm{~mm}$
(C) $\leq 15.2 \mathrm{~mm}$
(D) $=15.2 \mathrm{~mm}$
6. At a temperature T, a compound $A B_{4}(g)$ dissociates as $2 A B_{4}(g) \rightleftharpoons A_{2}(g)+4 B_{2}(g)$ with a degree of dissociation x, which is small compared with unity. The expression of K_{p} in terms of x and total pressure P is :
(A) $8 P^{3} x^{5}$
(B) $256 \mathrm{P}^{3} \mathrm{x}^{5}$
(C) $4 P x^{2}$
(D) None of these.
7. The equilibrium, $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is attained at $25^{\circ} \mathrm{C}$ in a closed container and inert gas helium is introduced isothermally. Which of the following statement(s) is/are correct ?
I. Concentrations of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ change
II. More chlorine is formed
III. Concentration of SO_{2} is reduced
IV. More $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is formed.
(A) I, II, III
(B) II, III, IV
(C) III, IV
(D) None

Resonance ${ }^{\circ}$
Educating for better tomorrow
8. $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g}) \quad \mathrm{Kp}=1 \mathrm{~atm}$
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{K}, ~=4 \times 10^{-2}$
Solid C, CaO and CaCO_{3} are mixed and allowed to attain equilibrium. Calculate final pressure of CO .
(A) 0.4 atm
(B) 0.2 atm
(C) 8 atm
(D) 0.01 atm
9. Ammonia gas at 15 atm is introduced in a rigid vessel at 300 K . At equilibrium the total pressure of the vessel is found to be 40.11 atm at $300^{\circ} \mathrm{C}$. The degree of dissociation of NH_{3} will be :
(A) 0.6
(B) 0.4
(C) Unpredictable
(D) None of these
10. Two solid A and B are present in two different container having same volume and same temperature following equilibrium are established :
In container (1) $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{D}(\mathrm{g})+\mathrm{C}(\mathrm{g}) \mathrm{P}_{\mathrm{T}}=40$ atm at equilibrium
In container $(2) \mathrm{B}(\mathrm{s}) \rightleftharpoons \mathrm{E}(\mathrm{g})+\mathrm{F}(\mathrm{g}) \mathrm{P}_{\mathrm{T}}=60$ atm at equilibrium
If excess of A and B are added to a third container having double the volume and at same temperature then, the total pressure of this container at equilibrium is :
(A) 50 atm
(B) 100 atm
(C) 200 atm
(D) 70 atm
11. For equilibrium $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{ZnSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{K}_{\mathrm{p}}=56.25 \times 10^{-10} \mathrm{~atm}^{5}$ and vapour pressure of water is 22.8 torr at $298 \mathrm{~K} . \mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ (s) is efflorescent (lose water) when relative humidity is [$\sqrt[5]{56.25}=2.23$]
(A) more than 80.60%
(B) less than 74.60\%
(C) Above than 74.60%
(D) Above than 70.60%
12. Solid A and B are taken in a closed container at a certain temperature. These two solids decompose and following equilibria are established simultaneously

$$
\begin{array}{ll}
\mathrm{A}(\mathrm{~s}) \rightleftharpoons \mathrm{X}(\mathrm{~g})+\mathrm{Y}(\mathrm{~g}) & \mathrm{K}_{\mathrm{P}_{1}}=250 \mathrm{~atm}^{2} \\
\mathrm{~B}(\mathrm{~s}) \rightleftharpoons \mathrm{Y}(\mathrm{~g})+\mathrm{Z}(\mathrm{~g}) & \mathrm{K}_{\mathrm{P}_{2}}=?
\end{array}
$$

If the total pressure developed over the solid mixture is 50 atm . Then the value of K_{p} for the $2^{\text {nd }}$ reaction.
(A) 375
(B) 625
(C) 225
(D) 250
13. $\quad \mathrm{X}(\mathrm{s}) \rightleftharpoons \mathrm{Y}(\mathrm{g})+2 \mathrm{Z}(\mathrm{g})$
$\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{Y}(\mathrm{g})+\mathrm{B}(\mathrm{g})$
Consider both these equilibrium to be established simultaneously in a closed container.
At equilibrium, pressure of Z and B were found to be same and sum of pressure of $Z \& B$ is 10 atm more than that of species Y. Find ratio of standard gibb's energy of two reactions.
(A) 20
(B) $2.303 \log _{10} 20$
(C) $\log _{10} \sqrt[3]{144}$
(D) $\frac{3+\log 12}{2+\log 6}$
14. In one experiment, certain amount of $\mathrm{NH}_{4} \mathrm{I}(\mathrm{s})$ was heated rapidly in a closed container at $375^{\circ} \mathrm{C}$. The following equilibrium was established :

$$
\mathrm{NH}_{4} \mathrm{I}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HI}(\mathrm{~g})
$$

Excess of $\mathrm{NH}_{4} \mathrm{l}(\mathrm{s})$ remained unreacted in the flask and equilibrium pressure was 304 mm of Hg . After some time, the pressure started increasing further owing to the dissociation of HI .

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{K} \mathrm{c}=0.010 \text { calculate final pressure. }
$$

(A) 328 mm Hg
(B) 331 mm Hg
(C) 662 mm Hg
(D) 151 mm Hg
15. $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{P}_{1}}=36$ atm 2
$\mathrm{E}(\mathrm{s}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{D}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{P}_{2}}=64 \mathrm{~atm}^{2}$
Both solids A \& E were taken in a container of constant volume at a given temperature. Total pressure in the container after equilibrium is
(A) 6 atm
(B) 5 atm
(C) 10 atm
(D) 20 atm

16．In a closed container following equilibrium will be attained－
$\mathrm{A}(\mathrm{s})+\mathrm{B}(\mathrm{g})$
 AB（g）
$\mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g})$
 BC（g）

On adding He gas（inert）to the above system at constant pressure \＆temperature
（A）Amount of $A B(g)$ will be increased surely．
（B）Amount of $\mathrm{BC}(\mathrm{g})$ will be decreased surely．
（C）Amount of $\mathrm{C}(\mathrm{g})$ will be decreased surely．
（D）both（A）and（B）．

17．$\quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ in a V lit container total x mol at eq．
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}+2 \mathrm{H}_{2}(\mathrm{~g}) \quad$ in V lit（other）container total y mol at eq．
If both are taken in same container（ V lit）then at new equation total mols will be
（A）$x+y$
（B）$>x+y$
（C）$<x+y$
（D）No prediction is possible．

SINGLE AND DOUBLE VALUE INTEGER TYPE

18．The equilibrium $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$ is established in a container of 4 L at a particular temperature．If the number of moles of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} at equilibrium are 2,1 and 4 respectively then find the value of equilibrium constant．

19．If the equilibrium constant of the reaction $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ is 0.25 ，find the equilibrium constant of the reaction $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{HI}(\mathrm{g})$ ．

20．$\quad A_{2}(g)$ and $B_{2}(g)$ having partial pressures 60 mm of $\mathrm{Hg} \& 42 \mathrm{~mm}$ of Hg respectively，are present in a closed vessel．At equilibrium，partial pressure of $\mathrm{AB}(\mathrm{g})$ is 28 mm of Hg ．If all measurements are made under similar condition，then calculate percentage of dissociation of $A B(\mathrm{~g})$ ．
（Round of answers to nearest integer）．
21． $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$K_{P_{1}}$
$\mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{P}_{2}}$
2 mol $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$ is taken $\& 50 \%$ of this is dissociated till at equilibrium in 1 litre container．Find $\frac{\mathrm{K}_{\mathrm{P}_{2}}^{2}}{\mathrm{~K}_{\mathrm{P}_{1}}^{6}}$ if 0.25 moles of N_{2} are found finally．

22．Consider
（I） $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2} \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}_{1}}=\frac{7}{8}$
（II） $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
$\mathrm{K}_{\mathrm{p}_{2}}=12.5 \mathrm{~atm}$

As 100 L of air（ $80 \% \mathrm{~N}_{2}, 20 \% \mathrm{O}_{2}$ by volume）is pased over excess heated coke to establish these equilibrium the equilibrium mixture is found to measure 105 L at constant temperature \＆pressure（105 atm）．Assuming no other reaction，find the sum of partial pressure of CO and CO_{2} in the final equilibrium mixture．

