Additional Problems for Self Practice (APSP)

> Marked questions are recommended for Revision.

This Section is not meant for classroom discussion. It is being given to promote selfstudy and self testing amongst the Resonance students.

PART - I : PRACTICE TEST-1 (IIT-JEE (MAIN Pattern))

Max. Marks : 100

Max. Time : 1 Hr.

Important Instructions:

- 1. The test is of 1 hour duration.
- The Test Booklet consists of 25 questions. The maximum marks are 100. 2.
- Each question is allotted 4 (four) marks for correct response. 3.
- 4. Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each question.

1/4 (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.

Test Paper consists of Two (2) Sections. 5.

Section-1 contains 20 multiple choice questions. Each question has four choices (1), (2), (3) and (4) out of which one is correct. For each question in Section-1, you will be awarded 4 marks if you give the corresponding to the correct answer and zero mark if no given answers. In all other cases, minus one (-1) mark will be awarded.

Section-2 contains 5 questions. The answer to each of the question is a Numerical Value. For each question in Section-2, you will be awarded 4 marks if you give the corresponding to the correct answer and zero mark if no given answers. No negative marks will be answered for incorrect answer in this section. In this section answer to each question is NUMERICAL VALUE with two digit integer and decimal upto two digit. If the numerical value has more than two decimal places truncate/round-off the value to TWO decimal placed.

SECTION-1

This section contains 20 multiple choice questions. Each questions has four choices (1), (2), (3) and (4) out of which Only ONE option is correct.

- 1. The process of removing lighter gangue particles by washing in a current of water is called : (1) levigation (2) liquation (3) leaching (4) cupellation.
- 2. Gravity separation method is based upon :
 - (1) preferential washing of ores and gangue particles.
 - (2) difference in densities of ore particles and impurities.
 - (3) difference in chemical properties of ore particles and impurities.
 - (4) none of these.

(1) they are light.

- 3. In the froth floatation process for the purification of minerals the particles float because :
 - (2) they are insoluble.
 - (3) their surface is preferentially wetted by oil. (4) they bear an electrostatic charge.

An ore of tin containing FeCr₂O₄ is concentrated by 4. (1) magnetic separation

- (3) leaching method
- 5.2 In roasting :
 - (1) moisture is removed. (3) ore becomes porous.

- (2) froth floatation
- (4) gravity separation.
- (2) non-metals as their volatile oxide are removed.
- (4) all the above.
- 6. Which one of the following reactions is an example of calcination process ?
 - (1) $2Ag + 2HCI + [O] \rightarrow 2AgCI + H_2O$ (3) $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$
- (2) $2Zn + O_2 \rightarrow 2ZnO$. (4) MgCO₃ \rightarrow MgO + CO₂.

Meta	llurgy											—八—
7.	An o durin (1) H	re after I g smeltin 2SO4	evigation g ?	is found (2) Ca	d to ha CO₃	ve basic	impuritie (3) SiO	es. Whic	h of th	e followin (4) Botl	g can be usec n CaO and SiO	l as flux 2.
8.2	Amoi (1) ca (3) zi	ng the fol alamine a nc blende	lowing sta and sideri e and iror	atements te are ca n pyrites	s, the ir arbonate are sul	icorrect o es phides	ne is : (2) arge (4) mal	entite an achite ar	d cupri nd azu	te are oxio rite are or	des es of copper	
9.	Elect (1) hi (3) tra	rolytic rea ighly elec ansition r	duction m tronegation netals.	ethod is ve eleme	used in ents.	n the extra	action of (2) higł (4) nob	t nly electr le metals	opositi s.	ve elemer	nts.	
10.2	Amor respe (1) C	ng the fo ective me u ₂ O, SnC	ollowing tals. D ₂	groups ((2) Fe ₂	of oxid :O ₃ , Zn(es, the g D	group th (3) Cu0	at canno D, K ₂ O	ot be	reduced I (4) PbC	oy carbon to g), FeO.	give the
11.	Cryol (1) N (2) N (3) N (4) N cond	lite is : a ₃ AIF ₆ ar a ₃ AIF ₆ ar Na ₃ AIF ₆ a Ia ₃ AIF ₆ a uctivity.	nd is usec nd is usec nd is use nd is use	l in the e l in the e d in the ed in the	electroly electroly electrol electrol	rsis of alu rsis of alu ytic purific olysis of	mina for mina for cation of alumina	decreas lowering alumina for incr	ing ele the m easing	ectrical cor elting poin the melti	nductivity. nt of alumina. ng point and e	electrical
12.	Van / (1) vo (3) no	Arkel met platile sta on-volatile	thod of pu ble comp e stable c	urification ound. compoun	n of me nd.	tals involv	ves conv (2) vola (4) non	rerting th atile unst atile of thes	e meta able co se.	l to : pmpound.		
13.১	Copp (1) lic	per and tii quation	n are refir	ned by : (2) cup	ellation		(3) bes	semerisa	ation	(4) polii	ng.	
14.🍇	Tin a (1) cu	nd zinc c upellation	an be ref	ined by : (2) liqu	ation		(3) poli	ng		(4) bes	semerisation.	
15.	Matc alterr (a) (b) (c) (d)	h the oronate. Colum Limoni Argent Carnal Calami	es listed n-l te. ite. lite ne.	in colur	mn-I wi (p) (q) (r) (s)	th the ty Colum Carbor Halide Sulphic Oxide	pe of or nate ore. ore. de ore. ore.	res lister	d in co	blumn-II a	and select the	correct.
16. 🕿	(1) (3) Matc	9 : (a) (s) (p) h the me	(b) (r) (q) thod of co	(c) (q) (r) oncentra	(d) (p) (s) tion of t	he ore in	(2) (4) column	(a) (p) (s) I with the	(b) (s) (r) e ore ir	(c) (q) (p) n column l	(d) (r) (q) I and select the	e correct
	alterr	hate.	.]			Calum	. 11					
		Locobin			(n)	Conner	1 II Durita		_			
	(a) (b)	Calcina	iy. tion		(p)	Sidarita	pynte.		_			
		Froth fl	non.		(Y)	Bauvite	•					

(\mathbf{C})	FIOULI	Ualalion	•	(1)	Dauxile.				
(d)	Magne	tic separ	ration.	(S)	Chromite.				
Code	:								
	(a)	(b)	(C)	(d)		(a)	(b)	(c)	(d)
(1)	(s)	(q)	(p)	(r)	(2)	(r)	(q)	(p)	(s)
(3)	(p)	(q)	(r)	(s)	(4)	(q)	(r)	(p)	(s).

