Exercise-1

> Marked Questions can be used as Revision Questions.

* Marked Questions may have more than one correct option.

PART - I: FUNCTION & DIFFERENTIATION

Section (A): Trigonometry and Function

A-1.
$$f(x) = \cos x + \sin x$$
. Find $f(\pi/2)$

A-2. If
$$f(x) = 4x + 3$$
. Find $f(f(2))$

(A)
$$(2-\sqrt{3})$$

(B)
$$(5+\sqrt{3})$$

(C)
$$\left(\frac{5-\sqrt{3}}{2}\right)$$

(C)
$$\left(\frac{5-\sqrt{3}}{2}\right)$$
 (D) $\left(\frac{5+\sqrt{3}}{2}\right)$

A-4.
$$\sin^2\theta$$
 is equivalent to :

(A)
$$\left(\frac{1+\cos\theta}{2}\right)$$

(A)
$$\left(\frac{1+\cos\theta}{2}\right)$$
 (B) $\left(\frac{1+\cos2\theta}{2}\right)$ (C) $\left(\frac{1-\cos2\theta}{2}\right)$ (D) $\left(\frac{\cos2\theta-1}{2}\right)$

(C)
$$\left(\frac{1-\cos 2\theta}{2}\right)$$

(D)
$$\left(\frac{\cos 2\theta - 1}{2}\right)$$

A-5.
$$sin(A + B)$$
 is equal to

(A)
$$\cos^2 A \cdot \cos B + \sin A \sin^2 B$$

(B)
$$\sin^2 A$$
 . $\frac{1}{2}\cos B + \cos 2A$. $\sin B$

(C)
$$\sin^2 A \cdot \cos B + \frac{1}{2} \sin 2A \cdot \sin B$$

(D)
$$\sin^2 A \cdot \sin B + \cos A \cos^2 B$$

A-6*. \Rightarrow -sin θ is equivelent to :

(A)
$$\cos \left(\frac{\pi}{2} + \theta\right)$$

(A)
$$\cos\left(\frac{\pi}{2} + \theta\right)$$
 (B) $\cos\left(\frac{\pi}{2} - \theta\right)$

(C)
$$\sin (\theta - \pi)$$

(D)
$$\sin (\pi + \theta)$$

A-7*. If $x_1 = 8 \sin\theta$ and $x_2 = 6\cos\theta$ then

(A)
$$(x_1 + x_2)_{max} = 10$$

(B)
$$x_1 + x_2 = 10 \sin(\theta + 37^\circ)$$

(C)
$$x_1x_2 = 24 \sin 2\theta$$

(D)
$$\frac{x_1}{x_2} = \frac{4}{3} \tan \theta$$

Section (B): Differentiation of Elementry Functions

Find the derivative of given functions w.r.t. corresponding independent variable.

B-1.
$$y = x^2 + x + 8$$

B-2.
$$y = \tan x + \cot x$$

Find the first derivative & second derivative of given functions w.r.t. corresponding independent variable.

B-3.
$$y = \sin x + \cos x$$

B-4.
$$y = \ell nx + e^x$$

Section (C): Differentiation by Product rule

Find derivative of given functions w.r.t. the independent variable x.

C-1.
$$y = e^{x} \ell nx$$

C-2.
$$y = \sin x \cos x$$

Section (D): Differentiation by Quotient rule

Find derivative of given functions w.r.t. the independent variable.

D-1.
$$y = \frac{2x+5}{3x-2}$$

D-2.
$$y = \frac{\ell nx}{x}$$

D-3.
$$y = (secx + tanx) (secx - tanx)$$

D-4. Suppose u and v are functions of x that are differentiable at x = 0 and that

$$u'(0) = -3$$
.

$$v(0) = -1$$

$$v'(0) = 2$$

$$u(0) = 5$$
, $u'(0) = -3$, $v(0) = -1$ $v'(0) = -3$. Find the values of the following derivatives at $x = 0$.

(a)
$$\frac{d}{dx}$$
 (uv)

(b)
$$\frac{d}{dx} \left(\frac{u}{v} \right)$$

(c)
$$\frac{d}{dx} \left(\frac{v}{u} \right)$$

(a)
$$\frac{d}{dx}$$
 (uv) (b) $\frac{d}{dx} \left(\frac{u}{v} \right)$ (c) $\frac{d}{dx} \left(\frac{v}{u} \right)$ (d) $\frac{d}{dx} (7v - 2u)$

Section (E): Differentiation by Chain rule

Find $\frac{dy}{dx}$ as a function of x

E-1.
$$y = \sin 5 x$$

E-3. $y = (4 - 3x)^9$

E-2.
$$y = 2 \sin (\omega x + \phi)$$
 where ω and ϕ constants

Section (F): Differentiation of Implicit functions

Find
$$\frac{dy}{dx}$$

F-1.
$$(x + y)^2 = 4$$

F-2.
$$x^2y + xy^2 = 6$$

Section (G): Differentiation as a rate measurement

- Suppose that the radius r and area $A = \pi r^2$ of a circle are differentiable functions of t. Write an equation that relates dA/dt to dr/dt.
- Suppose that the radius r and surface area $S = 4\pi r^2$ of a sphere are differentiable functions of t. Write G-2. an equation that relates $\frac{ds}{dt}$ to $\frac{dr}{dt}$.

