

# **Exercise-1**

Marked questions are recommended for Revision.

## **PART - I: SUBJECTIVE QUESTIONS**

### Section (A): Back bonding

- **A-1.** The B–F bond length in Me<sub>3</sub>N.BF<sub>3</sub> is 1.35 Å, much longer than 1.30 Å in BF<sub>3</sub>. Explain.
- A-2. Explain why SiH<sub>3</sub>NCO is linear (except H atoms) but CH<sub>3</sub> NCO is non linear.
- **A-3.** Draw the structure : Identify the type  $(p\pi-p\pi, p\pi-d\pi)$  of bonds and number of these bonds in the following molecule :

(i) SO<sub>3</sub>

(ii) H<sub>3</sub>PO<sub>4</sub>

(iii) N<sub>2</sub>

(iv) HCIO<sub>4</sub>

### Section (B): Electron deficient bonding

- **B-1.** Explain why
  - (i) NH<sub>3</sub> is better e<sup>-</sup> pair donor than PH<sub>3</sub>.
  - (ii) NH<sub>3</sub> is a better base than CH<sub>3</sub>CN?
- **B-2.** Why BCl<sub>3</sub> and SiF<sub>4</sub> act as Lewis acids? Explain.
- **B-3.** BF<sub>3</sub> exists but BH<sub>3</sub> does not. explain Why.
- B-4. Which orbitals are involved in banana bonding in Al<sub>2</sub>(CH<sub>3</sub>)<sub>6</sub>.

## Section (C): H-bonding & intermolecular force of attraction.

C-1. In which of the following the hydrogen bonding is strongest. Explain briefly?

(a)  $O - H - - - S(\ell)$ 

(b)  $S - H - - O(\ell)$ 

(c)  $F - H - - - F^-$  (s)

(d)  $F - H - - - O(\ell)$ 

- C-2. Why  $D_2O$  has higher viscosity than  $H_2O$ ?
- C-3. Why glucose, fructose, sucrose etc. are soluble in water though they are covalent compounds?
- C-4. Ethanol has higher boiling point than diethyl ether. Why?

## **PART - II: ONLY ONE OPTION CORRECT TYPE**

# Section (A): Back bonding

- **A-1.** For BF<sub>3</sub> molecule which of the following is true?
  - (A) B-atom is sp<sup>2</sup> hybridised.
  - (B) There is a  $p\pi$ – $p\pi$  back bonding in this molecule.
  - (C) Observed B–F bond length is found to be less than the expected bond length.
  - (D) All of these
- A-2. Which of the following statements regarding the structure of SOCl<sub>2</sub> is not correct?
  - (A) The sulphur is sp<sup>3</sup> hybridised and it has a tetrahedral shape.
  - (B) The sulphur is sp<sup>3</sup> hybridised and it has a trigonal pyramid shape.
  - (C) The oxygen-sulphur bond is  $p\pi$ -d $\pi$  bond.
  - (D) It contain one lone pair of electrons in the sp<sup>3</sup> hybrid orbital of sulphur.
- A-3. Respective order of strength of back-bonding and Lewis acidic strength in boron trihalides is:
  - (A)  $BF_3 < BCl_3 < BBr_3$  and  $BF_3 < BCl_3 < BBr_3$
- (B)  $BF_3 > BCl_3 > BBr_3$  and  $BF_3 > BCl_3 > BBr_3$
- (C)  $BF_3 > BCl_3 > BBr_3$  and  $BF_3 < BCl_3 < BBr_3$
- (D)  $BF_3 < BCl_3 < BBr_3$  and  $BF_3 > BCl_3 > BBr_3$

### Section (B): Electron deficient bonding

- **B-1.** Which of the following contains a coordinate covalent bond
  - (A) HNO<sub>3</sub>
- (B) BaCl<sub>2</sub>
- (C) HCI

(D) H<sub>2</sub>O



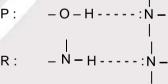
Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

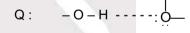
 $\textbf{Website}: www.resonance.ac.in \mid E\text{-mail}: contact@resonance.ac.in$ 

### Chemical Bonding-III

- **B-2.** Bonds present in CuSO<sub>4</sub>. 5H<sub>2</sub>O(s) is
  - (A) Electrovalent and covalent
- (B) Electrovalent and coordinate
- (C) Electrovalent, covalent and coordinate
- (D) Covalent and coordinate
- **B-3.** Electron deficient molecule among the following is:
  - (A) I<sub>2</sub>Cl<sub>6</sub>
- (B) B<sub>2</sub>H<sub>6</sub>
- (C) Al<sub>2</sub>Cl<sub>6</sub>
- (D) All of these