23．Two solid compounds A and C dissociate into gaseous product at temperature T as follows ：
（i） $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{D}(\mathrm{g}) \quad \mathrm{Kp}_{1}=625(\mathrm{~atm})^{2}$
（ii） $\mathrm{C}(\mathrm{s}) \rightleftharpoons \mathrm{E}(\mathrm{g})+\mathrm{D}(\mathrm{g}) \quad \mathrm{Kp}_{2}=975(\mathrm{~atm})^{2}$
Both solid are present in same container then calculate total pressure over the solid mixture．
24．If a mixture 0.4 mole H_{2} and 0.2 mole Br_{2} is heated at 700 K at equilibrium，the value of equilibrium constant is 0.25×10^{10} then find out the ratio of concentrations of $\left(\mathrm{Br}_{2}\right)$ and (HBr)（Report your answer as $\frac{\mathrm{Br}_{2}}{\mathrm{HBr}} \times 10^{11}$ ）

25． 2 mole of PCl_{5} were heated in a 5 liter vessel．It dissociated． 80% at equilibrium find out the value of equilibrium constant．Report your answer as $\mathrm{K}_{\mathrm{c}} \times 50$ ．

ResロாロாС•
Educating for better tomorrow

26．Two solids A and D dissociates into gaseous products as follows
A（s）
\rightleftharpoons
$\mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g}) ; \mathrm{K}_{\mathrm{P}_{1}}=300$
D（s）
$E(g)+C$
（g）$K_{P_{2}}=600$
at $27^{\circ} \mathrm{C}$ ，then find the total pressure of the solid mixture．

ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

27．（i） $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ ，
K_{1}
K_{2}
（ii）

$$
\left(\frac{1}{2}\right) \mathrm{N}_{2}(\mathrm{~g})+\left(\frac{1}{2}\right) \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})
$$

（iii）$\quad 2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ ； K_{3}
（iv） $\mathrm{NO}(\mathrm{g}) \rightleftharpoons\left(\frac{1}{2}\right) \mathrm{N}_{2}(\mathrm{~g})+\left(\frac{1}{2}\right) \mathrm{O}_{2}(\mathrm{~g}) ;$$\mathrm{K}_{4}$

Correct relation between $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$ and K_{4} is／are ：
（A）$K_{1} \times K_{3}=1$
（B）$\sqrt{\mathrm{K}_{1}} \times \mathrm{K}_{4}=1$
（C）$\sqrt{K_{3}} \times K_{2}=1$
（D）None

28．A 2 lit vessel is filled by 1 mole of each gas $A \& B$ ．If $K c$ for reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})$ is 1.5 at temp．T．［Atomic mass of A is $40 \& B$ is 20］． Which are correct option．
（A）$[A]$ vs time is graph I
（B）$[B]$ vs time is graph I
（C）$[A]$ vs time is graph II
（D）$[B]$ vs time is graph II
Conc．

29．The equilibrium constant for some reactions are given below against each of the reaction
（i） $2 \mathrm{~N}_{2}+5 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{5}$
$\mathrm{K}=5 \times 10^{-27}$
（ii） $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} ; \quad \mathrm{K}=2 \times 10^{-15}$
（iii） $\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$
$K=1.5 \times 10^{-29}$

Which of the following statement is correct
（A）The least stable oxide is NO_{2}
（B）The most stable oxide is NO
（C）The stability order is $\mathrm{N}_{2} \mathrm{O}_{5}>\mathrm{NO}_{2}>\mathrm{NO}$
（D）The stability order is $\mathrm{NO}_{2}>\mathrm{NO}>\mathrm{N}_{2} \mathrm{O}_{5}$
30．Sufficient amount of a solid X is taken in a rigid vessel at $\mathrm{T}^{\circ} \mathrm{C}$ where it attained the equilibrium ：

$$
\mathrm{X}(\mathrm{~s}) \rightleftharpoons \mathrm{Y}(\mathrm{~g})+2 \mathrm{Z}(\mathrm{~g})
$$

Total pressure was measured．Now the vessel is evacuated and filled with sufficient amount of another solid V under same conditions where it attained theequilibrium ：

$$
\mathrm{V}(\mathrm{~s}) \rightleftharpoons \mathrm{W}(\mathrm{~g})+2 \mathrm{Z}(\mathrm{~g})
$$

Total pressure measured now is found to be double that of previous value．Now，if both X \＆ V solids are allowed to attain their respective equilibrium together in the same vessel at same temperature， select the correct statement（s）：
（A）Kp for decompostion reaction of $V(s)=8 \times K$ for decomposition reaction of $X(s)$ ．
（B）In the $3^{\text {rd }}$ case（when both solids are simultaneously estabilishing their equilibrium）， $\mathrm{P}_{\mathrm{Y}}=\frac{1}{8} \mathrm{Pw}$ ．
（C）P_{Y} in $3^{\text {rd }}$ case $=\frac{1}{3 \sqrt[3]{3}} \times P_{Y}$ in $1^{\text {st }}$ case．
（D）In the $3^{\text {rd }}$ case， $\mathrm{P}_{\mathrm{w}}: \mathrm{P}_{\mathrm{z}}=4: 9$
31．$\quad \mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
For above simultaneous equilibrium if CO_{2} is added from out side at equilibrium then ：
（A） $\mathrm{P}_{\mathrm{CO}_{2}}$ will increase
（B） $\mathrm{P}_{\mathrm{CO}_{2}}$ will decrease
（C）No shift in $2^{\text {nd }}$ equilibrium
（D）Backward shift in $1^{\text {st }}$ equilibrium
32. For the reaction $\mathrm{SnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{Sn}(\mathrm{s})$. If at 900 K , equilibrium mixture contains 45% H_{2} by volume and at 1100 K it contains $24 \% \mathrm{H}_{2}$ by volume then which of the statements is/are correct.
(A) Reaction is endothermic in nature
(B) At higher temperature, the efficiency of reduction of tin oxide will increase
(C) Reaction is exothermic in nature
(D) At lower temperature, the efficiency of reduction of tin oxide decreases.
33. Consider equilibrium $\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Choose the correct direction of shifting of equilibrium with relative humidity.
(A) R.H. >1, rightward
(B) R.H. <1, rightward
(C) R.H. >1, leftward
(D) R.H. <1, leftward
34. An industrial fuel, 'water gas', which consists of a mixture of H_{2} and CO can be made by passing steam over red-hot carbon. The reaction is

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}), \Delta \mathrm{H}=+131 \mathrm{~kJ}
$$

The yield of CO and H_{2} at equilibrium would be shifted to the product side by :
(A) raising the relative pressure of the steam
(B) adding hot carbon
(C) raising the temperature
(D) reducing the volume of the system

PART - IV : PRACTICE TEST-2 (IIT-JEE (ADVANCED Pattern))

Max. Time : 1 Hr .
 Important Instructions:

A. General :

1. The test is of 1 hour duration.
2. The Test Booklet consists of 20 questions. The maximum marks are 60.
B. Question Paper Format
3. Each part consists of five sections.
4. Section-1 contains 7 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE is correct.
5. Section-2 contains 4 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR MORE THAN ONE are correct.
6. Section-3 contains 6 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9 (both inclusive).
7. Section-4 contains 1 paragraphs each describing theory, experiment and data etc. 2 questions relate to paragraph. Each question pertaining to a partcular passage should have only one correct answer among the four given choices (A), (B), (C) and (D).
8. Section 5 contains 1 multiple choice questions. Question has two lists (list-1: P, Q, R and S; List-2: 1, 2, 3 and 4). The options for the correct match are provided as (A), (B), (C) and (D) out of which ONLY ONE is correct.
C. Marking Scheme
9. For each question in Section 1, 4 and 5 you will be awarded 3 marks if you darken the bubble corresponding to the correct answer and zero mark if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.
10. For each question in Section 2, you will be awarded 3 marks. If you darken all the bubble(s) corresponding to the correct answer(s) and zero mark. If no bubbles are darkened. No negative marks will be answered for incorrect answer in this section.
11. For each question in Section 3, you will be awarded 3 marks if you darken only the bubble corresponding to the correct answer and zero mark if no bubble is darkened. No negative marks will be awarded for incorrect answer in this section.

SECTION-1 : (Only One option correct Type)

This section contains 7 multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which Only ONE option is correct.