Section (H): Maxima & Minima

- Particle's position as a function of time is given by $x = -t^2 + 4t + 4$ find the maximum value of position co-ordinate of particle.
- **H-2.** Find the values of function $2x^3 15x^2 + 36x + 11$ at the points of maximum and minimum

Section (I): Miscellaneous

Given y = f(u) and u = g(x), find $\frac{dy}{dx}$

I-1.
$$y = 2u^3$$
, $u = 8x - 1$
I-3.2a. $y = 6u - 9$, $u = (1/2) x^4$

I-2.
$$y = \sin u, u = 3x + 1$$

I-4.
$$y = \cos u, u = -x/3$$

PART - II: INTEGRATION

Section (A): Integration of elementry functions

Find integrals of given functions

A-1.
$$x^2 - 2x + 1$$

A-2.
$$\sqrt[3]{x} + \frac{1}{\sqrt[3]{x}}$$
 A-3. $\sec^2 x$

A-6.
$$\frac{1}{3x}$$

Section (B): Integration by substitution method

Integrate by using the substitution suggested in bracket.

B-1.
$$\int x \sin(2x^2) dx$$
, (use, $u = 2x^2$)

B-2.
$$\int \sec 2t \tan 2t \ dt$$
, (use, u = 2t)

Integrate by using a suitable substitution

B-3. Sa.
$$\int \frac{3}{(2-x)^2} dx$$

B-4.
$$\int \sin(8z - 5) dz$$

Section (C): Definite integration

C-1.
$$\int_{-4}^{-1} \frac{\pi}{2} d\theta$$

C-2.
$$\int_{-5\sqrt{2}}^{5\sqrt{2}} r \, dr$$

C-2.
$$\int_{\sqrt{2}}^{5\sqrt{2}} r \, dr$$
 C-3. So $\int_{0}^{1} e^{x} \, dx$

Section (D): Calculation of area

Use a definite integral to find the area of the region between the given curve and the x-axis on the interval [0, b]

D-1.
$$y = 2x$$

D-2.
$$y = \frac{x}{2} + 1$$

Use a definite integral to find the area of the region between the given curve and the x-axis on the interval $[0, \pi]$

D-3. $v = \sin x$ **D-4.** $x = \sin^2 x$

Objective Questions

D-5*. \Rightarrow $I = \int sin(\theta + \phi)d\theta$, where ϕ is non zero constant then the value of I:

- (A) may be positive
- (B) may be negative
- (C) may be zero
- (D) always zero if $\phi = \pi/4$

PART - III: VECTOR

Section (A): Definition of vector & angle between vectors

A-1. \searrow Vectors \vec{A} , \vec{B} and \vec{C} are shown in figure. Find angle between

- (i) \vec{A} and \vec{B} .
- (ii) A and C,
- (iii) B and C.

A-2. The forces, each numerically equal to 5 N, are acting as shown in the Figure. Find the angle between forces?

A-3. Rain is falling vertically downwards with a speed 5 m/s. If unit vector along upward is defined as i, represent velocity of rain in vector form.

Section (B): Addition of Vectors

- A man walks 40 m North, then 30 m East and then 40 m South. Find the displacement from the starting B-1. point?
- B-2. A vector of magnitude 30 and direction eastwards is added with another vector of magnitude 40 and direction Northwards. Find the magnitude and direction of resultant with the east.
- B-3. Two vectors \vec{a} and \vec{b} inclined at an angle θ w.r.t. each other have a resultant \vec{c} which makes an angle β with \vec{a} . If the directions of \vec{a} and \vec{b} are interchanged, then the resultant will have the same
 - (A) magnitude

- (B) direction
- (C) magnitude as well as direction
- (D) neither magnitude nor direction
- Two vectors A and B lie in a plane. Another vector C lies outside this plane (this plane is not parallel B-4. to the plane containing \vec{A} and \vec{B}). The resultant $\vec{A} + \vec{B} + \vec{C}$ of these three vectors
 - (A) can be zero

- (B) cannot be zero
- (C) lies in the plane of A & B
- (D) lies in the plane of A & A + B
- B-5. The vector sum of the forces of 10 N and 6 N can be
 - (A) 2 N
- (B) 8 N
- (C) 18 N
- (D) 20 N.
- A set of vectors taken in a given order gives a closed polygon. Then the resultant of these vectors is a B-6. (A) scalar quantity (B) pseudo vector (C) unit vector (D) null vector.
- B-7. The vector sum of two force P and Q is minimum when the angle θ between their positive directions, is (A) $\pi/4$ (B) $\pi/3$ (C) $\pi/2$ (D) π.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

