Exercise-1

八

> Marked questions are recommended for Revision.

PART - I : SUBJECTIVE QUESTIONS

Section (A) : VSEPR theory

- **A-1.** Why NO₂⁺ and I_{3}^{-} are linear species ?
- A-2. PCl₅ has the shape of a trigonal bipyramidal where as IF₅ has the shape of square pyramidal. Explain.
- A-3. Write the geometry of XeF₄ and OSF₄ using VSEPR theory and clearly indicate the position of lone pair of electrons.
- A-4. Explain the structure of CIF₃ on the basis of VSEPR theory.

Section (B) : Hybridisation

C-2.

C-6.

D-1.

B-1. Explain hybridisation of central atom in :

(1)	XeF ₂	(2)	XeF ₄	(3)	PCl₃	(4)	PCl₅ (g)
(5)	SF_6	(6)	IF ₃	(7)	IF ₅	(8)	IF ₇
(9)	CH ₄	(10)	CCI ₄	(11)	SiCl ₄	(12)	SiH ₄
(13)	H ₂ O	(14)	NH₃	(15)	PO4 ³⁻	(16)	BrF ₅
(17)	NO₃ [_]	(18)	CO3 ²⁻	(19)	NH4 ⁺	(20)	CIO ₃ -

- **B-2.** The order of size of the hybrid orbitals is as follows $sp < sp^2 < sp^3$. Explain.
- B-3. Draw the structure of the following compounds. Clearly indicate the number of bond pairs and lone pairs involved on central atom. Write (i) number of bond pairs and lone pairs on the central atom (ii) the shape of the molecules (iii) hybridization of the central atom.
 (a) SF₄ (b) XeOF₄

Section (C) : Bond angle, bond length comparison

C-1. Draw an electron dot structure for Br₃⁻. Deduce an approximate value of the bond angle.

Which o	compound has th	e smallest bond	angle in each series ?
(a)	SbCl₃	SbBr ₃	Sbl₃
(b)	Pl₃	Asl ₃	Sbl ₃

- **C-3.** Compare the C–H bond strength in C_2H_6 , C_2H_4 and C_2H_2 .
- **C-4.** The POCl₃ molecule has the shape of an irregular tetrahedron with the P atom located centrally. The Cl–P–Cl angle is found to be 103.5°. Give a qualitative explanation for the deviation of this structure from a regular tetrahedron.

C-5. Which one has highest and least bond angle in the following ?

(1)	CH₄	PH₃	AsH₃	SbH₃	0	(2)	H ₂ O	H_2S	H ₂ Te	CO ₂	
(3)	PH₃	H ₂ O				(4)	Cl ₂ O	CIO ₂			
(5)	PF₃	PH₃				(6)	BF₃	NF₃			
(7)	NH₃	NF₃				(8)	PF₃	PCl₃			
Write tl	he Increa	asing or	der of Bo	ond lengt	h of ead	ch:					
(1) C-0	C, C=C,	C≡C		(2) C–N	I, C–O,	C–F		(3) H–	Cl, H–Br	, H–I, H	F

Section (D) : Multicentered species

Find number of $p\pi$ – $d\pi$ bon	ds in	
(a) Disulphate	(b) triphosphate	(c) trimetaphosphate
(d) trimer of SO ₃	(e) P ₄ O ₁₀	(f) P ₄ O ₆

D-2. In which of the following compounds, the $p\pi$ -d π bonding take place ? (a) P₄O₁₀ (b) HNO₃ (c) N₂O₅ (d) HClO₃

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala	war Road, Kota (Raj.) - 324005
Kesonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO33
Educating for better tomorrow	Toll Free: 1800 258 5555 CIN: U80302RJ2007PLC024029	PAGE NO33

Chemical Bonding-II D-3. Calculate individual and average oxidation number (if required) of the marked element and also draw the structure of the following compounds or molecules. (1) $Na_2 S_2 O_3$ (2) Na₂ S₄O₆ $(3) H_2 SO_5$ (4) H₂ S₂O₈ $(5) H_2S_2O_7$ (6) <u>S</u>8 (12) Cr2O72-(7) HNO₄ (8) <u>C</u>₃O₂ (9) OsO4 (10) <u>P</u>H₃ (11) CrO42-(15) Na₂ H PO₄ (16) FeS₂ (13) Cr O₂Cl₂ (14) <u>C</u>rO₅ (17) <u>C</u>₆H₁₂O₆ (18) <u>NH4</u> <u>NO</u>3 PART - II : ONLY ONE OPTION CORRECT TYPE Section (A) : VSEPR theory Which is the right structure of XeF₄? A-1. Xe. Хe (B) (C) (D) (A) Identify the correct match. A-2.æ Central atom has sp³ hybridisation and bent geometry. XeF₂ (a) (i) Central atom has sp³d² hybridisation and octahedral. (ii) N₃-(b) (iii) $PCI_6^{-}(PCI_5(s) anion)$ Central atom has sp hybridisation and linear geometry. (c) Central atom has sp³d hybridisation and linear geometry. (iv) ICl_2^+ (I_2Cl_6 (ℓ) cation) (d) (A) (i − a), (ii − b), (iii − c), (iv − d) (B) (i - d), (ii - b), (iii - d), (iv - c)(C) (i - b), (ii - c), (iii - a), (iv - d)(D) (i - d), (ii - c), (iii - b), (iv - a)Which of the following statement is true for IO₂F₂-? A-3. (A) The electrons are located at the corners of a trigonal bipyramidal but one of the equatorial pairs is unshared. (B) It has sp³d hybridisation and is T-shaped. (C) Its structure is analogous to SF₄. (D) (A) and (C) both A-4. Which reaction involves a change in the electron-pair geometry for the under lined element ? (A) $BF_3 + F^- \longrightarrow \underline{B}F_4^-$ (B) $\underline{N}H_3 + H^+ \longrightarrow \underline{N}H_4^+$ (D) $H_2O + H^+ \longrightarrow H_3O^+$ (C) $2SO_2 + O_2 \longrightarrow 2SO_3$ A-5. In which of the following molecules number of lone paris and bond pairs on central atom are not equal ? (A) H₂O (B) I₃-(C) O_2F_2 (D) SCl₂ A-6. Which of the following species given below have shape similar to XeOF₄? (B) IOF₄+ (A) XeO₃ (C) PCI₅ (D) XeF_5^{\oplus} Section (B): Hybridisation The hybridization of carbon atoms in C₂–C₃ single bond of $HC = C - CH = CH_2$ is : B-1. (A) sp³-sp³ (B) sp²-sp (C) sp-sp² (D) sp³-sp **B-2.** Specify the hybridisations of central atom in the following species respectively $\{N_3^-, NOCI, N_2O\}$ (B) sp, sp, sp^3 (C) sp^2 , sp, sp(A) sp, sp^2 , sp(D) sp², sp², sp. B-3. In pent-3-en-1-yne the terminal carbon-atoms have following hybridisation (A) sp & sp^2 (B) $sp^2 \& sp^3$ (C) sp² & sp (D) sp & sp³ B-4. S₁ : [XeF₇]⁺ has sp³d³ hybridisation S_2 : [PCl₄]⁺ has sp³d² hybridisation S_3 : [SF₆] has sp³d² hybridisation S₄ : [PF₄]⁺ has sp³ hybridisation (A) TFFT (B) T T F T (C) T F T T (D) FFFT