17. Match the extraction process listed in column I with metals listed in column II and choose the correct option. Column I Column II Copper from copper glance Self reduction. (a) (p) Carbon and carbon monoxide reduction. Silver from argentite. (b) (q) Electrolytic reduction in fused state. Aluminium from bauxite. (c) (r) Complex formation and displacement by metal. Iron from haematite. (d) (s) Code : (b) (d) (b) (d) (a) (c) (a) (c) (1)(p) (s) (r) (q) (2)(p) (r) (s) (q) (3) (4)(s) (p) (r) (q) (p) (r) (s) (q) The iron obtained from the blast furnace is called : 18.2 (1) pig iron (2) cast iron (3) wrought iron (4) steel 19. The extraction of zinc from zinc blende involves : (1) the electrolytic reduction. (2) the roasting followed by reduction with carbon. (3) the calcination followed by reduction with another metal. (4) the roasting at molten temperature. 20. Carbon cannot be used in the reduction of Al₂O₃ because : (2) the heat of formation of CO₂ is more than that of Al₂O₃ (1) it is non-metal (3) pure carbon is not easily available (4) the heat of formation of Al₂O₃ is too high 21.2 Roasting is carried out in how many of the following ores-(3) copper glance (1) galena (2) iron pyrites (4) Calamine (5) Siderite How many of the following metals can be extracted by carbon reduction? 22.> (4) AI. (1) Pb (2) Fe (3) Zn In the extraction of Cu how many reaction does not take place in Bessemer converter : 23.2 (1) $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$ (2) $2CuFeS_2 + O_2 \rightarrow Cu_2S + FeS + SO_2$ (3) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$ (4) $2FeS + 3O_2 \rightarrow 2FeO + 2SO_2$ How many of the following statements are correct about the extractive metallurgy of copper ? 24.2 (1) Matte chiefly consists of iron sulphide and some ferrous oxide. (2) The impurity of iron sulphide is removed as fusible slag, $FeSiO_3$ during roasting. (3) The copper pyrite is concentrated by froth floatation process. (4) Copper is obtained by carbon reduction in bessemer converter. How many of the following rows are correctly matched : 25.2 Column I Column II

Ι.	Cyanide process.	\rightarrow	Ultra pure Ge
II.	Froth floatation process.	→	Pine oil.
III.	Electrolytic reduction.	\rightarrow	Extraction of Al.
IV.	Zone refining.	\rightarrow	Extraction of Au.

Give your answer in the form of sum of row numbers

Practice Test-1 (IIT-JEE (Main Pattern)) OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25				-	
Ans.										

八

PART - II : JEE (MAIN) / AIEEE OFFLINE PROBLEMS (PREVIOUS YEARS)

1. Refining of impure copper with zinc impurity is to be done by electrolysis using electrodes as :

				[AIEEE-2002, 3/225]	
	Cathode	Anode	Cathode	Anode	
	(1) pure copper	pure zinc	(2) pure zinc	pure copper	
	(3) pure copper impure	copper	(4) pure zinc	impure zinc	
2.	Aluminium is extracted	by the electrolysis of :	<i>i</i> -	[AIEEE-2002, 3/225	5]
	(1) alumina		(2) bauxite		
	(3) molten cryolite		(4) alumina mixed with	molten cryolite	
3.	The metal extracted by	leaching with a cyanide	is :	[AIEEE-2002, 3/22	5]
	(1) Mg	(2) Ag	(3) Cu	(4) Na	
4.	Which one of the follow (1) magnetite	ing ores is best concentr (2) cassiterite	ated by froth floatation m (3) galena	nethod ? [AIEEE-2004, 3/225 (4) malachite.)
5.	Heating mixture of Cu ₂	O and Cu₂S will give :		[AIEEE-2005, 3/225]	l
	(1) Cu ₂ SO ₃	(2) CuO + CuS	(3) Cu + SO ₃	(4) Cu + SO ₂	
6.	During the process of e These are :	electro-refining of copper	some metals present as	s impurity settle as anode mu [AIEEE-2005, 3/225]	d.
	(1) Sn and Ag	(2) Pb and Zn	(3) Ag and Au	(4) Fe and Ni	
7.	Which of the following subjecting the sulphide (1) CO_2 is thermodynam (2) Metal sulphides are (3) CO_2 is more volatile (4) Metal sulphides are	factors is of no signific ores to carbon reduction nically more stable than less stable than the corr than CS ₂ thermodynamically more	ance for roasting sulphi directly ? CS ₂ esponding oxides e stable than CS ₂	ide ores to the oxides and no [AIEEE-2008, 3/105]	ot I
8.	Which method of purific	ation is represented by t	he following equation :	[AIEEE-2012, 4/120]	
	Ti (s) + 2I ₂ (a) -	523K → TiI₄(q) 1700 K	→ Ti (s) + 2I₂(q)		
	(1) Zone refining	(2) Cupellation	(3) Polling	(4) Van Arkel	
9.	In the context of the Hafalse?	all-Heroult process for the	ne extraction of AI, which	h of the following statements [JEE-Main 2015, 4/120	is)]
	(2) Al_2O_3 is mixed with (3) Al^{3+} is reduced at th (4) Na_3AlF_6 serves as th	CaF_2 which lowers the m e cathode to form Al ne electrolyte	elting point of the mixtur	e and brings conductivity	
10.	Which one of the follow	ing ores is best concentr	ated by froth floatation m	nethod?	
		-		[JEE-Main 2016, 4/120)]
	(1) Siderite	(2) Galena	(3) Malachite	(4) Magnetite	
11.	When metal 'M' is treat excess of NaOH. Comp as an adsorbent. The m	ed with NaOH, a white g bound 'X' when heated s netal 'M' is :	gelatinous precipitate 'X' trongly gives an oxide w	is obtained, which is soluble i hich is used in chromatograph [JEE-Main 2018, 4/120	in 1y)]
	(1) AI	(2) Fe	(3) Zh	(4) Ca	
PAR	Γ - III : NATIONAL S	STANDARD EXAM	INATION IN CHEM	ISTRY (NSEC) STAGE-	·I
1	Which of the following r	metal is extracted by the	mal reduction process :	INSEC-2000	1
	(A) AI	(B) Fe	(C) Cu	(D) Mg	.1
2.	In the gold plating pro	cess, sodium cyanide s	olution is used as an e	electrolyte instead of nitric aci	id
	(A) cyanide forms a cor(B) sodium cyanide is a(C) cyanide binds with i	nplex with gold and thus better solvent for gold id	helps uniform deposition ons.	n of gold. [NSEC-2003	5]
	(D) deposition of gold fr	om nitric acid bath is slo	W.		