1. Which of the following is correct for the equilibrium of the reaction

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

(A) $\mathrm{p}_{\mathrm{H}_{2}} \propto \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}$
(B) $\mathrm{p}_{\mathrm{H}_{2}} \propto \sqrt{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}$
(C) $\mathrm{p}_{\mathrm{H}_{2}} \propto \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}^{2}$
(D) $\mathrm{p}_{\mathrm{H}_{2}} \propto \frac{\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}^{2}}{\mathrm{p}_{\mathrm{CO}}}$
2. For the reaction $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$; supposing at constant temperature, if the volume is increased to 16 times the initial volume, the degree of dissociation for this reaction will becomes: $(\alpha \lll 1)$
(A) 4 times
(B) $\frac{1}{4}$ times
(C) 2 times
(D) $\frac{1}{4}$ times
3. A vessel of 10 L was filled with 6 mole of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ and 6 mole of H_{2} to attain the equilibrium at $440^{\circ} \mathrm{C}$ as :

$$
\mathrm{Sb}_{2} \mathrm{~S}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Sb}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

After equilibrium the $\mathrm{H}_{2} \mathrm{~S}$ formed was analysed by dissolving it in water and treating with excess of Pb^{2+} to give 708 g of PbS as precipitate. What is value of K_{c} of the reaction at $440^{\circ} \mathrm{C}$? (At. weight of $\mathrm{Pb}=206)$.
(A) 1
(B) 0.8
(C) 0.4
(D) 0.04
4. Variation of $\log _{10} \mathrm{~K}$ with $\frac{1}{\mathrm{~T}}$ is shown by the following graph in which straight line is at 45°, hence $\Delta \mathrm{H}^{\circ}$ is :

$(\mathrm{A})+4.606 \mathrm{cal}$
(B) -4.606 cal
(C) 2 cal
(D) -2 cal
5. $\quad \mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$

In above reaction low pressure and high temperature, conditions are shift equilibrium in back direction so correct set :
(A) $(a+b)>(c+d), \Delta H>0$
(B) $(\mathrm{a}+\mathrm{b})<(\mathrm{c}+\mathrm{d}), \Delta \mathrm{H}>0$
(C) $(\mathrm{a}+\mathrm{b})<(\mathrm{c}+\mathrm{d}), \Delta \mathrm{H}<0$
(D) $(\mathrm{a}+\mathrm{b})>(\mathrm{c}+\mathrm{d}), \Delta \mathrm{H}<0$
6. The value of k_{p} for the reaction at $27^{\circ} \mathrm{C}$

$$
\mathrm{Br}_{2}(\ell)+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrCl}(\mathrm{~g})
$$

is '1 atm'. At equilibrium in a closed container partial pressure of BrCl gas is 0.1 atm and at this temperature the vapour pressure of $\mathrm{Br}_{2}(\ell)$ is also 0.1 atm . Then what will be minimum moles of $\mathrm{Br}_{2}(\ell)$ to be added to 1 mole of Cl_{2}, initially, to get above equilibrium situation :
(A) $\frac{10}{6}$ moles
(B) $\frac{5}{6}$ moles
(C) $\frac{15}{6}$ moles
(D) 2 moles
7. $\quad \mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{s})$

If the dissociation of $C(s)$ is ' α ' and d is the density of the gaseous mixture in the container. Initially
container have only ' $\mathrm{C}(\mathrm{s}$) ' and the reaction is carried at constant temperature and pressure.
(A)

(B)

(C)

(D)

Section-2 : (One or More than one options correct Type)
This section contains 4 multipole choice questions. Each questions has four choices (A), (B), (C) and (D) out of which ONE or MORE THAN ONE are correct.
8. For which reaction at 298 K , the value of $\frac{\mathrm{K}_{p}}{\mathrm{~K}_{\mathrm{c}}}$ is maximum and minimum respectively :
(A) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
(B) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
$(\mathrm{C}) \mathrm{X}+\mathrm{Y} \rightleftharpoons 4 Z$
(D) $A+3 B \rightleftharpoons 7 C$

Resonance ${ }^{\text {a }}$
Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Educating for better tomorrow

9．For the equilibrium $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}), \Delta \mathrm{H}=-198 \mathrm{~kJ}$ ，the equilibrium concentration of SO_{3} will be affected by
（A）doubling the volume of the reaction vessel
（B）increasing the temperature at constant volume
（C）adding more oxygen to the reaction vessel
（D）adding helium to the reaction vessel at constant volume
10． $\mathrm{AB}(\mathrm{s}) \rightleftharpoons \mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \mathrm{K}_{\mathrm{p}}=4, \Delta \mathrm{H}=+\mathrm{ve}$
In a container，$A(g)$ and $B(g)$ are filled to partial pressure of 1 atm each．Now $A B(s)$ is added（in excess quantity）．Which of the following is CORRECT ？（No other gas is present in container）：
（A）At equilibrium，the total pressure in the container is 4 atm ．
（B）Equilibrium pressure decreases uniformly on increasing the volume by container．
（C）At equilibrium，the total pressure in the container is more than 4 atm，if temperature is increased．
（D）None of these
11．Following two equilibria are established seperately in 2 different containers of unequal volume．

$$
\begin{aligned}
& \mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \\
& \mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
\end{aligned}
$$

Now the containers are connected together by a thin tube of negligible volume．
Select incorrect statement（s）．（Assume T constant）
（A）Degree of dissociation of both $\mathrm{PCl}_{5}(\mathrm{~g}) \& \mathrm{COCl}_{2}(\mathrm{~g})$ will decrease
（B）Degree of dissociation of both $\mathrm{PCl}_{5}(\mathrm{~g}) \& \mathrm{COCl}_{2}(\mathrm{~g})$ will increase
（C）Degree of dissociation of $\mathrm{PCl}_{5}(\mathrm{~g})$ may increase ；decrease or remain the same irrespective of effect on degree of dissociation of $\mathrm{COCl}_{2}(\mathrm{~g})$ ．
（D）Degree of dissociation of $\mathrm{PCl}_{5}(\mathrm{~g})$ may increase，decrease or remain the same，but the effect would be same as that on degree of dissociation of COCl_{2} ．

Section－3 ：（One Integer Value Correct Type．）

This section contains 6 questions．Each question，when worked out will result in one integer from 0 to 9 （both inclusive）

12．If 1 mole of $\mathrm{CH}_{3} \mathrm{COOH}$ and 1 mole of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ are taken in 1 litre flask， 50% of $\mathrm{CH}_{3} \mathrm{COOH}$ is converted into ester as ；

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\ell)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\ell)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(\ell)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

There is 33% conversion of $\mathrm{CH}_{3} \mathrm{COOH}$ into ester，if $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ have been taken initially in molar ratio $\mathrm{x}: 1$ ，find x ．

13．Solid ammonium carbamate $\left(\mathrm{NH}_{2} \mathrm{COONH}_{4}\right)$ was taken in excess in closed container of volume 5 Litre according to the following reaction $\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ ．If equilibrium partial pressure of ammonia is 4 atm，it＇s equilibrium constant K_{p} is x atm 3 ．If the above equilibrium mixture is transferred to another vessel of volume 10 Litre，total equilibrium pressure is y atm．Calculate the value of $(x+y)$ ．Assuming temperature is constant during the whole experiment．

14．Find the percentage dissociation of ammonia into N_{2} and H_{2} if the dissociation is carried out at constant pressure and the volume at equilibrium is 20% greater than initial volume．（Initially，equal moles of NH_{3} and N_{2} are present with no hydrogen）
15．$A_{2} B(g)$ is introduced in a vessel at 1000 K ．If partial pressure of $A_{2} B(g)$ is 1 atm initially and K_{p} for reaction $A_{2} B(g) \rightleftharpoons 2 A(g)+B(g)$ is 81×10^{-6} then calculate percentage of dissociation of $A_{2} B$ ．

16．Consider the following two equilibrium established together in a closed container
$\mathrm{A}(\mathrm{s}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+3 \mathrm{C}(\mathrm{g})$ ；
$K_{P_{1}}$
$\mathrm{A}(\mathrm{s}) \rightleftharpoons 3 \mathrm{D}(\mathrm{g}) \quad ; \quad \mathrm{K}_{\mathrm{P}_{2}}$
Starting with only $A(s)$ ，molar ratio of $B(g) \& D(g)$ at equilibrium is found to be in a ratio $1: 6$ ．If partial pressure of B at equilibrium be 1 atm，determine $\frac{K_{P_{2}}}{8 K_{P_{1}}}$ ．

Pesロпヲпㄷ®
Educating for better tomorrow
17. 0.1 mol each of ethyl alcohol and acetic acid are allowed to react and at equilibrium the acid was exactly neutralised by 100 ml of 0.75 N NaOH . If no hydrolysis of ester is supposed to have undergo find Kc . Report your answer as $\frac{1}{\mathrm{~K}_{\mathrm{C}}}$.