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005			
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	DACE NO. 24		
Educating for better tomorrow	Toll Free: 1800 258 5555 CIN: U80302RJ2007PLC024029	PAGE NO34		

Chemical	Bonding-II
----------	------------

B-5.	$BF_3 + F^- \rightarrow BF_4^-$ What is the hybridiation (A) sp ² , sp ³	state of B in BF ₃ (B) sp ³ , sp ³	and BF		, sp²		(D) sp³, sp³d	
	on (C) : Bond angle The ONO angle is max		comp	arisor	ו			
•	(A) HNO ₃	(B) NO ₂ +		(C) HN	O ₂		(D) NO ₂	
C-2.	Which statement is corr (A) It is bent molecule (C) Central atom is sp ²				nd angle ne of the)°	
C-3.	Consider the following		H₂O ⊺	H₂S II	H₂Se Ⅲ	H₂ Te IV		
	Arrange these molecule	es in increasing or	der of b	bond an	gles.			
	(A) $I < II < III < IV$	(B) IV < III < II <		. ,	II < IV ·	< III	(D) II < IV <	III < I
C-4.æ	In which of the following (A) NH ₃	g bond angle is ma (B) NH₄⁺	aximum	(C) PC	l ₃		(D) SCl ₂	
C-5.	In which of the following (A) S(CH ₃) ₂	g central atom is u (B) SO ₂	nhybrid	dised? (C) Si⊢	4		(D) PCl₃	
	on (D) : Multicent							
D-1.	The no. of S-O-S bonds (A) 1	s in the trimer of S (B) 2	O₃ is	(C) 3			(D) None	
D-2.	Which of the following s (A) $H_2S_2O_5$	species do not con (B) H ₂ S ₂ O ₇	ntain S-	-S linkag (C) H ₂ S			(D) H ₂ S ₄ O ₆	
D-3.১	 Which statement is incorrect about pyrosilicate ion. (A) sp³ hybridisation (B) One oxygen atom is shared between two tetrahydron (C) there are eight Si–O bond (D) There is one Si-Si bond 							
D-4.	Which is correct about (A) The value of n is 12 (B) each Si atom is bon (C) each oxygen atom i (D) all the above are co	ded with three oxy s bonded with two	ygen at	oms				

PART - III : MATCH THE COLUMN

1. Match the following :

	Column–I		Column–II
(A)	SF ₂	(p)	sp ³ and bent
(B)	KrF ₄	(q)	two lone pairs on central atom
(C)	NOCI	(r)	bond angle < 109º28'
(D)	NF ₃	(s)	sp ² and bent
		(t)	sp ³ d ² and square planar

2.2

Match the compounds listed in column-I with characteristic(s) listed in column-II.

	Column – I		Column –II
(A)	CIF ₂ ⁻ , CIF ₂ ⁺	(p)	Square pyramidal.
(B)	IO ₂ F ₂ -, F ₂ SeO	(q)	See-saw and pyramidal shaped respectively.
(C)	IOF ₄ -, XeOF ₂	(r)	Linear and bent shaped respectively.
(D	BrF5, XeOF4	(s)	Square pyramidal and T-shaped respectively.
		(t)	Both sp ³ d ² .

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005			
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO35		
	Toll Free: 1800 258 5555 CIN: U80302RJ2007PLC024029	FAGE NO35		

3. Match the following :

	Column-I		Column-II				
(A)	H ₃ P ₃ O ₉	(p)	S–O–S bond is present				
(B)	$H_2S_2O_7$	(q)	Di-basic acid				
(C)	$H_2S_4O_6$	(r)	P–O–P bond is present				
(D)	$H_4P_2O_5$	(s)	Central atom (S or P) in maximum oxidation state.				

Exercise-2

 $\mathbf{\hat{z}}$ Marked Questions may have for Revision Questions.