- **B-8.** The vector sum of two vectors \vec{A} and \vec{B} is maximum, then the angle θ between two vectors is - $(A) 0^{\circ}$ (B) 30°
- Given: $\vec{C} = \vec{A} + \vec{B}$. Also, the magnitude of \vec{A} , \vec{B} and \vec{C} are 12, 5 and 13 units respectively. The angle B-9. between \vec{A} and \vec{B} is
 - $(A) 0^{\circ}$
- (B) $\pi/4$
- (C) $\pi/2$
- (D) π.
- If $\vec{P} + \vec{Q} = \vec{P} \vec{Q}$ and θ is the angle between \vec{P} and \vec{Q} , then
 - (A) $\theta = 0^{\circ}$
- (B) $\theta = 90^{\circ}$
- (C) P = 0
- (D) Q = 0
- B-11. The sum and difference of two perpendicular vectors of equal lengths are
 - (A) of equal lengths and have an acute angle between them
 - (B) of equal length and have an obtuse angle between them
 - (C) also perpendicular to each other and are of different lengths
 - (D) also perpendicular to each other and are of equal lengths.

Section (C): Resolution of Vectors

- C-1. Find the magnitude of $3\hat{i} + 2\hat{j} + \hat{k}$?
- C-2. What are the x and the y components of a 25 m displacement at an angle of 210° with the x-axis (anti clockwise)?

- One of the rectangular components of a velocity of 60 km h⁻¹ is 30 km h⁻¹. Find other rectangular C-3. component?
- If $0.5\hat{i} + 0.8\hat{j} + C\hat{k}$ is a unit vector. Find the value of C C-4.
- C-5. The rectangular components of a vector are (2, 2). The corresponding rectangular components of another vector are $(1, \sqrt{3})$. Find the angle between the two vectors
- The x and y components of a force are 2 N and 3 N. The force is C-6.
 - (A) $2\hat{i} 3\hat{i}$
- (B) $2\hat{i} + 3\hat{i}$
- (C) $-2\hat{i} 3\hat{i}$
- (D) $3\hat{i} + 2\hat{i}$
- C-7. \searrow The vector joining the points A(1, 1, -1) and B(2, -3, 4) and pointing from A to B is -
 - $(A) \hat{i} + 4\hat{i} 5\hat{k}$
- (B) $\hat{i} + 4\hat{i} + 5\hat{k}$ (C) $\hat{i} 4\hat{i} + 5\hat{k}$

Section (D): Products of Vectors

- If $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = 2\hat{i} + \hat{j}$ find (a) $\vec{A} \cdot \vec{B}$ (b) $\vec{A} \times \vec{B}$
- If $|\vec{A}| = 4$, $|\vec{B}| = 3$ and $\theta = 60^{\circ}$ in the figure, Find (a) $\vec{A} \cdot \vec{B}$ (b) $|\vec{A} \times \vec{B}|$ D-2.

- **D-3.** Three non zero vectors \vec{A} , \vec{B} & \vec{C} satisfy the relation $\vec{A} \cdot \vec{B} = 0$ & $\vec{A} \cdot \vec{C} = 0$. Then \vec{A} can be parallel to:
- (B) C
- (C) B.C
- (D) $\vec{B} \times \vec{C}$
- **D-4.*** \mathbf{a} The magnitude of scalar product of two vectors is 8 and that of vector product is $8\sqrt{3}$. The angle between them is:
 - (A) 30°
- (B) 60°
- $(C) 120^{\circ}$
- (D) 150°

Exercise-2

> Marked Questions can be used as Revision Questions.

* Marked Questions may have more than one correct option.

PART - I: FUNCTION & DIFFERENTIATION

1.2. If
$$f(x) = \frac{x-1}{x+1}$$
 then find $f(f(x))$

2.
$$y = f(x) = \frac{2x-3}{3x-2}$$
. Find $f(y)$

Objective Questions

For a triangle shown in the figure, side CA is 10 m, angle \angle A and angle \angle C are equal then : 3.3

(A) side a = side c = 10m

(C) side a = side c =
$$\frac{10\sqrt{3}}{3}$$
m

(B) side a ≠ side c

(D) side
$$a = side c = \frac{10}{\sqrt{2}}m$$

If $y_1 = A\sin\theta_1$ and $y_2 = A\sin\theta_2$ then 4*.