Met	allurgy 🖯 🚽				————八—
3.	Goldsmiths use bora	x while making gold jew	elry. They heat the mixtu	ure of a gold	sample and borax on
	a flame, through which	ch air is passed using a b	plow pipe because		[NSEC-2003]
	(A) heat and air cor	overt the impurities into	their oxides that react	with molten	borax forming a slag
	which can be separa	ted from gold			
	(B) gold oxide formed	d by heat and air gets red	duced by borax to pure g	jold	
	(C) air increases th	e heating temperature	at which gold dissolve	s in borax,	and on cooling gets
	recrystallised in pure	form			
	(D) borax reduces th	e hardness of gold at hi	gh temperature so that i	t can be stre	etched to form jewelry
	easily.				
4.	High purity germaniu	m is obtained by a techn	ique that is based on		[NSEC-2004]
	(A) fractional distillati	on	(B) recrystallization		
	(C) fractional crystall	isation	(D) diffusion.		
5.	The metal that canno	ot be displaced from its a	queous solution by zine i	is	[NSEC-2004]
	(A) Cu	(B) Ag	(C) AI	(C) Hg.	
6.	Stainless steel conta	ins iron along with		(-)	[NSEC-2006]
	(A) Cr + Cu + C	(B) Ni + Zn + Cr	(C) Cr + Ni + C	(D) Ni +	Cu + Mn.
7.	Sapphire is a minera	l of :			[NSEC-2008]
	(A) Cu	(B) Zn	(C) Al	(D) Mg	
8.	Van Arkel method of	purification of metals inv	olves converting the met	tal to a	[NSEC-2013]
	(A) Volatile compoun	d	(B) Volatile unstable	compound	
	(C) Non-volatile stab	le compound	(D) Non-volatile unst	able compou	Ind
9.	Out of the following n	netal extraction processe	es those in which carbon) – based rec	duction methods are
•	not used are				[NSEC-2014]
	(I) Sn from SnO ₂	(II) Fe from Fe ₂ O ₃	(III) AI from AI ₂ O ₃	(IV) Mg f	rom MgCO ₃ .CaCO ₃
	(A) (I) and (IV)	(B) (II) and (III)	(C) (III) and (IV)	(D) (II) a	nd (IV)
10.	Aluminium and copp	per are extracted from t	their oxide and sulphide	e ores respe	ctively. Which of the
	following is correct?				[NSEC-2018]
	I. Copper is extracted	d by the auto reduction o	f copper oxide by copper	r sulphide	
	II. Aluminium cannot	be obtained by chemical	I reduction due to its stro	ing affinity for	r oxygen
	III. In electrometallu	rgy of AI, graphite is us	sed as cathode to avoin	d reoxidation	n of Al into Al ₂ O ₃ by
	preventing formation	Of U_2 .	raduand than the evide -		
					4 1/ /
	(A) 1, 11, 1V			(D) IT and	VIV

11. The following Ellingham diagram depicts the oxidation of 'C', 'CO' and Fe'. Which of the following is correct? [NSEC-2019]

 Cr_2O_3 is mixed with requisite amount of AI-powder (this mixture is called thermite mixture) and is placed in a large fire-clay crucible. An intimate mixture of Na_2O_2 or BaO_2 and Mg powder (called *ignition mixture* or *igniter*) is placed in a small depression made in the thermite mixture. The crucible is surrounded by sand which prevents the loss of heat by radiation. A piece of Mg ribbon is struck into the ignition mixture and the charge is covered by a layer of fluorspar (CaF₂) which acts as a heat insulator. Now Mg-ribbon is ignited so that ignition mixture catches fire and flame is produced, leading to a violent reaction between Mg and BaO_2 with the evolution of large amount of heat.

Mg + BaO₂ \rightarrow BaO + MgO + Heat

Heat produced in the above reaction makes Cr_2O_3 and AI-powder react together.

$$Cr_2O_3 + AI \rightarrow 2Cr(\ell) + AI_2O_3$$

Molten Cr-metal formed settles down at the bottom of the crucible.

Reduction of Cr₂O₃ by Al-powder (Aluminothermic process).

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalav	var Road, Kota (Raj.) – 324005
<u>A Resonance</u>	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVMTI 51
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVMIL-51

人

An application of aluminothermic process has been used for joining the broken pieces of iron (welding). In this process thermite mixture consisting of Fe_2O_3 and Al-powder in 3 : 1 ratio is placed in a funnel shaped crucible lined internally with magnesite and having a plug hole at its bottom. The thermite mixture is covered with a mixture of BaO_2 plus Mg-powder (ignition mixture) in which a piece of Mg ribbon is inserted. The ends of the iron pieces to be welded are thoroughly cleaned and surrounded by a fire-clay mould. When Mg ribbon is ignited, ignition mixture catches fire and Fe_2O_3 gets reduced to Fe by Al-powder.

Leaching pitch blends with H₂SO₄ or sodium carbonate to dissolve uranium:

$$U_{3}O_{8} + 3 \operatorname{Na}_{2}CO_{3} + \frac{1}{2}O_{2} \longrightarrow 3 \operatorname{Na}_{2}UO_{4} + 3 \operatorname{CO}_{2}$$
$$U_{3}O_{8} + 3 \operatorname{H}_{2}SO_{4} + \frac{1}{2}O_{2} \longrightarrow 3 \operatorname{UO}_{2}SO_{4} + 3 \operatorname{H}_{2}O$$

Precipitation of Mg (OH)₂ from sea water using lime solution :

$$MgCI_2 + Ca(OH)_2 \longrightarrow Mg(OH)_2 + CaCI_2.$$

Oxidation Reduction :

Besides reductions, some extractions are based on oxidation particularly for non-metals.

(a) A very common example of extraction based on oxidation is the extraction of chlorine from brine (chlorine is abundant in sea water as common salt).

 $2CI^{-}(aq) + 2H_2O(I) \longrightarrow 2OH^{-}(aq) + H_2(g) + CI_2(g)$

The ΔG° for this reaction is + 422 kJ. When it is converted to E° (using $\Delta G^{\circ} = -nE^{\circ}F$), we get $E^{\circ} = -2.2$ V. Naturally, it will require an external e.m.f. that is greater than 2.2 V. But the electrolysis requires an excess potential to overcome some other hindering reactions. Thus, CI_2 is obtained by electrolysis giving out H_2 and aqueous NaOH as by-products. Electrolysis of molten NaCl is also carried out. But in that case, Na metal is produced and not NaOH.

From Magnesite : The concentrated ore is calcined at higher temperature

$$MgCO_3 \xrightarrow{Heated} MgO + CO_2$$

The calcined ore is heated with coke in a current of dry chlorine gas.

$MgO + C + Cl_2 \xrightarrow{\Delta} MgCl_2 + CO$

The magnesium chloride is fused and then electrolysed.

 $MgO + C (Other reducing agents like Si, Al can be used) \xrightarrow{2000^{\circ}C} Mg + CO$

PART - V : PRACTICE TEST-2 (IIT-JEE (ADVANCED Pattern))

Max. Time : 1 Hr.

Important Instructions

A. General :

- 1. The test is of 1 hour duration.
- 2. The Test Booklet consists of 22 questions. The maximum marks are 66.
- B. Question Paper Format :
- 3. Each part consists of five sections.
- Section-1 contains 7 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE is correct.
- 5. Section-2 contains 5 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR MORE THAN ONE are correct.
- 6. Section-3 contains 6 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9 (both inclusive).
- 7. Section-4 contains 1 paragraphs each describing theory, experiment and data etc. 3 questions relate to paragraph. Each question pertaining to a partcular passage should have only one correct answer among the four given choices (A), (B), (C) and (D).
- 8. Section-5 contains 1 multiple choice questions. Question has two lists (list-1 : P, Q, R and S; List-2 : 1, 2, 3 and 4). The options for the correct match are provided as (A), (B), (C) and (D) out of which ONLY ONE is correct.
- C. Marking Scheme :

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Max. Marks : 66

- 9. For each question in Section-1, 4 and 5 you will be awarded 3 marks if you darken the bubble corresponding to the correct answer and zero mark if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.
- 10. For each question in Section-2, you will be awarded 3 marks. If you darken all the bubble(s) corresponding to the correct answer(s) and zero mark. If no bubbles are darkened. No negative marks will be answered for incorrect answer in this section.
- 11. For each question in Section-3, you will be awarded 3 marks if you darken only the bubble corresponding to the correct answer and zero mark if no bubble is darkened. No negative marks will be awarded for incorrect answer in this section.