 $\overline{}$

PART - I : ONLY ONE OPTION CORRECT TYPE

1.	The hybridisation of P i (A) I in ICl₄⁻	in phosphate ion (PO4 ^{3–}) (B) S in SO3	is the same as : (C) N in NO₃⁻	(D) S in SO ₃ ²⁻
2.24	Choose the molecules (a) BCl ₃ The correct answer is -	in which hybridisation oc (b) NH ₃	curs in the ground state (c) PCl ₃	? (d) BeF ₂
	(A) a, b, d	(B) a, b, c	(C) b, c	(D) c, d
3.2	The bent or V–shape o (A) sp³	f the molecule can be re (B) sp ²	sulted from which of the (C) Both (A) and (B)	following hybridization. (D) None of these
4.2	sp³d hybridization is co (A) p³ + sd	onsidered to be a combir (B) sp² + pd	ation of two hybridization (C) spd + p ²	n. They are (D) none of these
5.	If the equatorial plane i (A) p_z and d_{z_2}	s x–y plane in sp ³ d hybri (B) p _x and d _{xy}	disation then the orbital (C) p _y and d _{yz}	used in pd hybridisation are - (D) none of these
6.24	A σ-bonded molecule Ν (A) 0	MX3 is T-shaped. The nu (B) 2	mber of lone pairs of ele (C) 1	ctrons can be (D) none of these
7.	Which of the following (A) [CIOF2]+	should have pyramidal s (B) ICl₃	hape : (C) [BrICl] [_]	(D) All of these
8.2	Which of the following 109.5°?	molecules has two lone	e pairs and bond angle ((need not be all bond angles) <
	(A) SF ₂	(B) KrF4	(C) ICl ₄ -	(D) All of these
9.	The correct order of bo (A) H ₂ S < NH ₃ < BF ₃ < (C) H ₂ S < NH ₃ < CH ₄ <	CH ₄	(B) NH ₃ < H ₂ S < CH ₄ < (D) H ₂ S < CH ₄ < NH ₃ ·	
10.	In which of the followin (A) NF3	g molecules are all the b (B) CIF ₃	onds not equal? (C) BF₃	(D) AIF ₃
11.2	Which of the following (A) $BF_{4^-} < BF_3$	is correct order of bond l (B) NO ₂ ⁺ < NO ₂ ⁻	ength ? (C) CCl₄ < CF₄	(D) +CH ₃ > CH ₄
12.		stronger than single P-F weaker than single P-P		
13.১	In which of the followin (A) $[B_4O_5(OH)_4]^{2-}$	g species peroxide group (B) [S ₂ O ₈] ^{2–}	o is not present : (C) CrO ₅	(D) HNO4

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005		
A Resonance®	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO36	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	PAGE NO38	

Cha	mical Danding II			Λ		
<u></u> 14.2s	mical Bonding-II Image: Contains no S-S linkage. (A) S_3O_9 : contains no S-S linkage. (B) $S_2O_6^{2-}$: contains $-OO$ linkage. (C) (HPO_3)_3 : contains P-P linkage (D) $S_2O_8^{2-}$: contains S-S linkage					
15.	The percentage of s- (A) 25	-character in the orbital (B) 33	forming P–S bonds in F (C) 75	P₄S₃ is : (D) 50		
16.2	(B) 2p_x and 2p_y - orbi(C) Effective hybridis	orbitals formed is equa tals of carbon can be hy ation is not possible wit	I to no. of atomic orbital /bridized to yield two ne h orbitals of widely diffe er significance in the V	w more stable orbitals		
17.	In which of the follow (A) Borax	ing compounds B atom (B) Diborane	s are in sp² and sp³ hyb (C) Borazole	ridisation states ? (D) All		
	PART - II :	SINGLE AND D		INTEGER TYPE		
1.১	Find the number of p (a) BF ₃ (e) NH ₃	lanar species (b) BCl₃ (f) NCl₃	(c) CO₃²− (g) PCI₃	(d) SO ₃ (h) XeF ₄		
2.	Find the number of s (a) H₂S (e) PH₃ (i) NH₂ [_]	pecies having bond ang (b) SO ₄ (f) SiH ₄ (j) SO ₃	le less than 109°28'. (c) CCl₄ (g) NH₄⁺ (k) H₂O	(d) NH3 (h) PF3		
3.		of π bond in following p_3 , XeO ₄ , XeO ₃ F ₂ , XeOF				
4.2	P ₄ O ₁₀ has two differe	nt types of P–O bonds.	Find the no. of P-O bo	nds with shorter bond length.		
5.	Difference in the oxic x × y is :	lation number of sulphu	ir atom is in Na2S4O6 is	x, that of $H_2S_2O_5$ is y. Find value of		
6.	In a P_4O_6 molecule, t	he total number of P–O	–P bonds is :			
	PART - III : ON	E OR MORE TH	AN ONE OPTION	NS CORRECT TYPE		
1.æ	(A) In hybridisation of(B) In hybridisation eff(C) In hybridisation full	ectrons take part.	npty orbitals can take p	art.		
2.	Which of the following (A) $H_2C=C=C=CH_2$ (C) $H_2C=CH-C=N$	g represent the given m	ode of hybridisation sp ² (B) HC=C–C=CH (D) H ₂ C=CH–C=CH	²–sp²–sp–sp from left to right H		
3.	Which is/are in linear (A) NO ₂ +	shape ? (B) XeF ₂	(C) I ₃ -	(D) I ₃ +		

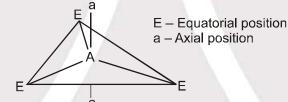
- Which is true about NH₂⁻, NH₃, NH₄⁺ ?
 (A) Hybridization of N is same.
 (B) No. of lone pair of electron on N are same.
 (C) Molecular geometry (i.e. shape) is different.
 (D) Bond angle is same.
- 5.2Which of the following molecule (s) has/have bond angle close to 90° ?(A) NH3(B) H2S(C) PH3(D) ICl3

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005		
A Resonance"	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in PAGE NO37		
Educating for better tomorrow	Toll Free: 1800 258 5555 CIN: U80302RJ2007PLC024029	PAGE NO37	

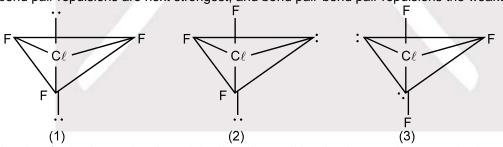
- 6. Which of the following statements are true about borax :
 - (A) Boron atoms are present in 2 different oxidation state and it different by 1
 - (B) the average oxidation state of boron is same that in B_2H_6 .
 - (C) Boron atoms are present in different hybridization

(D) 2 boron atoms are connected with 4 oxygen each and 2 boron atoms are connected with 3 oxygen atom each.