(A)
$$y_1 + y_2 = 2A \sin\left(\frac{\theta_1 + \theta_2}{2}\right) \cos\left(\frac{\theta_1 - \theta_2}{2}\right)$$
 (B) $y_1 + y_2 = 2A\sin\theta_1 \sin\theta_2$

(B)
$$y_1 + y_2 = 2A\sin\theta_1 \sin\theta_2$$

$$\text{(C) } y_1-y_2=2\text{A sin}\left(\frac{\theta_1-\theta_2}{2}\right) \, \cos\!\left(\frac{\theta_1+\theta_2}{2}\right) \qquad \text{(D) } y_1\,.\,y_2=-\,2\text{A}^2\,\cos\!\left(\frac{\pi}{2}+\theta_1\right)\!.\cos\!\left(\frac{\pi}{2}-\theta_2\right)$$

(D)
$$y_1 \cdot y_2 = -2A^2 \cos\left(\frac{\pi}{2} + \theta_1\right) \cdot \cos\left(\frac{\pi}{2} - \theta_2\right)$$

5*. Which of following are true

(A)
$$\sin 37^{\circ} + \cos 37^{\circ} = \sin 53^{\circ} + \cos 53^{\circ}$$

(B)
$$\sin 37^{\circ} - \cos 37^{\circ} = \cos 53^{\circ} - \sin 53^{\circ}$$

(A)
$$\sin 37^{\circ} + \cos 37^{\circ} = \sin 53^{\circ}$$

(C) $\tan 37^{\circ} + 1 = \tan 53^{\circ} - 1$

(D)
$$\tan 37^{\circ} \times \tan 53^{\circ} = 1$$

If $R^2 = A^2 + B^2 + 2AB \cos \theta$, if |A| = |B| then value of magnitude of R is equivalent to : 6*. 🖎

(B) A cos
$$\theta/2$$

Find the first derivative and second derivative of given functions w.r.t. the independent variable x.

7.
$$x = \ln x^2 + \sin x$$

8.
$$y = \sqrt[7]{x} + \tan x$$

Find derivative of given functions w.r.t. the corresponding independent variable.

9.
$$y = \left(x + \frac{1}{x}\right) (x - \frac{1}{x} + 1)$$

10.
$$r = (1 + \sec \theta) \sin \theta$$

Find derivative of given functions w.r.t. the respective independent variable.

$$11. y = \frac{\cot x}{1 + \cot x}$$

12.3.
$$\frac{\ell nx + e^x}{\tan x}$$

Find $\frac{dy}{dx}$ as a function of x

13.
$$y = \sin^3 x + \sin 3x$$

14.
$$\sin^2(x^2 + 1)$$

15.2.
$$q = \sqrt{2r - r^2}$$
, find $\frac{dq}{dr}$

Find
$$\frac{dy}{dx}$$

16. a.
$$x^3 + y^3 = 18 xy$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Mathematical Tools /

- 17. The radius r and height h of a circular cylinder are related to the cylinder's volume V by the formula
 - (a) If height is increasing at a rate of 5 m/s while radius is constant, Find rate of increase of volume of cylinder.
 - (b) If radius is increasing at a rate of 5 m/s while height is constant, Find rate of increase of volume of cylinder.
 - (c) If height is increasing at a rate of 5 m/s and radius is increasing at a rate of 5 m/s, Find rate of increase of volume of cylinder.
- Find two positive numbers x & y such that x + y = 60 and xy is maximum -18.5
- 19. A sheet of area 40 m² in used to make an open tank with a square base, then find the dimensions of the base such that volume of this tank is maximum.

PART - II: INTEGRATION

Find integrals of given functions.

1.
$$\int x^{-3}(x+1) dx$$

$$2. \qquad \int (1-\cot^2 x) \, dx$$

3.
$$\triangle$$
 $\int \cos \theta (\tan \theta + \sec \theta) d\theta$

Integrate by using the substitution suggested in bracket

4.
$$\int 12(y^4 + 4y^2 + 1)^2(y^3 + 2y) \, dy, \text{ (use, } u = y^4 + 4y^2 + 1)$$

$$\int \frac{dx}{\sqrt{5x+8}}$$

(a) Using
$$u = 5x + 8$$

(b) Using
$$u = \sqrt{5x + 8}$$

Integrate by using suitable substitution.

6. a
$$\sqrt{3-2s}$$
 ds

7.3.
$$\int \sec^2(3x+2) dx$$
 8.
$$\int \csc\left(\frac{\upsilon-\pi}{2}\right) \cot\left(\frac{\upsilon-\pi}{2}\right) d\upsilon$$

9.
$$\int \frac{6\cos t}{(2+\sin t)^3} dt$$

10.
$$\int_{0}^{2\pi} \theta \ d\theta$$

12.
$$\int_{0}^{\sqrt{\pi}} x \sin x^2 dx$$

13.
$$\int_{0}^{1} \frac{dx}{3x+2}$$

Use a definite integral to find the area of the region between the given curve and the x-axis on the interval [0, b], 14. $y = 3x^2$

PART - III: VECTOR SUBJECTIVE QUESTIONS

- Vector \vec{A} points N E and its magnitude is 3 kg ms⁻¹ it is multiplied by the scalar λ such that 1.8 $\lambda = -4$ second. Find the direction and magnitude of the new vector quantity. Does it represent the same physical quantity or not?
- 2. A force of 30 N is inclined at an angle θ to the horizontal. If its vertical component is 18 N, find the horizontal component & the value of θ .
- 3. Two vectors acting in the opposite directions have a resultant of 10 units. If they act at right angles to each other, then the resultant is 50 units. Calculate the magnitude of two vectors.
- The angle θ between directions of forces \vec{A} and \vec{B} is 90° where A=8 dyne and B=6 dyne. If the 4. resultant \vec{R} makes an angle α with \vec{A} then find the value of ' α '?