SECTION-1 : (Only One option correct Type) This section contains 7 multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which Only ONE option is correct.

1. Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is false. (i) In Gold Schmidt thermite process aluminium acts as a reducing agent. (ii) Mg is extracted by electrolysis of aqueous solution of MgCl₂ (iii) Extraction of Pb is possible by carbon reduction of PbO in smelting. (iv) Red bauxite is purified by Serpeck's process (A) TTTF (B) T F F T (C) FTTT (D) T F T F2. Leaching of Ag₂S is carried out by heating it with a dilute solution of : (A) NaCN only (B) HCI (C) NaOH (D) NaCN in presence of O2 In which of the following pair of metals, both are commercially extracted from their respective ores by 3.2 self reduction method ? (A) Zn, Cu (B) Pb, Cu (C) Sn, Zn (D) AI, Ag 4. Consider the following isolation / purification processes. (I) Heating impure metal with I₂ at 150–200°C and passing the resulting volatile iodide on hot tungsten filament at 1400°C to get the pure metal. (II) Heating the sulphide ore in air until a part is converted to oxide and then further heating in the absence of air to let the oxide react with unchanged metal sulphide to get the metal. (III) Electrolysis of the molten electrolyte containing metal oxide and cryolite or florspar to obtain the metal. The processes used for obtaining aluminium, titanium and lead are respectively : (A) (I), (II) and (III) (B) (II), (III) and (I) (C) (III), (I) and (II) (D) (II), (I) and (III) 5.2 Consider the following statements : S_1 : In extraction of iron from haematite ore, the reduction reactions take place only in the lower temperature range in the blast furnace. S₂: Calamine is an carbonate ore of zinc. S_3 : The principal ore of aluminium, bauxite, usually contains silica, iron oxides and titanium oxide as impurities. S4 : Solidified copper obtained from silica lined convertor (Bessemer converter) has blistered appearance due to the evolution of SO₂. and arrange in the order of true/false. (A) FTTT (B) FTFF (C) F F T T (D) T F F T In the extraction of aluminium 6.2 Process X : employed for red bauxite to remove iron oxide (main impurity) Process Y : (Serpeck's process) : used for white bauxite to remove Z (main impurity) then, Select correct option for the process X and impurity Z. (A) X = Hall and Heroult's process and $Z = SiO_2$ (B) X = Bayer's process and $Z = SiO_2$ (C) X = Serpeck's process and Y = iron oxide (D) X = Bayer's process and Y = iron oxide

Meta	allurgy			八-
7.2	Which of the follow I. Gold ; II. Iron, II	/ing metals may be prese [. Silver ; IV Magnesium	ent in the anode mud dur	ing electrorefining of copper?
	(A) I and II	(B) II and IV	(C) I and III	(D) III and IV
	S This section con (C) and (D) out of	Section-2 : (One or Mor tains 5 multipole choid which ONE or MORE T	e than one options corr ce questions. Each que THAN ONE are correct.	ect Type) estions has four choices (A), (B),
8.24	Select the correct (A) Dolomite conta (B) Extraction of I followed by self rea (C) Extraction of z (D) The chemical of	statement : ins both magnesium and ead from galena involve duction at higher tempera nc from zinc blende invo composition of 'slag' form	d calcium. es roasting in limited sup ature (to melt the charge) lves roasting followed by ned during the extraction	oply of air at moderate temperature reduction with carbon. of iron and copper is FeSiO ₃ .
9.	The reaction(s) wh ore is (are) : (A) $Fe_2O_3 + CO \rightarrow$ (C) $Fe_2O_3 + 3C \rightarrow$	ich does (do) not occur 2 FeO + CO ₂ 2Fe + 3CO	in the reduction zone in t (B) FeO + CO \rightarrow F (D) CaO + SiO ₂ \rightarrow	the extraction of iron from haematite re + CO ₂ • CaSiO ₃
10.	Which of the follow (A) Calamine is the (C) Cassiterite is the	ving is a correct statemer e ore of zinc. ne ore of tin.	nt ? (B) Proustite is the (D) Diaspore is the	ore of silver. ore of aluminium.
11. 🖎	Froth floatation : (A) is a physical m (B) is a method of particles. (C) is used for the (D) is a method in	ethod of separating mine concentration of ore dep concentration of sulphide which impurities sink to t	eral from the gangue bending on the difference e ores he bottom and ore partic	e in wetability of gangue and the ore les pass on to the surface with froth.
12.	Which of the follow (A) $Fe_2O_3 + 2AI \rightarrow$ (B) $Cr_2O_3 + 2AI \rightarrow$ (C) $2Na[Au(CN)_2]$ (D) $Cu_2S + 2CuO$	ring reduction reactions a Al ₂ O ₃ + 2Fe Al ₂ O ₃ + 2Cr + Zn → Na ₂ [Zn(CN) ₄] + 2 → 6Cu + SO ₂	are actually employed in 2	commercial extraction of metals?
	This section con from 0 to 9 (both	Section-3 : (One Ir tains 6 questions. Eac inclusive)	nteger Value Correct Ty th question, when wor	rpe.) ked out will result in one integer

13. The minimum potential difference needed to reduce Al₂O₃ at 500°C is : The reaction for decomposition is :

$$\frac{2}{3} \operatorname{Al}_2 \operatorname{O}_3 \longrightarrow \frac{4}{3} \operatorname{Al} + \operatorname{O}_2$$

 $\Delta G = + 960 \text{ kJ at } 500^{\circ} \text{C}.$

(Report your answer as potential difference × 2)

14. How many of the following minerals are oxides of metals/metalloids.

- (i) Bauxite(ii) Corundum(iii) Dolomite(iv) Malachite(v) Magnetite(vi) Pyrolucite(vii) Argentite(viii) Horn silver(ix) Quartz(x) Cryolite(xi) Siderite(xii) Zincite(xiii) Calamine(xiv) Syline(xv) Carnellite
- **15.** Calculate number of metals which can be extracted by self reduction method Cu, Al, Fe, Mg, Zn, Sb, Sn, Pb

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalaw	war Road, Kota (Raj.) – 324005
A Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVMITE - 54

- **16.** Poling process is applied when impurity is a compound of a metal and a non-metal. Atomic number of non-metal is
- 17. How many of following metals can be purified by electro refining by using metal as impure anode. Cu, Al, Pb, Sn, Ag, Zn, Ca, Mg
- **18.** How many of the following refining processes are correctly matched with their element ? Liquation-Tin, Fractional distillation-Zinc, Zone refining-Germanium, Poling-Tin, Van Arkel-Titanium, Cupellation-Silver.