- 7. A Identify the correct statement
 - (A) $H_2S_2O_7$ has peroxy linkage
 - (B) H₂S₂O₆ has S–S linkage
 - (C) $H_2S_2O_8$ has peroxy linkage
 - (D) H_2SO_3 (Sulphurous acid) has S in +4 oxidation state
- 8. In which of the following compound(s) oxidation number of one central atom is/are ≥ 6 ? (A) N₂O₆ (B) CrO₅ (C) H₃PO₅ (D) H₂S₂O₈


PART - IV : COMPREHENSION

Read the following passage carefully and answer the questions.


Comprehension # 1

VSEPR THEORY

The trigonal bipyramid is not a regular shape since the bond angles are not all the same. It therefore follows that the corners are not equivalent in CIF_3 molecule. Lone pairs occupy two of the corners, and F atoms occupy the other three corners. These different arrangements are theoretically possible, as shown in figure.

(i) The most stable structure will be the one of lowest energy, that is the one with the minimum repulsion between the five orbitals. The greatest repulsion occurs between two lone pairs. Lone pair bond pair repulsions are next strongest, and bond pair-bond pair repulsions the weakest.

A rule of thumb can be theorised, that the position having maximum repulsion amongst them are occupied at equatorial points. Therefore (3) structure is right.

(ii) Since double bond occupies more space compared to single bond therefore it will prefer equatorial position.

(iii) More electronegative element will occupy axial position in case of trigonal bipyramidal geometry
 (iv) In case of sp³d² hybridisation lone pairs should be placed opposite to each other because all the corners are identical.

 Geometry (i.e. arrangement of electron pairs around central atom) of CIOF₃ is similar to the :

 (A) XeF₄
 (B) SOCl₂
 (C) I₃⁻
 (D) CIO₄⁻

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005		
A Resonance®	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO38	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	FAGE NO38	

Che	mical Bonding-II						八_
2.	The shape of SF₅ ⁻ ca	n be ·					
	(A) I only	(B) I and II onl	F F J Y	F (C) IV only	F S F IV	► F	& III
3.	Actual shape of the n (A) PCI ₅	nolecule BrF₅ is sii (B) XeF₄	milar to th	ne molecule : (C) PCl4 ⁺		(D) Non	e of these
4.*	Which of the following $(A) SH_6$ (B) H		(C) SI ₆		(D) HCI	O ₃	
Comp	rehension # 2						
comp	Answer Q.5, Q.6 and of the following tabl	e.	-			-	
	Observe the three Hybridisation are given by the second se		column-	1 : compound	d, column-2	2 : shape	e while in column-3 :
	Column-1 (Co	<u> </u>		umn-2 (Shap			n-3 (Hybridisation)
	(I) XeF ₄	(i	/	ahedral		(P)	sp ³
		(i	/	are planar		(Q)	sp ²
	(III) SiF ₄ (IV) CH ₃ OCH ₃	· · · ·	ii) Ben v) T-sh			(R) (S)	sp ³ d sp ³ d ²
5. 6.	Which of the followin atom? (A) (I), (ii), (S) Which combination is (A) (III), (i), (P)	(B) (I), (ii), (R)	mpound l	(C) (I), (i), (P	?) angle > 109	(D) (II), (
7.	Which of the following (A) (III), (i), (P)	g is true for a plan (B) (I), (iv), (P)		und ? (C) (II), (iv),	(R)	(D) (II), (
	Exercise	-3					
PA	RT - I : JEE (AI	OVANCED) /	IIT-JE	E PROBI	LEMS (F	REVI	OUS YEARS)
* Mark	ed Questions may ha	ive more than on	e correct	t options.			
1.	The hybridization of a (A) sp, sp ³ and sp ² re (C) sp ² , sp and sp ³ re	spectively	itrogen ir	n NO ₂ +, NO ₃ - (B) sp, sp² a (D) sp², sp³ a	nd sp ³ resp	ectively	[JEE–2000(S), 1/135]
2.	The number of P—O (A) zero	—P bonds in tricyo (B) two			cid is : hree		[JEE–2000(S), 1/135] (D) four
3.	Draw the molecular electrons.	structures of Xe	F ₂ , XeF ₄	and XeO ₂ F	2, indicatino		cation of lone pair of JEE–2000(M), 3/135]
4.	The correct order of	hybridisation of th	e central	atom in the	following sp		H ₃ , PCl₅ and BCl₃ is : [JEE–2001(S), 1/135]
	(A) dsp ² , sp ² , sp ³	(B) sp³, dsp³, s	p ²	(C) dsp ² , sp ³	³ , dsp ³		[JEE-2001(S), 1/135] , sp ² , dsp ³