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

5. Find the resultant of the three vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} each of magnitude r as shown in figure?

- **6.** If $\vec{A} = 3\hat{i} + 4\hat{j}$ and $\vec{B} = \hat{i} + \hat{j} + 2\hat{k}$ then find out unit vector along $\vec{A} + \vec{B}$.
- 7. The x and y components of vector \vec{A} are 4m and 6m respectively. The x, y components of vector $\vec{A} + \vec{B}$ are 10m and 9m respectively. Find the length of \vec{B} and angle that \vec{B} makes with the x axis.

OBJECTIVE QUESTIONS

Single choice type

- 8. A vector is not changed if
 - (A) it is displaced parallel to itself
- (B) it is rotated through an arbitrary angle
- (C) it is cross-multiplied by a unit vector
- (D) it is multiplied by an arbitrary scalar.
- 9. If the angle between two forces increases, the magnitude of their resultant
 - (A) decreases

(B) increases

(C) remains unchanged

- (D) first decreases and then increases
- **10.** A car is moving on a straight road due north with a uniform speed of 50 km h⁻¹ when it turns left through 90°. If the speed remains unchanged after turning, the change in the velocity of the car in the turning process is
 - (A) zero

- (B) $50\sqrt{2}$ km h⁻¹ S-W direction
- (C) $50\sqrt{2}$ km h⁻¹ N-W direction
- (D) 50 km h^{-1} due west.
- 11. Which of the following sets of displacements might be capable of bringing a car to its returning point?
 - (A) 5, 10, 30 and 50 km

(B) 5, 9, 9 and 16 km

(C) 40, 40, 90 and 200 km

- (D) 10, 20, 40 and 90 km
- 12. When two vector \vec{a} and \vec{b} are added, the magnitude of the resultant vector is always
 - (A) greater than (a + b)

(B) less than or equal to (a + b)

(C) less than (a + b)

- (D) equal to (a + b)
- 13. a If $|\vec{A} + \vec{B}| = |\vec{A}| = |\vec{B}|$, then the angle between \vec{A} and \vec{B} is
 - (A) 0°
- (B) 60°
- (C) 90°
- (D) 120°.
- 14. Given: $\vec{a} + \vec{b} + \vec{c} = 0$. Out of the three vectors \vec{a} , \vec{b} and \vec{c} two are equal in magnitude. The magnitude of the third vector is $\sqrt{2}$ times that of either of the two having equal magnitude. The angles between the vectors are:
 - (A) 90°, 135°, 135°
- (B) 30°, 60°, 90°
- (C) 45°, 45°, 90°
- (D) 45°, 60°, 90°
- 15. Vector \vec{A} is of length 2 cm and is 60° above the x-axis in the first quadrant. Vector \vec{B} is of length 2 cm and 60° below the x-axis in the fourth quadrant. The sum $\vec{A} + \vec{B}$ is a vector of magnitude -
 - (A) 2 along + y-axis
- (B) 2 along + x-axis
- (C) 1 along x axis
- (D) 2 along x axis
- **16.** Six forces, 9.81 N each, acting at a point are coplanar. If the angles between neighboring forces are equal, then the resultant is
 - (A) 0 N
- (B) 9.81 N
- (C) $2 \times 9.81 \text{ N}$
- (D) 3×9.81 N.
- 17. \searrow A vector \vec{A} points vertically downward & \vec{B} points towards east, then the vector product $\vec{A} \times \vec{B}$ is

(A) along west

- (B) along east
- (C) zero
- (D) along south

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

More than one choice type

In the Figure which of the ways indicated for combining the x and y components of vector a are proper 18. to determine that vector?

 \vec{a}_{x}

(A) (iii)

Let \vec{a} and \vec{b} be two non-null vectors such that $|\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}|$. Then the value of $\frac{|\vec{a}|}{|\vec{a}|}$ 19. (C) 1 (A) 1/4(B) 1/8 (D) 2

Exercise-3

Marked Questions can be used as Revision Questions.