SECTION-4 : Comprehension Type (Only One options correct)

This section contains 1 paragraphs, each describing theory, experiments, data etc. 2 questions relate to the paragraph. Each question has only one correct answer among the four given options (A), (B), (C) and (D)

Paragraph for Question Nos. 18 to 19

There are different types of equilibria depending on the composition of equilibrium mixture. Homogenous equilibrium contains all the species in same phase and heterogeneous equilibrium contains different phases. If heterogeneous equilibrium involves pure solid or liquid, then their concentration or pressure term is not included in K_{C} or K_{P} respectively.
18. 0.5 mole of $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$ are taken in a container having N_{2}. On warming the closed container to $50^{\circ} \mathrm{C}$ the pressure attained a constant value of 1.5 atm , with some $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$ remaining unreacted and partial pressure of N_{2} being 1 atm . The K_{p} of reaction $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ at $50^{\circ} \mathrm{C}$ is :
(A) 0.25
(B) 0.625
(C) 0.025
(D) 0.0625
19. How many moles of water are in vapour phase present inside 1 L vessel containing enough water after sufficient time? (Vapour pressure of water at $27^{\circ} \mathrm{C}=3000 \mathrm{~Pa}, \mathrm{R}=\frac{25}{3} \mathrm{~J} / \mathrm{mol}-\mathrm{K}$)
(A) 1.2×10^{-3}
(B) 120
(C) 5×10^{-4}
(D) None of these

SECTION-5 : Matching List Type (Only One options correct)

This section contains 1 questions, each having two matching lists. Choices for the correct combination of elements from List-I and List-II are given as options (A), (B), (C) and (D) out of which one is correct
20. In given setup, container I has double the volume to that of container II. Container I \& II are connected by a narrow tube with two knobs.

Knob A: Closed - No gas is allowed to pass through Open - All gases can pass
Knob B : \quad Closed - A thin filter of Pd is introduced on complete cross section of tube Open - All gases can pass.
Initially both knobs are closed. In container I, some amount of NH_{3} gas is introduced which sets up equilibrium according to following reaction :

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Match the actions in column I to corresponding value in column II and select the correct answer using the code given below the column. Assume each action from initial stage.

	Column I		Column II
P.	A \& B are closed, $p_{H_{2}} / p_{N_{2}}=?$	1.	$1 / 3$
Q.	A is open \& B is closed, $n_{H_{2}}^{I} / n_{N_{2}}^{I}=?$	2.	3
R.	A is open \& B is open, $n_{N_{2}}^{\mathrm{I}} / n_{H_{2}}^{\mathrm{II}}=?$		
S.	A \& B are left open for long time; now B is closed \& volume of container II is halved. $\left(n_{N_{2}}^{I}+n_{N_{2}}^{I I}\right) /\left(n_{H_{2}}^{I}+n_{H_{2}}^{I I}\right)=?$	4.	$2 / 3$

Code :

	P	Q	R	S		P	Q	R	S
(A)	4	2	3	1	(B)	2	3	4	1
(C)	2	1	3	4	(D)	1	2	3	4

Practice Test-2 (IIT-JEE (ADVANCED Pattern)) OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										

APSP Answers

PART - I

1.	(2)	2.	(4)	3.	(3)	4.	(2)	5.	(3)
6.	(1)	7.	(2)	8.	(4)	9.	(1)	10.	(4)
11.	(3)	12.	(4)	13.	(1)	14.	(1)	15.	(1)
16.	(2)	17.	(3)	18.	(1)	19.	(1)	20.	(3)
21.	(4)	22.	(1)	23.	(3)	24.	(2)	25.	(2)
26.	(4)	27.	(2)	28.	(1)	29.	(1)	30.	(1)

PART - II

| 1. | (B) | 2. | (C) | 3. | (C) | 4. | (D) | 5. | (C) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6. | (B) | 7. | (A) | 8. | (D) | 9. | (B) | 10. | (B) |
| 11. | (A) | 12. | (C) | 13. | (A) | 14. | (B) | 15. | (D) |
| 16. | (C) | 17. | (A) | 18. | (A) | 19. | (D) | 20. | (D) |
| 21. | (D) | 22. | (A) | 23. | (B) | 24. | (A) | 25. | (D) |
| 26. | (CD) | 27. | (C) | 28. | (B) | 29. | (B) | 30. | (C) |
| 31. | (A) | 32. | (C) | 33. | (B) | 34. | (A) | 35. | (D) |
| 36. | (D) | | | | | | | | |

36. (D)

PART - III

1. $\mathrm{K}_{\mathrm{P}_{1}}=\frac{1}{20 \mathrm{P}_{0}^{2}}, \mathrm{~K}_{\mathrm{P}_{2}}=\frac{3}{20 \mathrm{P}_{0}^{2}}$
2. (D)
3. (D)
4. (A)
5. (C)
6. 17
7. (ABC)
8. (ABD)

PART - IV

1. (B)
2. (C)
3. (ABCD)
4. 8
5. (A)
6. (B)
7. (D)
8. 27
9. 80 atm.
10. (CD)
11. (A)
12. (D)
13. 2
14. 9
15. (A)
16. (BD)
17. 38
18. (D)
19. (A)
20. (C)
21. (B)
22. (D)
23. 4
24. 60 atm
25. (BC)
26. (BC)
27. (AB)
28. (AC)
29. (A)
30. 2
31. 80
32. (B)
33. (D)
34. (ABC)
35. (AC)
36. 40
37. (A)
38. 3
39. (B)

APSP Solutions

PART - I

1.

	$\mathrm{N}_{2}+$	$3 \mathrm{H}_{2}$	$2 \mathrm{NH}_{3}$
$\mathrm{t}=0$	1 mole	2 mole	0
$t=e q$	1-x	2-3x	$2 \mathrm{x}=0.8$
	$\mathrm{x}=0.4$		
	mole of	$\mathrm{N}_{2}=0.6$	
	mole of	$\mathrm{H}_{2}=0.8$	

2. $\frac{\mathrm{K}_{\mathrm{A}}}{\mathrm{K}_{\mathrm{B}}}=\frac{[\mathrm{PQ}]}{[\mathrm{P}][\mathrm{Q}]}$
$\frac{\mathrm{K}_{\mathrm{C}}}{\mathrm{K}_{\mathrm{D}}}=\frac{[\mathrm{R}]}{[\mathrm{PQ}]}$
On multiply equation (i) and (ii) we get
$\frac{\mathrm{K}_{\mathrm{A}} \cdot \mathrm{K}_{\mathrm{C}}}{\mathrm{K}_{\mathrm{B}} \cdot \mathrm{K}_{\mathrm{D}}}=\frac{[\mathrm{R}]}{[\mathrm{P}][\mathrm{Q}]}$
3. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\mathrm{K} \mathrm{C}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \quad$ Concentration in gram mole/litre, therefore
$\left[\mathrm{SO}_{3}\right]=\frac{48}{80 \times 1} \quad$ (Where 80 is molecular weight of SO_{3})
$\left[\mathrm{SO}_{2}\right]=\frac{128}{64 \times 1} \quad$ (Where 64 is molecular weight of SO_{2})
$\left[\mathrm{O}_{2}\right]=\frac{9.6}{32 \times 1} \quad\left(\right.$ Where 32 is molecular weight of $\left.\mathrm{O}_{2}\right)$
Thus, $\mathrm{K}_{\mathrm{c}}==0.30$
4. Since, K_{p} is temperature dependent only.
5.