SECTION-4 : Comprehension Type (Only One options correct)

This section contains 1 paragraphs, each describing theory, experiments, data etc. 3 questions relate to the paragraph. Each question has only one correct answer among the four given options (A), (B), (C) and (D)

Paragraph for Questions 19 to 21

Metallic gold frequently is found in aluminosilicate rocks and it is finely dispersed among other minerals. It may be extracted by treating the crushed rock with aerated sodium cyanide solution. During this process metallic gold is slowly converted to $[Au(CN)_2]^-$, which is soluble in water. After equilibrium has been reached, the aqueous phase is pumped off and the metallic gold is recovered from it by reacting the gold complex with zinc, which is converted to $[Zn(CN)_4]^{2-}$. Gold in nature is frequently alloyed with silver which is also oxidised by aerated sodium cyanide solution.

- **19.** The correct ionic reaction for the process are
 - (A) $4Au + 8CN^{-} + 2H_2O + O_2 (air) \rightarrow 4[Au(CN)_2]^{-} (soluble) + 4OH^{-}$
 - (B) Au + 2CN⁻ \longrightarrow Au[(CN)₂]⁻
 - (C) $Zn + 2CN^{-} \longrightarrow Zn[(CN)_{2}]^{-}$
 - (D) $Zn + 4CN^{-} \longrightarrow Zn[(CN)_{4}]^{2-}$
- **20.** There have been several efforts to develop alternative gold extraction processes which could replace this one. Why ?
 - (A) Sodium cyanide solutions corrode mining machinery

(B) Sodium cyanide escapes into ground water and produces hydrogen cyanide which is toxic to many animals.

- (C) Gold obtained by this process is not pure.
- (D) The amount of gold in aluminosilicate rocks is very less.
- 21. The process described above in the passage is represents :
 - (A) ore concentration

- (B) pyrometallurgical extraction
- (C) hydrometallurgical extraction
- (D) purification of metal

SECTION-5 : Matching List Type (Only One options correct)

This section contains 1 questions, each having two matching lists. Choices for the correct combination of elements from List-I and List-II are given as options (A), (B), (C) and (D) out of which one is correct.

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

22. Match the name of the processes given in **column-l** with type(s) of metallurgical methods given in **column-ll**.

	Colur	mn – I				Column -	- 11					
(P)	Hall-I	Heroult p	rocess		(1)	Molten Al	2 0 3 + N	la₃AIF ₆ e	lectrolys	is.		
(Q)	Dow's	s sea wa	ter proce	ess	(2)	Molten Me	gCl ₂ + (CaCl ₂ + N	VaCl ele	ctrolysis.		
(R)	Hoop	's proces	S		(3)	Molten im electrolys	pure al is.	uminium	+ fluorio	des of Na	ı⁺, Ba²+	and Al ³⁺
(S)	Mac-A	Arthur Fo	orrest pro	ocess	(4)	Complex	formation	on and d	isplacen	nent meth	nod.	
Code	:											
	Р	Q	R	S			Ρ	Q	R	S		
(A)	4	2	3	1		(B)	1	2	4	3		

Practice Test-2 ((IIT-JEE (ADVANCED Pattern)) OBJECTIVE RESPONSE SHEET (ORS)

(C) 2 1 3 4 (D) 1 2 3 4

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22								
Ans.										

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Metallurgy

)	٨.	
/	1	١

		answ	vers						
				PA	RT - I				
1.	(1)	2.	(2)	3.	(3)	4.	(1)	5.	(4)
6.	(4)	7.	(3)	8.	(2)	9.	(2)	10.	(3)
11.	(2)	12.	(2)	13.	(4)	14.	(2)	15.	(1)
16.	(2)	17.	(1)	18.	(1)	19.	(2)	20.	(4)
21.	(3)	22.	(3) (1, 2 & 3)	23.	(3)	24.	2 (2 & 3)	25.	5 (2+3)
				ΡΑ	RT - II				
1.	(3)	2.	(4)	3.	(2)	4.	(3)	5.	(4)
6.	(3)	7.	(3)	8.	(4)	9.	(4)	10.	(2)
11.	(1)								
				PA	२Т - Ш				
1.	(B)	2.	(A)	3.	(A)	4.	(C)	5.	(C)
6.	(C)	7.	(C)	8.	(B)	9.	(C)	10.	(A)
11.	(A)								
				PAI	RT - V				
1.	(D)	2.	(D)	3.	(B)	4.	(C)	5.	(A)
6.	(B)	7.	(C)	8.	(ABC)	9.	(CD)	10.	(ABCD)
11.	(ABCD)	12.	(BCD)	13.	5	14.	06	15.	3
16.	8	17.	08	18.	6	19.	(A)	20.	(B)
21.	(C)	22.	(D)						
		Salut	ions =						
		Solut							

PART – I

- 1. Lighter gangue particles are washed in a current of water by a process called levigation. In levigation the powdered ore is agitated with water or washed with a upward stream of running water, the lighter particles of sand, clay etc are washed away leaving behind heavier ore particles.
- **2.** Hydraulic washing or Gravity separation or Levigation method is based on the difference in the densities of the gangue and ore particles.
- **3.** This method is commonly used for the concentration of the low grade sulphide ores like galena, PbS (ore of Pb); copper pyrites CuFeS₂ (ore of copper); zinc blende, ZnS (ore of zinc) etc., and is based on the fact that gangue and ore particles have different degree of wettability with water and pine oil; the gangue particles are preferentially wetted by water while the ore particles are wetted by oil.
- **4.** An ore of tin containing FeCr₂O₄ is concentrated by magnetic separation as FeCr₂O₄ is ferromagnetic.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005		
<u>A Resonance</u>	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in		
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVMIL-57	

5. Roasting removes easily oxidisable volatile impurities like arsenic (as As₂O₃), sulphur (as SO₂), phosphorus (as P₄O₁₀) and antimony (as Sb₂O₃).

4M (M = As, Sb) + $3O_2 \longrightarrow 2M_2O_3 \uparrow$

 $S + O_2 \longrightarrow SO_2 \uparrow$; $P_4 + 4O_2 \longrightarrow P_4O_{10} \uparrow$

Organic matter, moisture if present in the ore, also get expelled and the ore becomes porous.