(B) (iv)

PART - I: MATCH THE COLUMN

Match the integrals (given in column-II) with the given functions (in column-I) 1.3

Column-I

- (A) ∫ sec x tan xdx
- (B) ∫cosecKxcotKxdx
- (C) ∫cosec² Kx dx
- (D) ∫cosKxdx

Column-II

$$(p) - \frac{\cos ec \, Kx}{K} + C$$

- $(q) \frac{\cot Kx}{K} + C$
- (r) $\sec x + C$
- (s) $\frac{\sin Kx}{K} + C$
- Match the statements given in column-I with statements given in column-II 2.3

- (A) if $|\vec{A}| = |\vec{B}|$ and $|\vec{A} + \vec{B}| = |\vec{A}|$ then angle between \vec{A} and \vec{B} is
- (B) Magnitude of resultant of two forces $|\vec{F}_1| = 8N$ and $|\vec{F}_2| = 4N$ may be (C) Angle between $\vec{A} = 2\hat{i} + 2\hat{j} \& \vec{B} = 3\hat{k}$ is
- (D) Magnitude of resultant of vectors $\vec{A} = 2\hat{i} + \hat{j} & \vec{B} = 3\hat{k}$ is

- Column-II
- (p) 90°
- (q) 120°
- (r) 12 N
- (s) $\sqrt{14}$

PART - II: COMPREHENSION

COMPREHENSION-1

A particle is moving along positive x-axis. Its position varies as $x = t^3 - 3t^2 + 12t + 20$, where x is in meters and t is in seconds.

- 1. Initial velocity of the particle is.
 - (A) 1 m/s
- (C) 12 m/s
- (D) 20 m/s

- 2. Initial acceleration of the particle is
 - (A) Zero
- (B) 1 m/s²
- $(C) 3m/s^2$
- (D) -6 m/s^2

- Velocity of the particle when its acceleration zero is 3.3
 - (A) 1 m/s
- (B) 3 m/s
- (C) 6 m/s
- (D) 9 m/s

COMPREHENSION-2

Two forces $\vec{F}_1 = 2\hat{i} + 2\hat{j}$ N and $\vec{F}_2 = 3\hat{j} + 4\hat{k}$ N are acting on a particle.

- 4.3 The resultant force acting on particle is:
 - (A) $2\hat{i} + 5\hat{j} + 4\hat{k}$
- (B) $2\hat{i} 5\hat{j} 4\hat{k}$
- (C) $\hat{i} 3\hat{i} 2\hat{k}$ (D) $\hat{i} \hat{i} \hat{k}$

- The angle between $\vec{F}_1 \& \vec{F}_2$ is: 5. a
 - (A) $\theta = \cos^{-1}\left(\frac{3}{2\sqrt{5}}\right)$ (B) $\theta = \cos^{-1}\left(\frac{3}{5\sqrt{2}}\right)$ (C) $\theta = \cos^{-1}\left(\frac{2}{3\sqrt{5}}\right)$ (D) $\theta = \cos^{-1}\left(\frac{\sqrt{3}}{5}\right)$

- The component of force \vec{F}_1 along force \vec{F}_2 is : 6.2
 - (A) $\frac{5}{6}$
- (B) $\frac{5}{3}$
- (C) $\frac{6}{5}$
- (D) $\frac{5}{2}$

PART - III: ASSERTION / REASON

1. Statement-1: A vector is a quantity that has both magnitude and direction and obeys the triangle law of addition.

Statement-2: The magnitude of the resultant vector of two given vectors can never be less than the magnitude of any of the given vector.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- Statement-1: If the rectangular components of a force are 8 N and 6N, then the magnitude of the force 2. is 10N.

Statement-2: If $|\vec{A}| = |\vec{B}| = 1$ then $|\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = 1$.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- **Statement-1**: If three non zero vectors \vec{A} , \vec{B} and \vec{C} satisfy the relation $\vec{A} \cdot \vec{B} = 0$ & $\vec{A} \cdot \vec{C} = 0$ then the 3. vector \vec{A} is parallel to $\vec{B} \times \vec{C}$.

Statement-2: $\vec{A} \perp \vec{B}$ and $\vec{A} \perp \vec{C}$ and $\vec{B} \times \vec{C} \neq 0$ hence \vec{A} is perpendicular to plane formed by \vec{B} and \vec{C} .

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Mathematical Tools ,

4. Statement-1: The minimum number of non-zero vectors of unequal magnitude required to produce zero resultant is three.

Statement-2: Three vectors of unequal magnitude which can be represented by the three sides of a triangle taken in order, produce zero resultant.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- **5.** Statement-1 : The angle between the two vectors $(\hat{i} + \hat{j})$ and (\hat{k}) is $\frac{\pi}{2}$ radian.

Statement-2 : Angle between two vectors $(\hat{i} + \hat{j})$ and (\hat{k}) is given by $\theta = \cos^{-1}\left(\frac{\vec{A}.\vec{B}}{AB}\right)$.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- **6. Statement-1**: Distance is a scalar quantity.

Statement-2: Distance is the length of path transversed.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

PART - IV: TRUE / FALSE

1. State True or False

- (i) f(x) = -f'(x) for some function f.
- (ii) f(x) = f'(x) for some function f.
- (iii) If $\vec{A} \& \vec{B}$ are two force vectors then $\vec{A} . \vec{B} = \vec{B} . \vec{A}$
- (iv) If $\vec{A} \& \vec{B}$ are two non-zero force vectors then $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$
- (v) If the vector product of two non-zero vectors vanishes, the vectors are collinear.