	$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$	$\rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$	
$\mathrm{t}=0$	4.5	4.5	0
$\mathrm{t}=$ teq.	$4.5-\mathrm{x}$	$4.5-\mathrm{x}$	2 x
put	$\mathrm{x}=1.5$		
	$4.5-1.5$	$4.5-1.5$	$2 \times 1.5=3$
	\downarrow	\downarrow	\downarrow
	3	3	3

$\mathrm{K}_{\mathrm{C}}=\frac{(3)^{2}}{3 \times 3}=1$
7. $\begin{array}{llll} & \mathrm{Co}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\begin{array}{l}\mathrm{H}_{2} \\ \mathrm{t}=0\end{array} & 1 & 1 \\ \mathrm{t}=\text { teq } & 1 & 1 & 0 \\ t & 1-\mathrm{x} & 1+\mathrm{x} & \mathrm{x}\end{array}$
at equilibrium, only CO_{2} has $(1+x)$ moles.
8. $K_{p}=K_{c}(R T)^{\Delta n}, \Delta n=4-3=1$
$0.05=K_{c} R \times 1000$
$\mathrm{K}_{\mathrm{c}}=5 \times 10^{-5} \times \mathrm{R}^{-1}$
13
 Educating for better tomorrow
14. $\begin{array}{cc}\quad 2 A_{8} \\ t=0 & 2\end{array} \rightleftharpoons \begin{aligned} & 2 A_{3} \\ & 0\end{aligned}+\begin{gathered}3 A_{2} \\ 0\end{gathered}+\begin{gathered}A_{4} \\ 0\end{gathered}$

$\mathrm{n}_{\mathrm{T}}=2+4 \alpha$
given mole fraction of A_{2} is $=0.36$.

$$
0.36=\frac{3 \alpha}{2+4 \alpha} \quad \Rightarrow \quad \alpha=0.46
$$

Mole fraction of $\mathrm{A}_{8}=\frac{2-2 \alpha}{2+4 \alpha}=\frac{2-2 \times 0.46}{2+4 \times 0.46}=0.28$
15.

$\Delta \mathrm{n}=0$,
$\therefore \mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}, \quad \mathrm{K}_{\mathrm{C}}=\frac{(.2 / \mathrm{V})^{2}}{(3.6 / \mathrm{V})^{2}}=\frac{4}{36 \times 36}$
16. Total moles at equilibrium $=1-\alpha+\alpha / n=1+\left[\frac{1}{n}-1\right] \alpha$

So using $\frac{d_{i}}{d_{f}}=1+\left[\frac{1}{n}-1\right] \alpha$.
17. $\quad \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

Total pressure is P

$$
\begin{array}{ll}
\text { So, } \quad & P_{\mathrm{NH}_{3}}=P_{\mathrm{H}_{2} \mathrm{~S}}=\frac{P}{2} \\
& K_{p}=P_{\mathrm{NH}_{3}} \times P_{\mathrm{H}_{2} \mathrm{~S}}=\frac{P^{2}}{4} .
\end{array}
$$

18. At room temperature, $\mathrm{K}=4.32$ and at $425^{\circ} \mathrm{C}$, equilibrium constant become 1.24×10^{-4} i.e. it is decreases with increase in temperature. So, it is exothermic reaction.
19. Catalyst can't disturb the state of the equilibrium.
20.

$\begin{array}{lccc}\text { at } t=0 & a & 0 & 0 \\ t=t_{\text {eq }} & a-x x & x & \end{array}$
$\mathrm{P}_{\mathrm{PC}_{3}}=\mathrm{X}_{\mathrm{PC}_{3}} \times \mathrm{P}_{\mathrm{T}}=.25 \times 2=.5 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{PC}_{3}}=\mathrm{P}_{\mathrm{C}_{2}}=.5 \mathrm{~atm}$
24. $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}_{\text {eq }}$
$\mathrm{InK}_{\text {eq }}=-6$
$15000=-\frac{25}{3} \times 300 \ln \mathrm{~K}_{\mathrm{eq}}$
$K_{\text {eq }}=e^{-6}$
$\ln K_{\text {eq }}=-\frac{15000}{2500}=6$
25. $\Delta G^{\circ}=-2.303 R T \log K$
26. At point $A, \quad Q=\tan 60^{\circ} \mathrm{C}$

$$
Q=1.732
$$

$\therefore \quad \mathrm{Q}=\mathrm{K}=1.732$
28. According to $\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{PCI}_{3}(\mathrm{~g})} \times \mathrm{P}_{\mathrm{Cl}_{2}(\mathrm{~g})}}{\mathrm{P}_{\mathrm{PCl}_{5}(\mathrm{~g})}}=\frac{\left(\mathrm{n}_{\mathrm{PCl}_{3}(\mathrm{~g})}\right)_{\mathrm{eq}} \times\left(\mathrm{n}_{\mathrm{Cl}_{2}(\mathrm{~g})}\right)_{\mathrm{eq}} \text {. }}{\left.\mathrm{V} \times\left(\mathrm{n}_{\mathrm{PCl}_{5}(\mathrm{~g})}\right)\right)_{\mathrm{eq}} \text {. }}$ and on adding inert gas at constant pressure effect on equilibrium will be similar to as if volume of container has been increased.
29. $\mathrm{NO}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{NO}_{2}$
$\Delta G_{R \times H}^{\circ}=52-87=-35 \mathrm{~kJ}$
$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \operatorname{InK} \mathrm{K}_{\text {eq }}$
$\operatorname{InK} \mathrm{K}_{\text {eq }}=\frac{35000}{8.314 \times 298}$.
30. $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$
$0.4 \quad 0.4$
$0.4-x \quad 0.4-x \quad x \quad x$
$\frac{x}{0.4-x}=3$
$1.2-3 x=x$
$1.2=4 x$
$x=\frac{1.2}{4}=0.3$
$\mathrm{x}=0.3$

PART - III

1. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\begin{array}{ccc}9 P-x-y & 13 P-3 x-2 Y & 2 x \\ \mathrm{~N}_{2}(\mathrm{~g})\end{array}+\begin{gathered}2 \mathrm{H}_{2}(\mathrm{~g})\end{gathered} \rightleftharpoons \quad \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$
$9 P-x-y \quad 13 p-3 x-2 Y \quad Y$
given $\quad 9 P-x-y+13 P-3 x-2 y+2 x+y=7 P$ 。
$\Rightarrow \quad 22 \mathrm{P} \quad-2 \mathrm{x}-2 \mathrm{y}=7 \mathrm{P}$ 。 $\quad(1)$
then
$2 x=P$
and

$$
\begin{equation*}
13 P-3 x-2 y=2 P \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{-13 P-2 y=-\frac{7}{2} P_{0}}{9 P=\frac{9}{2} P_{0}} P=\frac{P_{0}}{2} \tag{3}
\end{equation*}
$$

$9 P-x-y=\frac{9 P_{0}}{2}-\frac{P_{0}}{2}-\frac{3 P_{0}}{2}=\frac{5 P_{0}}{2} \quad 2 y=\frac{13-7}{2} P_{0}=3 P_{0}$
$13 P-3 x-2 y=\frac{13 P_{0}}{2}-\frac{3 P_{0}}{2}-\frac{6 P_{0}}{2}=2 P_{0} \quad y=\frac{3}{2} P_{0}$
$\mathrm{K}_{1}=\frac{(2 x)^{2}}{(9 p-x-y)(13 p-3 x-2 y)^{3}}=\frac{P_{0}{ }^{2}}{\frac{5}{2} P_{0} \cdot\left(2 P_{0}\right)^{3}}=\frac{1}{20 P_{0}{ }^{2}}$
$K_{2}=\frac{\frac{3}{2} P_{0}}{\left(\frac{5}{2} P_{0}\right)\left(2 P_{0}\right)^{2}}=\frac{3}{20 P_{0}{ }^{2}}$
2. $\quad \mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$
$\Delta \mathrm{n}=2-1=1, \mathrm{~K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{c}}$ (given)
We know, $\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}}$