- 6. Conversion of a carbonate into oxide is an example of calcination $MgCO_3 \xrightarrow[absence of air]{A} MgO + CO_2 \uparrow.$
- 7. Acidic flux is used. It is an acidic oxide (oxide of a non-metal) like SiO₂, P₂O₅, B₂O₃ (from borax). It is used to remove the basic impurity like CaO, FeO, MgO etc. The acidic flux combines with the basic impurity and forms a slag.
- 8. (1) Calamine is ZnCO₃ and siderite is FeCO₃.
 - (2) Argentite is Ag₂S while cuprite is Cu₂O.
 - (3) Zinc blende is ZnS and iron pyrites is FeS₂.
 - (4) Malachite is $CuCO_3 Cu(OH)_2$ and azurite is $2CuCO_3 Cu(OH)_2$.
- **9.** Electrolytic reduction method is used in the extraction of highly electropositive elements as they themselves are stronger reducing agents. They lie above hydrogen in electrochemical series.
- (1) Cu₂O + C → 2Cu + CO ; SnO₂ + 2C (anthracite) → ^{1800°C} → Sn + 2CO.
 (2) 2Fe₂O₃ + 3C → 4Fe (spongy iron) + 3CO₂ ; ZnO + C → ^{1200°C} → Zn + CO.
 (3) Oxides of highly reactive metals (like K₂O) are not reduced by carbon. K lie above hydrogen in electrochemical series and so it acts as strong reducing agent. K is obtained by electrolytic reduction of their fused salts.
 (4) FeO + C → Fe + CO ; PbO + C → Pb + CO
- **11.** Cryolite is Na₃AIF₆ and is used in the electrolysis of alumina. It reduces the melting point of alumina and increase the electrical conductivity of electrolyte.
- **12.** Ti (impure) + $2I_2(g) \xrightarrow{50-250^\circ C} TiI_4(g) \xrightarrow{1400^\circ C} Ti(pure) + 2I_2(g)$
- **13.** This process is used for the purification of copper and tin to remove the impurities of their oxides. Green wood \rightarrow Hydrocarbons \rightarrow CH₄ ; 4CuO + CH₄ \rightarrow 4Cu (pure metal) + CO₂ + 2H₂O Green wood \rightarrow Hydrocarbon \rightarrow CH₄ ; 2SnO₂ + CH₄ \rightarrow 2Sn + CO₂ + 2H₂O
- 14. This process is used for the purification of the metal, which itself is readily fusible, but the impurities present in it are not, i.e., the impurities are infusible. This process is used for the purification of Sn and Zn, and for removing Pb from Zn-Ag alloy, which is obtained at the end of Parke's process and contains Pb as impurity.
- **15.** (a) Limonite is $Fe_2O_3.3H_2O$. (b) Argentite is Ag_2S .
 - (c) Carnallite is KCI.MgCl₂.6H₂O. (d) Calamine is ZnCO₃.
- **16.** (a) Bauxite is leached with NaOH (concentrated) to form soluble Na[Al(OH)₄] complex and insoluble impurities are filtered off.

(b) Carbonate and hydroxide ores are heated in absence of air below their melting point to convert in to their oxides in reverberatory furnace. This is called calcination. So siderite, FeCO₃ is subjected to calcination.

(c) This method is commonly used for the concentration of the low grade sulphide ores like galena, PbS (ore of Pb); copper pyrites CuFeS₂ (ore of copper); zinc blende, ZnS (ore of zinc) etc., and is based on the fact that gangue and ore particles have different degree of wettability with water and pine oil; the gangue particles are preferentially wetted by water while the ore particles are wetted by oil.

(d) Chromite ore (FeO.Cr₂O₃) having magnetic properties is separated from non–magnetic silicious impurities by magnetic separator.

17. (a) Self-reduction method : This method is also called auto-reduction method or air reduction method. If the sulphide ore of some of the less electropositive metals like Hg, Cu, Pb etc. are heated in air, a part of these is changed into oxide or sulphate that then reacts with the remaining part of the sulphide ore to give its metal and SO₂.

$$Cu_2S + 3O_2 \longrightarrow 3Cu_2O + 2 SO_2$$

 $2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$

(b) Reduction with carbon / carbon monoxide :

 $2Fe_2O_3 + 3C \longrightarrow 4Fe \text{ (spongy iron)} + 3CO_2$

 $Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$

 $Fe_3O_4 + 4CO \longrightarrow 3Fe + CO_2$

(c) Electrolytic reduction (Hall-Heroult process) : The purified Al_2O_3 is mixed with Na_3AlF_6 (cryolite) or CaF_2 (fluorspar) which lowers the melting point of the mixture and increases conductivity. The fused matrix is electrolysed.

The electolysis of the molten mass is carried out in an electrolytic cell using carbon electrodes. The oxygen liberated at anode reacts with the carbon of anode producing CO and CO₂.

Cathode : Al^{3+} (melt) + $3e^- \longrightarrow Al(l)$ Anode : $C(s) + O^{2-}$ (melt) $\longrightarrow CO(g) + 2e^ C(s) + 2O^{2-}$ (melt) $\longrightarrow CO_2(g) + 4e^-$

(d) Complex formation and displacement by metal : Extraction of Ag and Au. Metals like Au and Ag can be precipitated for their salt solution by electropositive metals for example, Zn.

Metallic Ag is dissolved from its ore in dilute NaCN solution, and the solute so obtained is treated with scrap Zn when Ag is precipitated. Air is blown into the solution oxidize Na₂S. Leaching the metals like silver, gold with CN^- is an oxidation reaction (Ag \rightarrow Ag⁺ or Au \rightarrow Au⁺)

 $\begin{array}{l} Ag_2S\ (s) + 4CN^-\ (aq) \longrightarrow 2[Ag(CN)_2]^-\ (aq) + S^{2-}\ (aq) \\ 2Ag(CN)_2^-\ (aq) + Zn\ (s) \longrightarrow [Zn\ (Cn)_4]^{2-}\ (aq) + 2Ag\ (s) \\ Here\ Zn\ acts\ as\ reducing\ agent. \end{array}$

- **18.** Molten iron from blast furnace is taken in to sand pigs for solidification. Therefore iron obtained from blast furnace is called pig iron.
- **19.** $2ZnS + 3O_2 \xrightarrow{\text{roasting}} 2ZnO + 2SO_2$; $ZnO + C \xrightarrow{1100^{\circ}C} Zn + CO$. Therefore, (2) option is correct.
- **20.** In Ellingham diagram, the $\Delta_f G^0$ of Al₂O₃ lies below that of CO₂. If reduction is carried out at very high temperature, the Al produced will react with carbon forming Al₄C₃.
- **21.** Generally the sulphides of Zn, Pb, Fe, Cu etc. are subjected to roasting to convert in to their oxides prior to reduction by carbon.
- 22. Electrolytic reduction method is used in the extraction of highly electropositive elements as they themselves are stronger reducing agents. They lie above hydrogen in electrochemical series. The heat of formation of Al_2O_3 is very high and therefore, at higher temperature there will be the possibility of formation of Al_4C_3 with carbon.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in		
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVINITE - 59	

- 24. In actual process the ore is heated in a reverberatory furnace after mixing with silica. In the furnace, iron oxide 'slags off' as iron silicate and copper is produced in the form of copper matte which contains mostly Cu₂S and some FeS.
- **25.** (I) $4Au / Ag (s) + 8CN^{-}(aq) + 2H_2O(aq) + O_2(g) \longrightarrow 4[Au / Ag (CN)_2]^{-}(aq) + 4OH_{-}(aq)$ $2[Au / Ag (CN)_2]^{-}(aq) + Zn(s) \longrightarrow 2Au / Ag (s) + [Zn(CN)_4]^{2-} (aq)$

(II) This method is based on the fact that gangue and ore particles have different degree of wettability with water and pine oil; the gangue particles are preferentially wetted by water while the ore particles are wetted by oil.