PART - V: FILL IN THE BLANKS

Fill in the blanks

- 2. If $\vec{A} = 3\hat{i} + 4\hat{j}$ and $\vec{B} = 7\hat{i} + 24\hat{j}$, then the vector having the same magnitude as \vec{B} and parallel to \vec{A} is
- 3. If $\vec{A} \parallel \vec{B}$ then $\vec{A} \times \vec{B} = \dots$
- 4. The magnitude of area of the parallelogram formed by the adjacent sides of vectors $\vec{A} = 3\hat{i} + 2\hat{j}$ and $\vec{B} = 2\hat{i} 4\hat{k}$ is

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Mathematical Tools /

- If \vec{A} is to \vec{B} , then $\vec{A} \cdot \vec{B} = 0$ 5.
- The vector $\vec{A} = \hat{i} + \hat{j}$, where \hat{i} and \hat{j} are unit vectors along x-axis and y-axis respectively, makes an 6. angle of degree with x-axis.
- 7. Two vectors \vec{A} and \vec{B} are defined as $\vec{A} = \alpha \hat{i}$ and $\vec{B} = \alpha$ (cos $\omega t \hat{i} + \sin \omega t \hat{j}$), where α is a constant and $\omega = \pi/6$ rad s⁻¹. If $|\vec{A} + \vec{B}| = \sqrt{3} |\vec{A} - \vec{B}|$ at time $t = \tau$ for the first time, the value of τ , in second, is [JEE (Advanced) 2018; P-1, 3/60]

Answers

EXERCISE-1

PART - I

Section (A):

- A-1.
- A-2.

A-5.

- 47 (C)
- (A) A-6. (ACD)

A-4. (C)

A-7. (ABCD) Section (B):

- $\frac{dy}{dx} = 2x + 1$ B-1.
- sec² x cosec² x B-2.
- $\frac{dy}{dx} = \cos x \sin x, \quad \frac{d^2y}{dx^2} = -\sin x \cos x$ B-3.
- $\frac{dy}{dx} = \frac{1}{x} + e^{x}, \frac{d^{2}y}{dx^{2}} = -\frac{1}{x^{2}} + e^{x}$ B-4.

Section (C):

- C-1.
 - $e^x \ln x + \frac{e^x}{y}$ C-2. $\cos^2 x \sin^2 x$

Section (D):

- $y' = \frac{-19}{(3x-2)^2}$ **D-2.** $\frac{1}{x^2} \frac{\ln x}{x^2}$ D-1.
- $\frac{dy}{dx} = 0$ D-3.
- (a) 13 (b) -7 (c) $\frac{7}{25}$ (d) 20

Section (E):

- E-1. 5 cos 5x
- E-2. $2\omega\cos(\omega x + \phi)$
- $\frac{dy}{dx} = -27(4-3x)^8$ E-3.

Section (F):

- F-1. dy/dx = -1
- **F-2.** $\frac{-2xy y^2}{x^2 + 2xy}$

Section (G):

- $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$. G-1.

Section (H):

H-2. H-1. 8 $y_{max} = 39, y_{min} = 38$

Section (I):

- $48 (8x 1)^2$ I**-2**. $3\cos(3x+1)$
- $I-4. \qquad \frac{dy}{dx} = -\frac{1}{3}\sin\frac{x}{3}$ 12x³. I-3.

PART - II

Section (A):

- **A-1.** $\frac{x^3}{3} x^2 + x + c$ **A-2.** $\frac{3x^{4/3}}{4} + \frac{3x^{2/3}}{2} + c$
- **A-3.** $\tan x + c$ **A-4.** $-\cot x + c$ **A-5.** $\sec x + c$ **A-6.** $\frac{1}{3} \ell nx + c$

Section (B):

- **B-1.** $-\frac{1}{4}\cos{(2x^2)} + C$ **B-2.** $\frac{1}{2}\sec{2t} + C$
- **B-3.** $\frac{3}{2-x}$ + C **B-4.** $-\frac{\cos(8z-5)}{8}$ +C

Section (C):

C-1. $\frac{3\pi}{2}$ **C-2.** 24 **C-3.** e – 1

Section (D):

Using n subintervals of length $\Delta x = \frac{b}{n}$ and right- endpoint values:

Area =
$$\int_{0}^{b} 2x dx = b^{2}$$
 units

- **D-2.** $\frac{b^2}{4} + b = \frac{b(4+b)}{4}$ units
- D-3. 2 units
 - $\pi/2$ units
- (ABC)

PART - III

B-5.