$$
1=\mathrm{RT}, \quad \mathrm{~T}=\frac{1}{.0821}=12.19 \mathrm{~K}
$$

4. $\quad \mathrm{K}_{1}=\frac{1}{\mathrm{~K}_{2}} \quad$ for same value of T .
$\Rightarrow \quad \mathrm{K}_{1} \mathrm{~K}_{2}=1 \quad$ similar to $\mathrm{yx}=\mathrm{const}$.
5. An efflorescent salt is one that loss of $\mathrm{H}_{2} \mathrm{O}$ to atmosphere.
$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{CuSO}_{4} .3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{KP}=\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}^{\prime}\right)^{2}=4 \times 10^{-4}$
$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}^{\prime}=2 \times 10^{-2} \mathrm{~atm}=15.2 \mathrm{~mm} \mathrm{Hg}$
If $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}^{\prime}$ at $25^{\circ} \mathrm{C}<15.2 \mathrm{~mm}$ only then reaction will proceed in forward direction.
6. $\quad 2 \mathrm{AB}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2}(\mathrm{~g})+4 \mathrm{~B}_{2}(\mathrm{~g}) \quad \sum \mathrm{n}=1+\frac{3 \alpha}{2} \tilde{\sim} \quad 1$
$1-\alpha \quad \frac{\alpha}{2} \quad 2 x \quad 1-\alpha \simeq 1$
$K_{P}=\frac{\left(\frac{\alpha}{2} P\right)\left(\frac{2 \alpha}{1} \times P\right)^{4}}{(P)^{2}}=8 P^{3} \alpha^{5}$
7. $\quad \mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
$\mathrm{K}_{\mathrm{P}}=\frac{\left(\mathrm{P}_{\mathrm{CO}}\right)^{2}}{\mathrm{P}_{\mathrm{CO}_{2}}^{\prime}}=1.0$
At equilibrium, $\mathrm{P}_{\mathrm{CO}_{2}}=\mathrm{KP}=4 \times 10^{-2}$ remain constant
$\frac{\left(\mathrm{P}_{\mathrm{CO}}\right)^{2}}{4 \times 10^{-2}}=1$
$\mathrm{P}_{\mathrm{CO}}=\sqrt{4 \times 10^{-2}}=0.2 \mathrm{~atm}$
8. $\quad P_{1}=15 \mathrm{~atm} \quad ; \quad \mathrm{T}_{1}=300 \mathrm{~K}$.

Equilibrium temperature is $300^{\circ} \mathrm{C}$ that is 573 K .
So first of all we have to calculate pressure of NH_{3} at 573 K .

$$
\begin{aligned}
& \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}=\frac{15}{300}=\frac{P_{2}}{573} \\
& \mathbf{P}_{2}=\mathbf{2 8 . 6 5} \text { atm at } 300^{\circ} \mathrm{C} .
\end{aligned}
$$

$$
\begin{array}{llll}
\mathrm{t}=0 & 28.65 \mathrm{~atm} & 0 & 0 \\
\mathrm{t}=\mathrm{t}_{\text {eq. }} & {[28.65-\mathrm{x}]} & \frac{\mathrm{x}}{2} \mathrm{~atm} & \frac{3}{2} \mathrm{x}
\end{array}
$$

$$
\begin{aligned}
& \frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) . \\
& 0 \\
& \frac{3}{2} \mathrm{x}
\end{aligned}
$$

But according to question.

$$
P_{\text {total }}=28.65-x \quad+\frac{x}{2}+\frac{3}{2} x
$$

Or $\quad 28.65+x=40.11$.

$$
x=11.46
$$

Degree of dissociation of $\mathrm{NH}_{3}=\frac{11.46}{28.65}=0.4$.
10. (1) $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{D}(\mathrm{g})+\mathrm{C}(\mathrm{g}) \mathrm{K}_{\mathrm{p}}=(20)^{2}$ 20 atm 20 atm
$(2) \mathrm{B}(\mathrm{s}) \rightleftharpoons \mathrm{E}(\mathrm{g})+\mathrm{F}(\mathrm{g}) \mathrm{K}_{\mathrm{p}}=(30)^{2}$ 30 atm 30 atm
(3) container K_{p} is same so on doubling the volume partial pressure does not change but moles of C, D, E, F will change to maintain their partial pressure. So total pressure $=40+60=100 \mathrm{~atm}$.
11. $\quad \mathrm{KP}_{\mathrm{P}}=\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)^{5}=56.25 \times 10^{-10}$
$\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)=\left(56.25 \times 10^{-10}\right)^{1 / 5}=(56.25)^{1 / 5} \times 10^{-2}=2.23 \times 10^{-2} \times 760=17.01$ torr
$\%$ Relative humidity $=\frac{\text { Parital pressure }}{\text { Vapour pressure }} \times 100=\frac{17.01}{22.8} \times 100=74.60 \% \quad$ (less than 74.60%)

Educating for better tomorrow
12. $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{X}+\mathrm{Y}$

$$
\begin{aligned}
& \mathrm{B}(\mathrm{~s}) \rightleftharpoons \stackrel{\alpha}{\mathrm{Y}} \underset{\beta+\alpha}{\rightleftharpoons}+\begin{array}{c}
\alpha+\beta \\
\mathrm{Z}
\end{array} \\
& \Rightarrow K_{P_{1}}=\alpha(\alpha+\beta) \\
& K_{P_{2}}=\beta(\alpha+\beta) \\
& \mathrm{P}_{\text {total }}=(\alpha+\beta)+\alpha+\beta=2(\alpha+\beta) \\
& \Rightarrow \quad 2(\alpha+\beta)=50 \quad \Rightarrow \quad \alpha+\beta=25 \\
& \Rightarrow \quad 250=25 \alpha \quad \Rightarrow \quad \alpha=10, \beta=15 \\
& \Rightarrow \quad \mathrm{~K}_{\mathrm{P}_{2}}=\beta(\alpha+\beta)=15 \times 25=375
\end{aligned}
$$

13.

$\mathrm{K}_{\mathrm{P}_{1}}=(\mathrm{a}+\mathrm{b})(2 \mathrm{a})^{2}=(30)(400)=12000$
$K_{P_{2}}=(a+b)(b)=(30)(20)=600$
$\Delta \mathrm{G}=-\mathrm{RT} \operatorname{In} \mathrm{K}$
$\frac{\Delta \mathrm{G}_{1}}{\Delta \mathrm{G}_{2}}=\frac{\ell \mathrm{nK}_{1}}{\ell \mathrm{nK} K_{2}}=\frac{\log 12000}{\log 600}=\frac{3+\log 12}{2+\log 6}$
14. $\mathrm{NH}_{4} \mathrm{I}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HI}(\mathrm{g})$
at eq. total pressure $=304 \mathrm{~mm}$ of Hg
$\begin{array}{lcc}\mathrm{p}_{\mathrm{NH}_{3}}=\mathrm{p}_{\mathrm{I}}=\frac{304}{2}=152 \mathrm{~mm} \text { of } \mathrm{Hg}=0.2 \mathrm{~atm} \\ & 2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons & \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \\ \mathrm{t}=0 & 0.2 & 0 \\ \mathrm{t}=\mathrm{eq} . & 0.2+\mathrm{y}-\mathrm{x} & \frac{\mathrm{x}}{2} \\ \mathrm{t} & \frac{\mathrm{x}}{2}\end{array}$ eq. $\quad \mathrm{NH}_{4} \mathrm{I}(\mathrm{s}) \rightleftharpoons \underset{0}{\rightleftharpoons} \underset{0}{\mathrm{NH}_{3}(\mathrm{~g})}+\underset{0}{\mathrm{HI}(\mathrm{g})}$

We assumed that x atm of HI is used for dissociation which results formation of y atm of HI from NH_{4} (s)
for $\quad \mathrm{NH}_{4} \mathrm{I}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HI}(\mathrm{g})$

$$
\mathrm{K}_{\mathrm{c}}=0.2 \times 0.2
$$

in other case $K_{P}=(0.2+y)(0.2+y-x)$

$$
(0.2+y)(0.2+y-x)=0.2 \times 0.2
$$

For

$$
\begin{equation*}
K_{C}=K_{P}=\frac{(x / 2)(x / 2)}{(0.2+y-x)^{2}}=0.010 \tag{ii}
\end{equation*}
$$

on solving the equation: $\quad x=0.036 \& y=0.016$
total pressure at eq. $=p_{\mathrm{NH}_{3}}+\mathrm{p}_{\mathrm{I}}+\mathrm{p}_{\mathrm{H}_{2}}+\mathrm{p}_{\mathrm{I}_{2}}$

$$
=0.432 \mathrm{~atm}=328 \mathrm{~mm} \text { of } \mathrm{Hg}
$$

15. $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g})$ $\mathrm{E}(\mathrm{s}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{D}(\mathrm{g})$ $\left(P_{1}+P_{2}\right) P_{1}$ $\left(P_{1}+P_{2}\right) P_{2}$
Total pressure $=2\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)=2 \sqrt{\mathrm{~K}_{\mathrm{sp}_{1}}+\mathrm{K}_{\mathrm{sp}_{2}}}=20 \mathrm{~atm}$
16. On addign inert gas at content temperature \& pressure $2^{\text {nd }}$ reaction will be shifted in backward direction.
17. On mixing, $\mathrm{P}\left(\mathrm{N}_{2}\right) \& P\left(\mathrm{H}_{2}\right)$ will add up. This will shift both the equilibrium backwards thereby decreasing the number of moles.
18.