(III) Electrolytic reduction (Hall-Heroult process) :

The purified Al_2O_3 is mixed with Na_3AlF_6 (cryolite) or CaF_2 (fluorspar)) which lowers the melting point of the mixture and increases conductivity. The fused matrix is electrolysed. The electrolytic reactions are :

Cathode : Al^{3+} (melt) + $3e^- \longrightarrow Al(l)$ Anode : $C(s) + O^{2-}$ (melt) $\longrightarrow CO(a) + 2e^-$

$$C(s) + O^{-1}$$
 (meil) $\longrightarrow CO(g) + 2e$

 $C(s) + 2O^{2-} (melt) \longrightarrow CO_2 (g) + 4e^{-}$

(IV) This process is used when metals are required in very high purity, for specific application. For example pure Si and Ge are used in semiconductors and hence are purified by this method. Zone refining method is based on the principle that an impure molten metal on gradual cooling will deposit crystals of the pure metal, while the impurities will be left in the remaining part of the molten metal.

PART - II

- Pure metal always deposits at cathode according to the following reactions. Anode (oxidation) : M(s) → M²⁺(aq) + 2e⁻ (M = Cu, Zn, Fe) Cathode (reduction) : Cu²⁺ (aq) + 2e⁻ → Cu(s) Thus, the net cell reaction simply involves transfer of Cu metal from the impure anode to the pure cathode, Cu obtained by this process is 99.95% pure.
- 2. Electrolyte consists of molten Al₂O₃, Na₃AlF₆ or CaF₂. Cryolite or fluorspar lowers the melting point and increase the conductivity of electrolyte. So option (4) is correct.
- **3.** Silver ore forms a soluble complex when leached with NaCN solution and from which silver is precipitated using scrap zinc.

Ag₂S (conc. ore) + 2NaCN \rightleftharpoons 2AgCN + Na₂S. 4Na₂S + 5O₂ + 2H₂O \longrightarrow 2Na₂SO₄ + 4NaOH + 2S

Na₂S is converted in to Na₂SO₄. Hence equilibrium shifts towards right side.

AgCN + NaCN \longrightarrow Na[Ag(CN)₂] (soluble complex).

- 4. Froth-floatation method is used for the concentration of sulphide ores. The method is based on the preferential wetting properties with the frothing agent and water. Here galena (PbS) is the only sulphide ore.
- 5. $2Cu_2O + Cu_2S \xrightarrow{\Delta} 6Cu + SO_2$. (self reduction)
- 6. Anode mud contains Ag, Pt, Sb, Se, Te and Au as impurities. (NCERT)
- 7. (3) It is true that this statement has no significance for roasting sulphide ores to the oxides. The Gibb's energies of formation of most sulphides are greater than that for CS_2 . In fact, CS_2 is an endothermic compound. There, the $\Delta_f G^{\Theta}$ of M_xS is not compensated. So reduction of M_xS is difficult. Hence it is common practice to roast sulphide ores to corresponding oxides prior to reduction.
- 8. The process is known as Van Arkel method.
- 9. (1) In this process, carbon anode is oxidised to CO and CO₂.
 - (2) It is a fact
 - (3) At cathode, AI^{3+} from AI_2O_3 is reduced to AI.

(4) Al₂O₃ is the electrolyte, which is undergoing the redox process. So, Al₂O₃ serves as electrolyte and Na₃AlF₆, although an electrolyte, serves as solvent.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalav	var Road, Kota (Raj.) – 324005
A Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVMITE - 80

10.	Galena = PbS For sulphur ores froth floatation is carried out.
11.	$(A\ell)M+ NaOH \longrightarrow (X)A\ell(OH)_{3} \downarrow \xrightarrow{\Delta} A\ell_{2}O_{3(s)}$ Gelatinous white ppt Silica Gel. used as adsorbent in chromatography NaOH Excess Na[Al(OH)_4]_{aq} soluble in water
	PART - V
1.	(i) $\overset{+3}{\text{Cr}}_2 O_3 + 2 \overset{0}{\text{A}} I \xrightarrow{\Delta} \overset{+3}{\text{Al}}_2 O_3 + 2 \overset{0}{\text{C}} r$ (ii) Mg is extracted by electrolytic reduction of fused MgCl ₂ . As Mg lies above hydrogen in electrochemical series. (iii) PbO + C $\xrightarrow{\Delta}$ Pb + CO ; CaO + SiO ₂ $\xrightarrow{\Delta}$ CaSiO ₃ (iv) Red bauxite (contains impurity of iron oxide) is purified by Bayer's / Hall's process.
2.	Ag ₂ S (conc. ore) + 2NaCN \xrightarrow{Air} 2AgCN + Na ₂ S. Ag ₂ S and AgCN are in equilibrium so Na ₂ S is oxidised by air in to Na ₂ SO ₄ . Hence equilibrium shifts towards right side. 4Na ₂ S + 5O ₂ + 2H ₂ O \longrightarrow 2Na ₂ SO ₄ + 4NaOH + 2S AgCN + NaCN \longrightarrow Na[Ag(CN) ₂] (soluble complex) 2Na[Ag(CN) ₂] + Zn (dust) \longrightarrow 2AgL + Na ₂ Zn(CN) ₂]
3.	(i) Extraction of tin (carbon reduction) : $SnO_2 + C \rightarrow SnO + CO^{\uparrow}$ (ii) Extraction of zinc (carbon reduction) : $ZnO + C \xrightarrow{coke,673} Zn + CO$ (iii) Extraction of lead (self reduction) : $PbS + 2O_2 \longrightarrow PbSO_4$; $PbS + 3O_2 \longrightarrow 2PbO + 2SO_2$ $PbS + 2PbO \longrightarrow 3Pb + SO_2$; $PbS + PbSO_4 \longrightarrow 2Pb + 2SO_2$ (iv) Extraction of copper (self reduction) : $2CuFeS_2 + 4O_2 \longrightarrow Cu_2S + 2FeO + 3SO_2$ $Cu_2S + FeO + SiO_2 \longrightarrow FeSiO_3$ (fusible slag) + Cu_2S (matte) $2Cu_2S + 3O_2 \longrightarrow 2Cu_2O + 2SO_2$; $2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$
	(v) Extraction of aluminium (electrolytic reduction, Hall-Heroult process) : The purified Al ₂ O ₃ is mixed with Na ₃ AlF ₆ (cryolite) or CaF ₂ (fluorspar)) which lowers the melting point of the mixture and increases conductivity. The fused matrix is electrolysed. Cathode : Al^{3+} (melt) + $3e^- \longrightarrow Al(l)$ Anode : $C(s) + O^{2-}$ (melt) $\longrightarrow CO(g) + 2e^-$ $C(s) + 2O^{2-}$ (melt) $\longrightarrow CO_2(g) + 4e^-$ (vi) Extraction of gold/silver (leaching and displacement method) : $4Au / Ag(s) + 8CN^{-}(aq) + 2H_2O(aq) + O_2(g) \longrightarrow 4[Au / Ag(CN)_2]^{-}(aq) + 4OH^{-}(aq)$ $2[Au / Ag(CN)_2]^{-}(aq) + Zn(s) \longrightarrow 2Au / Ag(s) + [Zn(CN)_4]^{2-} (aq)$
4.	(I) Ti (s) (impure) + $2I_2(g) \xrightarrow{150-250^\circ C} TiI_4$ (volatile) $\xrightarrow{1400^\circ C}_{\text{tungsten filament}}$ Ti (s) (pure) + $2I_2$ (g) (II) $2PbS + 3O_2 \xrightarrow{\Delta} 2PbO + 2SO_2$ PbS + $2PbO \xrightarrow{\text{high}}_{\text{temp.}} 3Pb + SO_2$ (III) Cathode : $AI^{3+}(\text{melt}) + 3e^- \longrightarrow AI(I)$ Anode : $C(s) + O^{2-}(\text{melt}) \longrightarrow CO(g) + 2e^-$ $C(s) + 2O^{2-}(\text{melt}) \longrightarrow CO_2(g) + 4e^-$
	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005
\sum	Comparing for better tomorrow Website : www.resonance.ac.in E-mail : contact@resonance.ac.in Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029 ADVMTL - 61