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

mical Bonding-II The number of S–S (A) three	bonds, in sulphur trioxide	a trimor (S, O) is t		
(/ () () ()	(B) two	(C) one (S_3O_9) is .	[JEE-2001(S), 1/135] (D) Zero	
	ng are isoelectronic and i	isostructural?	[JEE–2003(S), 3/144]	
NO ₃ ⁻ , CO ₃ ² (A) NO ₃ ⁻ , CO ₃ ²⁻	-, CIO₃-, SO₃ (B) SO₃, NO₃-	(C) CIO ₃ ⁻ , CO ₃ ²⁻	(D) CO ₃ ^{2–} , SO ₃ .	
Using VSEPR theor	y, draw the shape of PCI	₅ and BrF₅.	[JEE-2003(M), 2/144]	
		f OSF4 and XeF4 (indicate	the lone pair(s) on central atom) [JEE-2004(M), 2/144]	
The percentage of p (A) 25	o-character in the orbitals (B) 33	forming P–P bonds in P₄ i (C) 50	s : [JEE–2007, 3/162] (D) 75	
The nitrogen oxide((A) N ₂ O	s) that contain(s) N—N b (B) N ₂ O ₃	ond(s) is(are) : (C) N ₂ O ₄	[JEE–2009, 4/160] (D) N ₂ O ₅	
The species having (A) SO ₃	pyramidal shape is : (B) BrF ₃	(C) SiO ₃ ²⁻	[IIT-JEE-2010, 5/163] (D*) OSF ₂	
Based on VSEPR tl	neory, the number of 90 d	degree F–Br–F angles in B	rF₅ is : [JEE–2010, 3/163]	
		(B) square plannar (D) see-saw	[JEE–2012, 3/136]	
The total number of	lone pairs of electrons in	n N ₂ O ₃ is :	[JEE(Advanced) 2015, 4/168]	
Among the triatomic molecules/ions, BeCl ₂ , N ₃ ⁻ , N ₂ O, NO ₂ ⁺ , O ₃ , SCl ₂ , ICl ₂ ⁻ , I ₃ ⁻ and XeF ₂ , the total number of linear molecules(s)/ion(s) where the hybridization of the central atom does not have contribution from the d-orbital(s) is [JEE(Advanced) 2015, 4/168] [Atomic number : S = 16, Cl = 17, I = 53 and Xe = 54]				
(A) tetranuclear [B40(B) all boron atoms(C) equal number o	D₅(OH)₄]²− unit in the same plane f sp² and sp³ hybridized t	poron atoms	[JEE Advanced 2016, 4/124]	
below is			among the molecules given JEE Advanced 2018, 3/120]	
PART - II : JE	E (MAIN) / AIEEE	EPROBLEMS (PR	EVIOUS YEARS)	
	JEE(MAIN) OF	FLINE PROBLEMS		
(1) <u>AIH₃</u> changes to	AIH₄ [−]	iges in : (2) H₂ <u>O</u> changes to H₃ (4) in all cases	[AIEEE-2002, 3/225] 3O ⁺	
• / •		(3) CH₃+	[AIEEE-2002, 3/225] (4) NH ₄ +	
	 (A) NO₃⁻, CO₃²⁻ Using VSEPR theor Use VSEPR model and specify their ge The percentage of p (A) 25 The nitrogen oxide(s (A) N₂O The species having (A) SO₃ Based on VSEPR th The shape of XeO₂H (A) trigonal bipyram (C) tetrahedral The total number of Among the triatominumber of linear model in the crystalline form (A) tetranuclear [B40] (B) all boron atoms (C) equal number of (D) one terminal hyperon (A) total number of (B) all boron atoms (C) equal number of (B) all boron atoms (C) equal number of (D) one terminal hyperon (D) one terminal hyperon (D) one terminal hyperon (D) one terminal hyperon (D) and terminal hyperon (A) the total number of below is N₂O₃, N₂O₅, P₄O₆, F PART - II : JE The hybridisation of (1) <u>Al</u>H₃ changes to (3) <u>N</u>H₃ changes to (3) <u>N</u>H₃ changes to 	Using VSEPR theory, draw the shape of PCI Use VSEPR model to draw the structures of and specify their geometry. The percentage of p-character in the orbitals (A) 25 (B) 33 The nitrogen oxide(s) that contain(s) N—N b (A) N ₂ O (B) N ₂ O ₃ The species having pyramidal shape is : (A) SO ₃ (B) BrF ₃ Based on VSEPR theory, the number of 90 of The shape of XeO ₂ F ₂ molecule is (A) trigonal bipyramidal (C) tetrahedral The total number of lone pairs of electrons in Among the triatomic molecules/ions, BeCl ₂ number of linear molecules(s)/ion(s) wher contribution from the d-orbital(s) is [Atomic number : S = 16, Cl = 17, I = 53 and The crystalline form of borax has (A) tetranuclear [B ₄ O ₅ (OH) ₄] ²⁻ unit (B) all boron atoms in the same plane (C) equal number of sp ² and sp ³ hybridized H (D) one terminal hydroxide per boron atom The total number of compounds having at le below is N ₂ O ₃ , N ₂ O ₅ , P ₄ O ₆ , P ₄ O ₇ , H ₄ P ₂ O ₅ , H ₅ P ₃ O ₁₀ , H PART - II : JEE (MAIN) / AIEEE JEE(MAIN) OF	(A) NO ₃ ⁻ , CO ₃ ²⁻ (B) SO ₃ , NO ₃ ⁻ (C) ClO ₃ ⁻ , CO ₃ ²⁻ Using VSEPR theory, draw the shape of PCIs and BrFs. Use VSEPR model to draw the structures of OSF4 and XeF4 (indicate and specify their geometry. The percentage of p-character in the orbitals forming P–P bonds in P4 if (A) 25 (B) 33 (C) 50 The nitrogen oxide(s) that contain(s) N—N bond(s) is(are) : (A) N ₂ O (B) N ₂ O ₃ (C) N ₂ O ₄ The species having pyramidal shape is : (A) SO ₃ (B) BrF ₃ (C) SiO ₃ ²⁻ Based on VSEPR theory, the number of 90 degree F–Br–F angles in B The shape of XeO ₂ F ₂ molecule is (A) trigonal bipyramidal (B) square plannar (C) tetrahedral (D) see-saw The total number of lone pairs of electrons in N ₂ O ₃ is : Among the triatomic molecules/ions, BeCl ₂ , N ₃ ⁻ , N ₂ O, NO ₂ ⁺ , O ₃ , SC number of linear molecules(s)/ion(s) where the hybridization of th contribution from the d-orbital(s) is [Atomic number : S = 16, Cl = 17, I = 53 and Xe = 54] The crystalline form of borax has (A) tetranuclear [B ₄ O ₅ (OH)4] ² unit (B) all boron atoms in the same plane (C) equal number of sp ² and sp ³ hybridized boron atoms (D) one terminal hydroxide per boron atom The total number of compounds having at least one bridging oxo group below is	

3. Which of the following compounds has the smallest bond angle in its molecule ? [AIEEE-2003, 3/225] (1) SO_2 (2) H_2O (3) H_2S (4) NH_3

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO40	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	PAGE NO40	