No. of mole

2	1	4
$\frac{2}{4}$	$\frac{1}{4}$	$\frac{4}{4}$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}=\frac{1}{(1 / 2)(1 / 4)^{1 / 2}}=\frac{1}{(1 / 2) \times(1 / 2)}=4 \mathrm{Ans} .
$$

19. For reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ $K^{\prime}=\frac{1}{0.25}=4$
For reaction, $\frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{I}_{2} \rightleftharpoons \mathrm{HI}(\mathrm{g})$
$K^{\prime \prime}=\sqrt{4}$
20.

at $t=0$
at eq.
$60 \quad 42$
(60-x) (42-x)
(2x)
$\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})$
(Partial pressures)
$\Rightarrow 2 x=28 \quad \Rightarrow \quad x=14$
$K_{p}=\frac{\left(\mathrm{P}_{\mathrm{AB}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{A}_{2}}\right)\left(\mathrm{P}_{\mathrm{B}_{2}}\right)}=\frac{(28)^{2}}{(46)(28)}=\frac{14}{23}$
For $\Delta \mathrm{n}_{\mathrm{g}}=0$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{C}_{1}}=\frac{14}{23}$
Let degree of dissociation for $A B$ is ' x ', then

$$
2 \mathrm{AB}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g})\left(\mathrm{K}_{\mathrm{C}_{2}}=\frac{1}{\mathrm{~K}_{\mathrm{C}_{1}}}=\frac{23}{14}\right)
$$

$\left.\begin{array}{lll}\begin{array}{c}1 \\ \text { at } t=0(1-x) \\ (1-x)^{2}\end{array} & 0 & 0 \\ 14 & x & x\end{array}\right)$
Hence percentage of dissociatin $=0.719 \times 100=72 \%$
21. $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

$$
1-0.5 \quad 1
$$

$\mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})$
0.5
$0.25 \quad 0.75$
$K_{P_{1}}=0.5$
$\mathrm{K}_{\mathrm{P}_{2}}=\frac{\left(0.25^{1 / 2}\right)(0.75)^{3 / 2}}{0.5}$
22. Since (I) causes no change in volume due to reaction, change from 100 L is due to (II) only.
$\therefore V(C O)$ finally $=10 \mathrm{~L}$
$P(C O)$ finally $=\left(\frac{10}{105}\right) \times 105=10 \mathrm{~atm}$
$\therefore \mathrm{P}\left(\mathrm{O}_{2}\right)=\mathrm{P}_{\mathrm{CO}}^{2} / \mathrm{K}_{\mathrm{p}_{2}}=\frac{10^{2} \mathrm{~atm}^{2}}{12.5 \mathrm{~atm}}=8 \mathrm{~atm}$
Also, $\mathrm{K}_{\mathrm{P}_{1}}=\frac{\mathrm{P}_{\mathrm{CO}_{2}}}{\mathrm{P}_{\mathrm{O}_{2}}}=\frac{7}{8} \times 8 \quad=7 \mathrm{~atm} \quad \therefore \mathrm{P}\left(\mathrm{CO}_{2}\right)=\mathrm{KP}_{1} . \mathrm{P}\left(\mathrm{O}_{2}\right)$
$\therefore P(C O)+P\left(\mathrm{CO}_{2}\right)$ finally is $10+7=17 \mathrm{~atm}$
23.

$K p_{1}+K p_{2}=\left(p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2}\right)=\left(p_{1}+p_{2}\right)^{2}=(625+975) \Rightarrow\left(p_{1}+p_{2}\right)=40$
so total pressure $=2\left[p_{1}+p_{2}\right]=80 \mathrm{~atm}$.
24. $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightleftharpoons 2 \mathrm{HBr}$
$\begin{array}{lllr}\mathrm{t}=0 & 0.4 & 0.2 & - \\ \mathrm{t}=\text { teq. } & 0.2 & \mathrm{y} & 0.4 \\ & & =\text { negligible }=\mathrm{y}\end{array}$
$\because \quad \frac{1}{4} \times 10^{10}=\frac{0.4 \times 0.4}{0.2 \times y}$
$y=3.2 \times 10^{-10}$

$$
\frac{\mathrm{Br}_{2}}{\mathrm{HBr}} \times 10^{11}=\frac{3.2}{0.4} \times 10^{-10} \times 10^{11}=80
$$

25. $\quad \mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$

26.

27. From given reactions.
(i) $=-$ (iii) ;
$\frac{1}{2}(\mathrm{i})=-$ (iv) ;
$\frac{1}{2}($ iii $)=-($ ii)
29. Higher is the value of equilibrium const, higher will be the stability of products.
31. Second equilibrium will not be affected by CO_{2} addition only first will shift backward.

Educating for better tomorrow
Reg. \& Corp. Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
32. Since \uparrow in temperature results in shifting of equilibria in forward direction hence reaction is endothermic in nature. Endothermic reaction is driven in forward direction upon increase in temperature.
33. R.H. $>1 \Rightarrow \quad>$ V.P. $\quad \Rightarrow \quad \mathrm{Q}>\mathrm{K} \Rightarrow \quad$ leftward shift
R.H. $<1 \Rightarrow \quad<$ V.P.
$\Rightarrow \quad \mathrm{Q}<\mathrm{K} \Rightarrow$
Rightward shift
34. Addition of solids have no effect on equilibrium and temperature favours endothermic direction while increasing pressure will shift equilibrium in backward direction as Δn_{g} is + ve.

PART - IV

1. $\quad \mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{CO}(\mathrm{g})} \cdot P_{\mathrm{H}_{2}(\mathrm{~g})}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}(\mathrm{g})}}=\frac{\left(\mathrm{P}_{\mathrm{H}_{2}(\mathrm{~g})}\right)^{2}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}(\mathrm{g})}} \quad$ (as $\left.\mathrm{PCO}_{\mathrm{CO}(\mathrm{g})}=\mathrm{P}_{\mathrm{H}_{2}(\mathrm{~g})}\right)$
2. Mole of $\mathrm{PbS}=708 / 236=3$ mole $=$ mole of $\mathrm{H}_{2} \mathrm{~S}$

	$\mathrm{Sb}_{2} \mathrm{~S}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})$		$2 \mathrm{Sb}(\mathrm{s})+3 \mathrm{H}_{2}$	
initial	6	6	0	0
at eq.	5	3	2	3

$\mathrm{K}_{\mathrm{c}}=\frac{(3 / 10)^{3}}{(3 / 10)^{3}}=1$
4. $\mathrm{K}=\mathrm{Ae}^{-\Delta H / R T}$
$\log K=\log A-\frac{\Delta H}{2.303 R T}$.
$\log K=\log A-\frac{\Delta H}{2.303 R} \times \frac{1}{T}$.
$\log K=\left[-\frac{\Delta H}{2.303 R}\right] \times \frac{1}{T}+\log A$.
$\frac{-\Delta H}{2.303 R}=1$.
$\Delta H=-2.303 R=-4.606$ cal.
5. $\quad a A+b B \rightleftharpoons c C+d D$

At high temp. \& low pressure equilibrium is shifting in backward direction. It means $(a+b)>(c+d) \&$ heat will reaction in the formation of producers is $\Delta \mathrm{H}<0$.
6.

then at equilibrium, $\quad \frac{\mathrm{n}_{\mathrm{BrCl}}}{\mathrm{n}_{\mathrm{Cl}_{2}}}=\frac{0.1}{0.01}=10=\frac{2 \mathrm{x}}{1-\mathrm{x}}$
So, $\quad 10-10 x=2 x$ or $\quad x=\frac{10}{12}=\frac{5}{6}$ moles
Moles of $\mathrm{Br}_{2}(\ell)$ required for maintaining vapour pressure of 0.1 atm

$$
=2 \times \frac{5}{6} \text { moles }=\frac{10}{6} \text { moles }=\text { moles of } \operatorname{BrCl}(\mathrm{g}) .
$$