八

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalav	var Road, Kota (Raj.) – 324005
A Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVMIL-01

5. S₁ : At 500–800 K (lower temperature range in the blast furnace)

$$3 \operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2 \operatorname{Fe_3O_4} + \operatorname{CO_2}$$

$$\operatorname{Fe_3O_4} + \operatorname{CO} \longrightarrow 3\operatorname{Fe} + 4 \operatorname{CO_2}$$

$$\operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2\operatorname{FeO} + \operatorname{CO_2}$$

At 900–1500 K (higher temperature range in the blast furnance): FeO + CO \longrightarrow Fe + CO₂ S₂ : calamine is ZnCO₃

 S_2 : calamine is $ZnCO_3$

 S_3 : It contains Fe_2O_3, SiO_2 and TiO_2 as impurities

 S_4 : The surface of solidified copper has blistered like appearances due to the evolution of SO_2 and so it is called blister copper.

- (X) Red bauxite contains the impurities of oxides of iron and silicates. In Bayer process, alumina is dissolved by reacting sodium hydroxide solution leaving behind the insoluble oxide of iron.
 (Y) White bauxite contains the impurity of silica which is removed by Serpeck's method.
 Al₂O₃ + N₂ + 3C → 1800°C → 2AIN + 3CO ; SiO₂ + 2C → 1800°C → Si[↑] + 2CO[↑]
 AIN + 3H₂O → Al(OH)₃ ↓ + NH₃ ; 2Al(OH)₃ → Al₂O₃ + 3H₂O.
- 7. Anode mud contains Ag, Au as impurities.
- 8. (A) dolomite is CaCO₃.MgCO₃
 - $\begin{array}{ll} (B) \ 2PbS + 3O_2 & \xrightarrow{\text{Roasting}} & 2PbO + 2SO_2 \ ; & PbS + 2PbO & \xrightarrow{\text{Self reduction}} & 3Pb + SO_2 \\ (C) \ 2ZnS + 3O_2 & \xrightarrow{\text{Roasting}} & 2ZnO + 2SO_2 \ ; & ZnO + C & \xrightarrow{\text{Carbon reduction}} & Zn + CO \\ (D) \ In \ extraction \ of \ iron \ the \ slag \ obtained \ is \ CaSiO_3 \ where \ as \ in \ copper \ it \ is \ FeSiO_3. \end{array}$
- 9. $C + O_2 \longrightarrow CO_2$ (combustion zone) $C + CO_2 \longrightarrow 2CO$ (fusion zone); FeO + C \longrightarrow Fe + CO (fusion zone) $CaO + SiO_2 \longrightarrow CaSiO_3$ (slag formation zone); FeO + CO \longrightarrow Fe + CO₂ (slag formation zone) $3Fe_2O_3 + CO \longrightarrow 2Fe_3O_4 + CO_2$ (reduction zone); Fe₃O₄ + CO $\longrightarrow 3FeO + CO_2$ (reduction zone)
- (A) Calamine, ZnCO₃ is the ore of zinc.
 (B) Proustite, Ag₃AsS₃ is the ore of silver.
 (C) Cassiterite, SnO₂ is the ore of tin.
 (D) Diaspore, Al₂O₃.H₂O is the ore of aluminium.
- **11.** This method is commonly used for the concentration of the low grade sulphide ores like galena, PbS (ore of Pb); copper pyrites CuFeS₂ (ore of copper); zinc blende, ZnS (ore of zinc) etc., and is based on the fact that gangue and ore particles have dlfferent degree of wettability with water and pine oil; the gangue particles are preferentially wetted by water while the ore particles are wetted by oil.
- 12. (A) $2AI + Fe_2O_3 \longrightarrow AI_2O_3 + 2Fe \text{ (molten)}; \Delta H = -3230 \text{ kJ}$ (The reaction is used for thermite welding) (B) Aluminonthermic process : $Cr_2O_3 + AI \rightarrow 2Cr \text{ (molten)} + AI_2O_3$ (C) Extraction of gold : $4Au \text{ (s)} + 8 \text{ CN}^-(aq) + O_2 \text{ (g)} + 2H_2O \text{ (l)} \longrightarrow 4 [Au(CN)_2]^-(aq) + 4OH^-(aq) 2[Au(CN)_2]^-(aq) + Zn \text{ (s)} \longrightarrow [Zn(CN)_4]^{2-}(aq) + 2 \text{ Au (s)}$ (D) Self-reduction method : $Cu_2S + 3O_2 \longrightarrow 3Cu_2O + 2 \text{ SO}_2$; $2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in		
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	ADVINTE - 62	

13. Hence, the change in oxidation number of aluminium is 3 per mole. Since 4/3 moles of AI are produced $n = 3 \times 4/3 = 4$

$$\mathsf{E}_{\mathsf{ext}} = \frac{960\,000}{4 \times 96490} = 2.5 \, \mathsf{V}$$

A potential difference of at least 2.5 V must be applied to the oxide to bring about reduction.

- **14.** (i), (ii), (v), (vi), (ix), (xii)
- **15.** Self reduction method can be used for Cu, Pb, and Sb
- **16.** Impurity is of metal oxide.
- 17.Cu, Pb, Sn, Zn, Ag: In aqueous mediumAl, Ca, Mg: In molten state
- **19.** Dissolution of gold in NaCN forming soluble complex is reversible, so it is carried out in presence of air bubbling. Oxygen contained in air oxidises Au to Au⁺ which then complexes with CN⁻ to form soluble complex.
- **20.** (B) HCN produced with water by NaCN and KCN is poisonous and have carcinogenic activity.
- **21.** The process which involves the dissolution of ore in to a suitable reagent and then extraction of metal from the solution by more electropositive element is called hydrometallurgy.
- (A) Hall- Heroult process is the electrolytic reduction of molten Al₂O₃ dissolved in cryolite or fluorspar.
 (B) Dow's sea water process involves the isolation of Mg from sea water as MgCl₂ and then electrolytic reduction of molten MgCl₂ dissolved in CaCl₂ and NaCl.
 (C) Hoop's process is the electrolytic purification of impure aluminium. The cell has three liquid layers

upper most layer containts impure AI, middle one contains fluorides of Na⁺, Ba²⁺ and Al³⁺, lower most layer has pure AI (obtained by cathodic oxidation).

(D) Mac-Arthur forest cyanide process is the process used for the extraction of gold and silver. Extraction of gold and silver involves leaching the metal with CN^- . The metal is later recovered by displacement method.

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