Che	emical Bonding-II			——————————————————————————————————————
5.	The maximum number of 90°	angles between bond pair-	-bond pair of electrons is	
	(1) dsp ³ (2) sp	o ³ d (3) dsp ²	2 (4) sp ³ 0	[AIEEE-2004, 3/225] d ²
6.	The correct order of bond ang (1) $H_2S < SiH_4 < NH_3 < BF_3$ (3) $H_2S < NH_3 < SiH_4 < BF_3$	(2) NH ₃	NH3, BF3 and SiH4 is : < H2S < SiH4 < BF3 < NH3 < BF3 < SiH4	[AIEEE-2004, 3/225]
7.	The molecular shapes of SF_4 , (1) the same with 2, 0 and 1 lo (2) the same with 1, 1 and 1 lo (3) different with 0, 1 and 2 lor (4) different with 1, 0 and 2 lor	one pairs of electrons on th one pair of electrons on the ne pairs of electrons on the	central atom, respective central atom, respective	ely.
8.	The hybridisation of orbitals of (1) sp, sp ² , sp ³ (2) sp			[AIEEE-2011, 4/120] sp ³ , sp
9.	The structure of IF ₇ is : (1) square pyramid (2) trig	gonal bipyramid (3) octa	hedral (4) pen	[AIEEE-2011, 4/120] tagonal bipyramid
10.	The molecule having smallest (1) NCl₃ (2) As	•	:l ₃ (4) PCI	[AIEEE-2012, 4/120] ³
11.	In which of the following pairs (1) CO_3^{2-} and NO_3^{-} (2) PC			[AIEEE-2012, 4/120] 6 ³⁻ and SF6
12.	The species in which the N ato (1) NO_2^- (2) N			E(Main)-2016, 4/120] 2
	JE	EE(MAIN) ONLINE PR	OBLEMS	
1.	Which one of the following doe	es not have a pyramidal sh		
	(1) (CH ₃) ₃ N (2) (S	6iH₃)₃N (3) P(C	[JEE(Main) 2014 Onli H ₃) ₃ (4) P(S	
2.	The geometry of XeOF₄ by by (1) pentagonal planar (2) oc		,	l ine (10-04-15), 4/120] onal bipyramidal
3.	Which of the following compound $(1) H_4P_2O_5$ (2) (H	und has a P–P bond ? IPO ₃) ₃ (3) H ₄ P	[JEE(Main) 2015 Onlin 2O6 (4) H4P	• • • • •
4.	Choose the incorrect formula (1) X ₂ O ₃ (2) X ₂			
5.	The group of molecules having (1) PCl ₅ , IF ₅ , XeO ₂ F ₂ (2) BF		EE(Main) 2016 Online a, XeOF ₂ , XeF ₃ ⁺ (4) SF ₄	
6.	 Assertion: Among the carbon conductor of electricity. Reason: Hybridization of carb (1) Both assertion and reason assertion. (2) Assertion is incorrect state (3) Both assertion and reason (4) Both assertion and reason 	oon in diamond and graphit are correct, but the reasor ment, but the reason is con are correct, and the reaso	e are sp ³ and sp ² , respe [JEE(Main) 2016 Onlin is not the correct expla rrect.	ctively. ne (10-04-16), 4/120] nation for the
7.	The bond angle H–X–H is the (1) NH_3 (2) PF	•		

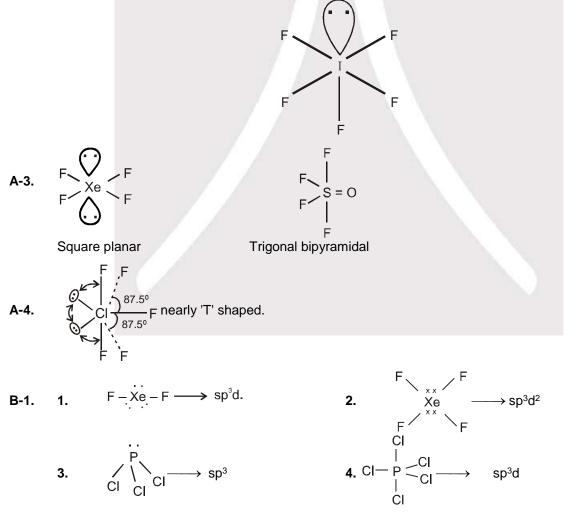
A Resonance [®]	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005		
A Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO41	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	PAGE NO41	

Che	emical Bonding-II 📝			八_
8.	Identify the pair in wh	ich the geometry of the s		square-pyramidal, respectively : 2018 Online (15-04-18), 4/120]
	(1) ICI_2^- and ICI_5	(2) IO_3^- and $IO_2F_2^-$,	(4) XeOF ₂ and XeOF ₄
9.	In graphite and dian respectively : (1) 33 and 25	nond, the percentage of (2) 67 and 75		ybrid orbitals in hybridization are 2018 Online (15-04-18), 4/120] (4) 33 and 75
10.	The decreasing order	r of bond angles in BF_3 , N	NH ₃ , PF ₃ and I_3^- is :	
	(1) $I_3^- > BF_3 > NH_3 >$	PF ₃	(2) BF ₃ > I ₃ [−] > PF ₃ >	NH ₃
	(3) BF ₃ > NH ₃ > PF ₃ :	> ₃	(4) $I_3^- > NH_3 > PF_3 >$	BF ₃
11.	The number of P–O b	conds in P4O6 is :		2018 Online (15-04-18), 4/120]
	(1) 6	(2) 9	(3) 12	(4) 18
12.	In XeO ₃ F ₂ , the number	er of bond pair(s), π -bond		Xe atom respectively are :
	(1) 5, 2, 0	(2) 4, 2, 2	(3) 5, 3, 0	2018 Online (15-04-18), 4/120] (4) 4, 4, 0
13.	Among th <mark>e oxides of N₂O₃, N₂O₄ and N₂O₅ (1) N₂O₃ and N₂O₄</mark>	nitrogen : ₅ ; the molecule(s) having (2) N₂O₄ and N₂O₅		2018 Online (16-04-18), 4/120] is/are : (4) Only N ₂ O ₅
14.	Which of the following	g conversions involves ch		
				2018 Online (16-04-18), 4/120]
	(1) $H_2O \rightarrow H_3O^+$	(2) $BF_3 \rightarrow BF_4^-$	$(3) \operatorname{CH}_4 \to \operatorname{C}_2\operatorname{H}_6$	(4) $NH_3 \rightarrow NH_4^+$
15.	The incorrect geome (1) NF ₃ – trigonal plan (3) AsF ₅ – trigonal big		[JEE(Main) (2) BF₃ – trigonal pla (4) H₂O – bent	2018 Online (16-04-18), 4/120] nar
16.	The type of hybridisa	tion and number of lone p		e in XeOF ₄ , respectively, are :
	(1) sp ³ d ² and 1 (2) s	p ³ d ² and 2 (3) sp		2019 Online (10-01-19), 4/120] p ³ d and 2
17.	The pair that contains	s two P–H bonds in each		
	(1) $H_4P_2O_5$ and H_3PC (3) H_3PO_2 and H_4P_2C		[JEE(Main) 4P2O5 and H4P2O6 3PO3 and H3PO2	2019 Online (10-01-19), 4/120]
18.	The element that sho	ows greater ability to form		
	(1) Ge	(2) Sn	[JEE(Main) (3) C	2019 Online (12-01-19), 4/120] (4) Si