Moles required for taking part in reaction $=$ moles of Cl_{2} used up $=\frac{5}{6}$ moles.
Hence total moles required $=\frac{5}{6}+\frac{10}{6}=\frac{15}{6}$ moles.
7. As in the gaseous mixture only A will be present so the molecular weight of the gaseous mixture will be ' MA^{\prime} '
$\because \quad P M_{A}=d R T \quad$ where R, P, T are const
so $\quad d \propto M A$
and hence it does not depend on ' α '
so 'd' will remain constant.
Option (D) is correct.
12. $\mathrm{CH}_{3} \mathrm{COOH}_{(\ell)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\ell)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(\ell)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}$

$$
\begin{array}{llll}
1-0.5 & 1-0.5 & 0.5 & 0.5
\end{array}
$$

So, $\quad \mathrm{K}_{\mathrm{c}}=\frac{0.5 \times 0.5}{0.5 \times 0.5}=1$
Now let a moles of $\mathrm{CH}_{3} \mathrm{COOH}$ and b moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ are taken :
$a-\frac{a}{3}$
b- $\frac{a}{3}$
$\frac{a}{3} \quad \frac{a}{3}$

So, $K_{c}=\frac{(a / 3) \times(a / 3)}{2 a / 3 \times\left(b-\frac{a}{3}\right)} \quad$ or $\quad 2\left(b-\frac{a}{3}\right)=\frac{a}{3} \quad$ or $\quad 2 b=a \quad$ or $\quad \frac{a}{b}=\frac{2}{1}$
13. $\quad \mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$.

At eq.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{NH}_{3}}=4 \mathrm{~atm} \\
& \mathrm{P}_{\mathrm{CO}_{2}}=2 \mathrm{~atm} \\
& \mathrm{~K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{NH}_{3}}^{2} \times \mathrm{P}_{\mathrm{CO}_{2}}=32 \mathrm{~atm}^{3} .
\end{aligned}
$$

Therefore $x=32 \& y=6 \Rightarrow x+y=38$.
14. $\quad 2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
$t=0 \quad a \quad a \quad 0$
teq $a(1-\alpha) \quad \frac{a \alpha}{2}+a \frac{3 a \alpha}{2}$
$\mathrm{n}_{\mathrm{T}}=2 \mathrm{a}+\mathrm{a} \alpha=\mathrm{a}(2+\alpha)=2 \mathrm{a}+\frac{3 \mathrm{a} \alpha}{2} \times 2 \mathrm{a}$
$2+\alpha=2.4 \quad \Rightarrow \quad \alpha=0.4 \quad$ Ans. 40%
15.
at $t=0$
at eq.

(partial pressure)
$(1-x) \quad 2 \alpha \quad \alpha$
Hence, $(1-\alpha)$; 1

$$
\frac{(2 x)^{2} \times(\alpha)}{(1)}=81 \times 10^{-6}
$$

$\alpha=3 \times 10^{-2}$
percentage of dissociation $=3 \times 10^{-2} \times 100=3 \%$
16. $P_{B}: P_{D}=1: 6$ Let the partial pressure of $B_{\text {eq }}$ be P_{0}
$K_{P_{1}}=\left(P_{0}\right)^{2}\left(\frac{3 P_{0}}{2}\right)^{3}$
$\mathrm{K}_{\mathrm{P}_{2}}=\left(6 \mathrm{P}_{0}\right)^{3}$
$\frac{\mathrm{K}_{\mathrm{P}_{2}}}{\mathrm{~K}_{\mathrm{P}_{1}}}=\frac{6^{3}}{\left(\frac{3}{2}\right)^{3}}=64$
$\frac{\mathrm{K}_{\mathrm{P}_{2}}}{8 \mathrm{~K}_{\mathrm{P}_{1}}}=\frac{64}{8}=8$

Educating for better tomorrow
17.

At $t=0$
0.1
0.1
0
0
$\begin{array}{llll}\text { At equilibrium } 0.1-x & 0.1-x \quad x & x\end{array}$

Meq of acetic acid left $=$ Meq．of NaOH used $=100 \times 0.75=75$
Milimoles of acetic acid left $=75(\because$ monobasic $)$
Moles of acetic acid left $=0.075$

$$
0.1-x=0.075
$$

$$
x=0.025
$$

$\mathrm{K}_{\mathrm{C}}=\frac{\mathrm{x}^{2}}{(0.1-\mathrm{x})^{2}}=\frac{(0.025)^{2}}{(0.075)^{2}}=\frac{1}{9}$
18． $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

$$
\begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& p=1.5-1 \\
& p=0.5 \\
& \Rightarrow \quad \\
& K_{p}=0.25 \\
& K_{p}=0.25 \times 0.25=0.0625
\end{aligned}
$$

19． $\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{3000 \times 10^{-3}}{\frac{25}{3} \times 300}=1.2 \times 10^{-3}$ moles．
20．（P）Initially，only NH_{3} was present \＆according to reaction
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
$\frac{n_{\mathrm{N}_{2}}}{n_{\mathrm{H}_{2}}}=\frac{1}{3}$
Same volume for both gases $\Rightarrow \frac{\mathrm{p}_{\mathrm{N}_{2}}}{\mathrm{p}_{\mathrm{H}_{2}}}=\frac{1}{3} \Rightarrow \frac{\mathrm{p}_{\mathrm{H}_{2}}}{\mathrm{~N}_{\mathrm{N}_{2}}}=3$
（Q）When B is closed，only H_{2} diffuses through filter until partial pressure of H_{2} becomes equal．
$\frac{n_{H_{2_{\text {toatal }}}}}{n_{\mathrm{N}_{2}}}=3$
$p_{H_{2}}^{\mathrm{I}}=\mathrm{p}_{\mathrm{H}_{2}}^{\mathrm{II}}$
\＆
$\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{II}}$
$\Rightarrow \quad \mathrm{n}_{\mathrm{H}_{2}}^{\mathrm{I}}=2 \mathrm{n}_{\mathrm{H}_{2}}^{\mathrm{I}}$
$n_{H_{2}}^{1}+n_{H_{2}}^{\text {II }}=n_{H_{H_{2 \text { toal }}}} \Rightarrow n_{H_{H_{2 \text { toaal }}}} / n_{H_{2}}^{1}=\frac{3}{2}$
from eq．（1）\＆（2）
$\frac{n_{H_{H_{2}}}^{1}}{n_{\mathrm{N}_{2}}}=\frac{\mathrm{n}_{\mathrm{H}_{2}}^{1}}{n_{\mathrm{H}_{2_{\text {total }}}}} \times \frac{n_{\mathrm{H}_{2_{\text {toatal }}}}}{n_{\mathrm{N}_{2}}}=\frac{2}{3} \times 3=2$
（R）Again same volume for $\mathrm{N}_{2} \& \mathrm{H}_{2}$
$n_{N_{2_{\text {IOIaI }}}} / n_{H_{2_{\text {totala }}}}=\frac{1}{3}$
$p_{N_{2}}^{1}=p_{N_{2}}^{\mathrm{I}} \quad \& \quad V_{I}=2 V_{I I} \quad \Rightarrow \quad n_{N_{2}}^{I}=2 n_{N_{2}}^{I I} \quad \& \quad n_{H_{2}}^{1}=2 n_{H_{2}}^{I I}$
$n_{N_{2_{\text {Itatal }}}}=n_{N_{N_{2}}}^{\mathrm{I}}+n_{N_{2}}^{\mathrm{II}}=3 n_{N_{2}}^{I I}=\frac{3}{2} n_{N_{2}}^{\mathrm{I}}$
$n_{H_{2_{\text {toat }}}}=n_{H_{2}}^{1}+n_{H_{2}}^{I I}=3 n_{H_{2}}^{I I}$
from eq．（1）$\quad \frac{3}{2} n_{N_{2}}^{1} / 3 n_{H_{2}}^{I}=\frac{1}{3} \quad \Rightarrow \quad \frac{n_{N_{2}}^{1}}{n_{H_{2}}^{I}}=\frac{2}{3}$
（S）$\quad\left(n_{N_{2}}^{1}+n_{N_{2}}^{\mathrm{I}}\right) /\left(n_{H_{2}}^{1}+n_{H_{2}}^{\mathrm{I}}\right)=\frac{1}{3}$