(B)

Section (A):

- **A-1.** (i) 105°, (ii) 150°, (iii) 105°.
- **A-2.** 120° **A-3.** $\vec{V}_{R} = -5\hat{j}$

Section (B):

- **B-1.** 30 m East
- **B-2.** 50, 53° with East
- **B-3.** (A) **B-4.** (B)
- **B-6.** (D) **B-7.** (D) **B-8.** (A)
- **B-9.** (C) **B-10.** (D) **B-11.** (D)

Section (C):

- **C-1.** $\sqrt{14}$
- **C-2.** 25 cos 30° and –25 sin 30°
- **C-3.** $30\sqrt{3}$ km h⁻¹. **C-4.** $\pm \frac{\sqrt{11}}{10}$
- **C-5.** 15° **C-6.** (A) **C-7.** (C)

Section (D):

- **D-1.** (a) 3 (b) $-\hat{i} + 2\hat{j} \hat{k}$
- **D-2.** (a) 6 (b) $6\sqrt{3}$
- **D-3.** (D) **D-4.** (B)

EXERCISE-2

PART - I

- 1. -1/x 2. X 3. (C
- **4.** (AC) **5.** (ABD) **6.** (CD
- 7. $\frac{dy}{dx} = \frac{2}{x} + \cos x, \ \frac{d^2y}{dx^2} = \frac{-2}{x^2} \sin x$
- 8. $\frac{dy}{dx} = \frac{x^{-\frac{6}{7}}}{7} + \sec^2 x, \frac{d^2 y}{dx^2} = \frac{-6}{49} x^{\frac{-13}{7}} + 2\tan x \sec^2 x$
- 9. $\frac{dy}{dx} = 1 + 2x + \frac{2}{x^3} \frac{1}{x^2}$
- **10.** $dr/d\theta = \cos \theta + \sec^2 \theta$
- 11. $\frac{-\csc^2 x}{(1+\cot x)^2}$
- 12. $\frac{\tan x \left(e^x + \frac{1}{x}\right) \sec^2 x (e^x + \ell nx)}{\tan^2 x}$

- 13. $3\sin^2 x \cos x + 3\cos 3x$
- **14.** $4x \sin(x^2 + 1) \cos(x^2 + 1)$
 - 5. $\frac{1-r}{\sqrt{2r-r^2}}$ 16. $\frac{dy}{dx} = \frac{18y 3x^2}{3y^2 18x}$
- 17. (a) $\frac{dV}{dt} = \pi r^2 \frac{dh}{dt} = 5\pi r^2$
 - (b) $\frac{dV}{dt} = 2\pi hr \frac{dr}{dt} = 10\pi rh$
 - (c) $\frac{dV}{dt} = \pi r^2 \frac{dh}{dt} + 2\pi h r \frac{dr}{dt} = 5\pi r^2 + 10\pi r h$
- **18.** x = 30 & y = 30
- **19.** $x = \sqrt{\frac{40}{3}} \text{ m}$

PART-II

- 1. $-\frac{1}{x} \frac{1}{2x^2} + C$
- 2. $2x + \cot x + C$
- 3. $-\cos\theta + \theta + C$
- 4. $(y^4 + 4y^2 + 1)^3 + C$
- $5. \qquad \left[\frac{2}{5}\sqrt{5x+8}\right] + C$
- 6. $-\frac{1}{3}(3-2s)^{3/2} + C$
- 7. $\frac{1}{3} \tan (3x + 2) + C$
- 8. $-2 \csc \left(\frac{\upsilon \pi}{2}\right) + C$
- 9. $\frac{-3}{(2+\sin t)^2} + C$
- 10. $\frac{3\pi^2}{2}$ 11. 7/3 12.
- **13.** $\frac{1}{3} \ln \frac{5}{2} = \ln \left(\frac{5}{2} \right)^{\frac{1}{3}}$
- **14.** Using n subintervals of length $\Delta x = b/n$ and right—end point values:

Area =
$$\int_{0}^{b} 3x^{2} dx = b^{3}$$

PART - III

- 1. No it does not represent the same physical quantity.
- 2. 24 N; 37° approx.
- 3. P = 40; Q = 30
- 370
- $r(1 + \sqrt{2})$ 5.
- $\frac{4\hat{i}+5\hat{j}+2\hat{k}}{\sqrt{45}}$ 6.
- $3\sqrt{5}$, $tan^{-1}\frac{1}{2}$ 7.
- (A)
- (A) 10. 9.
- (B) 11.

- 12. (B)
- (B) (D)

- 14. (A)

- 15. (B)
- (A)
- 17. (D)
- 18. (ABC) 19.

EXERCISE-3 PART - I

(D)

1. $(A) \rightarrow r$, $(B) \rightarrow p$, $(C) \rightarrow q$, $(D) \rightarrow s$

13.

16.

2. $(A) \rightarrow q$, $(B) \rightarrow r$, $(C) \rightarrow p$, $(D) \rightarrow s$

PART - II

- 1. (C) 2.
- (D)
- (D)

- (A) 4.
- (B)
- (C)

PART - III

- 1. (C)
- (B)
- (A)

(iii)

- (A) PART - IV
- 1.

4.

- (A) (i)

- (iv)

5.

2.

- (ii) (v)

6.

- $(\sqrt{3})A$ 1.
- $15\hat{i} + 20\hat{j}$. 2.
- 3. Null vector
- 4.
- $\sqrt{224}$ units
- 5. Perpendicular. 6.
- 45°
- 7. 2.00