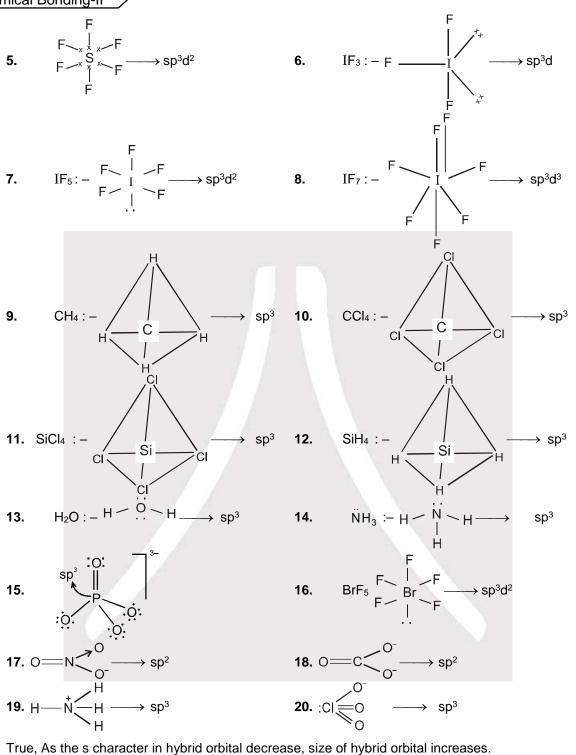
Answers

EXERCISE - 1

A-1.


In NO₂⁺ the N has sp hybridisation; so it is linear O = N = OIn I₃⁻ there are 5 electron pairs around central iodine atom (3 lone pairs and 2 bond pairs). The hybridisation of iodine is thus sp³d. To have minimum repulsions between Ip-Ip and Ip-bp it acquires linear shape as shown below.

linear

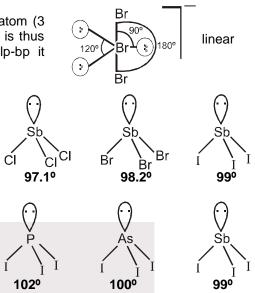

CI CI I CI I CI I

A-2. In PCI₅ there are 5 electron pairs around central phosphorus atom and all are bond pairs. The hybridisation of phosphorus is thus sp³d. To have minimum repulsions between bp-bp it acquires trigonal bipyramidal shape as shown below.

In IF₅ there are 6 electron pairs around central iodine atom. The hybridisation of iodine is thus sp^3d^2 . 6 electron pairs contain 5 bond pairs and one lone pair so it will be square pyramidal to have minimum repulsions between lp-bp and bp-bp.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO -43	
Educating for better tomorrow	Toll Free: 1800 258 5555 CIN: U80302RJ2007PLC024029	PAGE NO45	

B-2.


4 bond pair & 1 lone pair, Hybridization = sp³d Shape : see saw

5 bond pair & 1 lone pair, Hybridization = sp³d² Shape : Square pyramidal

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005				
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO -44			
Educating for better tomorrow	Toll Free: 1800 258 5555 CIN: U80302RJ2007PLC024029	FAGE NO44			

- **C-1.** In Br₃⁻ there are 5 electron pairs around central bromine atom (3 lone pairs and 2 bond pairs). The hybridisation of bromine is thus sp³d. To have minimum repulsions between lp-lp and lp-bp it acquires linear shape as shown below.
- **C-2.** (a) CI, the most electronegative of the halogens in this series, pulls shared electrons the most strongly away from Sb, reducing electron density near Sb. The consequence is that the lone pair exerts the strongest influence on shape in SbCl₃.

(b) Phosphorus is the most electronegative of the central atoms. Consequently, it exerts the strongest pull on shared electrons, concentrating these electrons near P and increasing bonding pair-bonding pair repulsions–hence, the largest angle in Pl₃. Sb, the least electronegative central atoms, has the opposite effect: Shared electrons are attracted away from Sb, reducing repulsions between the Sb–I bonds.

(3) HF < H–Cl < H–Br < H–I

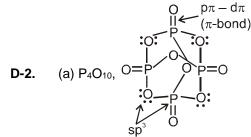
The consequence is that the effect of the lone pair is greatest in Sbl₃, which has the smallest angle. Atomic size arguments can also be used for these species. Larger outer atoms result in larger angles; larger central atoms result in smallest angles.

C-3. Order of C–H bond strength is $C_2H_2 > C_2H_4 > C_2H_6$ as %s character decreases in the same order.

C-4. $\begin{bmatrix} I \\ I \\ C \\ C \\ C \end{bmatrix}$ double bond occupies large area and has large electron density. So there is intrinsic repulsion

between P=O and P–CI bond pairs. To minimize this repulsion bond angle decrease from 109.5° to 103.5° .

SbH₃


H₂Te

- **C-5.** Highest bond angle
 - (1) CH₄
 - (2) CO₂
 - (3) H₂O
 - (4) CIO₂
 - (5) PF_3 (sp³ hybridisation)
 - (6) BF_3 (sp² hybridisation)
 - (7) NH₃
 - (8) PCI₃

 PH_3 Cl_2O PH_3 (no hybridisation) NF_3 (sp³ hybridisation) NF_3 PF_3

Lowest bond angle

C-6. (1) C=C < C=C < C-C (2) C-F < C-O < C-N

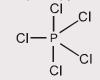
(b) and (c) nitrogen does not have empty d-orbital.

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005				
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO -45			
	Toll Free: 1800 258 5555 CIN: U80302RJ2007PLC024029	PAGE NO45			

Che	emical Bonding	-II /-							八
D-3.	(1) +2 (6, -2) (6) 0 (11) +6 (16) +2	(2) +5, (7) +5 (12) +((17) 0		(13) + (18) –	3 (+ 2, +2, 0) -6 -3, +5	(9) +8 (14) +	6	(5) +6 (+6, +6) (10) -3 (15) +5	_
	Note: Inslue (RT - II		is given	•	
A-1.	(C)	A-2.	(D)	A-3.	(D)	A-4.	(A)	A-5.	(B)
A-6.	(D)	B-1.	(B)	B-2.	(A)	B-3.	(D)	B-4.	(C)
B-5.	(A)	C-1.	(B)	C-2.	(D)	C-3.	(B)	C-4.	(B)
C-5.	(A)	D-1.	(C)	D-2.	(B)	D-3.	(D)	D-4.	(A)
				PAF	RT - III				
1.	(A – p, q, r) ; (B – q, r,	t) ; (C – s) ; (D	— r)	2. (A -	– r) ; (B – q);(C – s)	; (D – p, t)	
3.	(A – r,s); (B –	p,q,s) ; (C – q); (D – q,r	·)					
			E	EXER	CISE - 2				
					RT - I				
1.	(D)	2.	(C)	3.	(C)	4.	(B)	5.	(A)
6.	(B)	 7.	(C) (A)	8.	(D)	9.	(C)	10.	(B)
11.	(B)	12.	(B)	13.	(A)	14.	(A)	15.	(A)
16.	(B)	17.	(A)		. ,		()		()
				PA	RT - II				
1.	5 (a, b, c, d, h)	2. 6 (a,	d, e, h, i,	k)	3.	16		
4.	4	, 	5. 10		,	6.	6		
				PAF	RT - III				
1.	(AC)	2.	(CD)	3.	(ABC)	4.	(AC)	5.	(BCD)
6.	(BCD)	7.	(BCD)	8.	(BD)				
				PAF	RT - IV				
1.	(C)	2.	(D)	3.	(D)	4.*	(ABC)	5.	(A)
6.	(B)	7.	(C)						
			E	EXER	CISE - 3				
				PA	RT - I				
1.	(B)	2.	(C)						
3.	According to \		-					XeF ₂	
		nd pairs f lone pa linear wi	= 2,			I positions	of C		ear)
	Number of ele	ctron pa	irs = 6,					'XeF₄	
八			Website : w	ww.resonanc	6 Tower, A-46 & 52, e.ac.in E-mail : con 5 CIN: U80302RJ2	ntact@resonanc	e.ac.in	ar Road, Kota (Raj.) - 3 PAGE NO4	

Number of bond pairs = 4,

So, Number of lone pairs = 2. Thus XeF_4 is linear with 2 lone pairs occupying 2 axial positions of octahedral pyramidal so as to minimize the repulsions.


Number of electron pairs (including super electron pairs) = 5,

Number of bond pairs = 4,

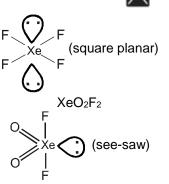
So, Number of lone pairs = 1.

Thus XeO_2F_2 is see-saw with 1 lone pairs occupying one equatorial position and two double bonds occupying other two equatorial positions of trigonal bipyramidal so as to minimize the repulsions.

- **4.** (B) **5.** (D) **6.** (A)
- **7.** There are 5 electron pairs and all are bonds pairs in PCI₅. So to have the minimum repulsions between bond pairs it acquires trigonal bipyramidal shape. In BrF₅, there are 6 electrons pairs out of which one lone pair and rest all are bond pairs. So to have the minimum repulsions between bond pairs and lone pairs it acquires square pyramidal shape.

PCI5 (trigonal bipyramidal),

BrF5 (square pyramidal)



According to VSEPR theory two lone pairs out of six electron pairs are trans to each other to have minimum repulsion. The shape of XeF₄ is square planar and geometry is octahedral with sp^3d^2 hybridisation. The molecule looks like :

In OSF₄, there are five electron pairs and all are bond pairs. So geometry is trigonal bipyramidal. As double bond creates more repulsion than singles bond, the double bond acquires one of equatorial position of trigonal bipyramidal to have minimum repulsions. The structure looks like:

9.	(D)	10.*	(ABC)	11.	(D)	12.	0 or 8	13.	(D)
14.	8	14.	4	16.*	(ACD)	17.	5 or 6		

				PA	RT - II				
			JEE	(MAIN) OFF		OBLEMS			
1.	(1)	2.	(4)	3.	(3)	4.	(2)	5.	(4)
6.	(3)	7.	(4)	8.	(2)	9.	(4)	10.	(3)
11.	(3)	12.	(4)						
			JEE	E(MAIN) ON	LINE PRO	OBLEMS			
1.	(2)	2.	(3)	3.	(3)	4.	(2)	5.	(3)
6.	(1)	7.	(3)	8.	(4)	9.	(2)	10.	(1)
11.	(3)	12.	(3)	13.	(1)	14.	(2)	15.	(1)
16.	(1)	17.	(3)	18.	(3)				
八			Web	& Corp. Office : Co site : www.resonand Free : 1800 258 555	ce.ac.in E-mail :	contact@resonan	ce.ac.in	ar Road, Kota (Raj.) - PAGE NO	

Xe

. . .

F

F