- **B-4.** For B<sub>2</sub>H<sub>6</sub>
  - S<sub>1</sub>: Each boron is sp<sup>3</sup> hybridised
  - S<sub>2</sub>: four terminal 'H' & two 'B' atom are in same plane but two bridge hydrogen in different plane.
  - $S_3$ : It has 4  $\sigma$  bond & 2 bridge bond
  - $S_4: 8 \sigma$  bonds are present in it
  - (A) TTFF
- (B) TTTF
- (C) FFTF
- (D) FTFT


- **B-5.** ★ Which is not true about B<sub>2</sub>H<sub>6</sub>
  - (A) Both 'B' atoms are sp<sup>3</sup> hybridised
- (B) Boron atom is in ground state
- (C) Two hydrogens occupy special positions
- (D) There are two, three centre two electron bonds


### Section (C): H-bonding & intermolecular force of attraction.

- **C-1.** Which of the following is not correctly matched with respect to the intermolecular forces existing amongst the molecules (Hydrogen bonding is not taken as dipole-dipole attraction)?
  - (A) Benzene London dispresion forces
  - (B) Orthophosphoric acid London dispresion force, hydrogen bonding.
  - (C) Hydrochloric acid London dispresion force, dipole-dipole attraction
  - (D) Iodine monochloride London dispersion force
- C-2. Which of the following factor is responsible for van der Waals forces?
  - (A) Instantaneous dipole-induced dipole interaction.
  - (B) Dipole-induced dipole interaction and ion-induced dipole interaction.
  - (C) Dipole-dipole interaction and ion-induced dipole interaction.
  - (D) All of these.
- **C-3.** Which of the following bonds/forces is weakest?
  - (A) Covalent bond
- (B) Ionic bond
- (C) Hydrogen bond
- (D) London force
- C-4. In which of the following compound, intra-molecular H-bonding is not observed :
  - (A) o-hydroxy benzyaldehyde
- (B) o-nitrophenol

(C) Chloral hydrate

- (D) Boric acid
- **C-5.** Consider the following sets of H-bonds





The correct order of H-bond strengths is:

(A) Q > P > S > R

(B) R > Q > S > P

(C) R > S > P > Q

- (D) P > Q > R > S
- **C-6.** ★ Amongst NH<sub>3</sub>, PH<sub>3</sub>, AsH<sub>3</sub> and SbH<sub>3</sub> the one with highest boiling point is:
  - (A) NH<sub>3</sub> because of lower molecular weight
- (B) SbH₃ because of higher molecular weight
- (C) PH<sub>3</sub> because of H-bonding
- (D) AsH<sub>3</sub> because of lower molecular weight
- C-7. The correct order of boiling point is:
  - (A)  $H_2O < H_2S < H_2Se < H_2Te$
- (B)  $H_2O > H_2Se > H_2Te > H_2S$
- (C)  $H_2O > H_2S > H_2Se > H_2Te$
- (D)  $H_2O > H_2Te > H_2Se > H_2S$
- C-8. Which of the following compounds has the highest boiling point
  - (A) HCI
- (B) HBr
- (C) H<sub>2</sub>SO<sub>4</sub>
- (D) HNO<sub>3</sub>



Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

# 八

## **PART - III: MATCH THE COLUMN**

1. Match the following:

|     | Column-I                           |     | Column-II                     |
|-----|------------------------------------|-----|-------------------------------|
| (A) | BF <sub>3</sub>                    | (p) | sp <sup>3</sup> hybridization |
| (B) | (SiH <sub>3</sub> ) <sub>3</sub> N | (q) | pπ-pπ back bond               |
| (C) | B <sub>2</sub> H <sub>6</sub>      | (r) | pπ-dπ back bond               |
| (D) | SiO <sub>2</sub>                   | (s) | 3c-2e bond                    |

2. Match the following:

|     | Column-I                          |     | Column-II                    |
|-----|-----------------------------------|-----|------------------------------|
| (A) | HCI < HF                          | (p) | Strength of hydrogen bonding |
| (B) | PH <sub>3</sub> < NH <sub>3</sub> | (q) | Dipole moment                |
| (C) | $H_2O < D_2O$                     | (r) | Boiling point                |
| (D) | F <sub>2</sub> < Cl <sub>2</sub>  | (s) | Bond energy                  |

**3.** Match the column:

Column-I

Column-II

(A) Liquid bromine

- (p) Hydrogen bond
- (B) Solid hydrogen fluoride
- (q) Ion-dipole force
- (C) Solution of sodium fluoride in water
  - (r) Dispersion force.
- (D) Liquid methylamine
- (s) Dipole induced dipole interaction.
- (E) Noble gas clathrate in ice.

# **Exercise-2**

Marked questions are recommended for Revision.

## PART - I: ONLY ONE OPTION CORRECT TYPE

- 1. In which of the following compounds B–F bond length is shortest?
  - (A) BF<sub>4</sub>-
- (B)  $BF_3 \leftarrow NH_3$
- (C) BF<sub>3</sub>
- (D) BF<sub>3</sub>  $\leftarrow$  N(CH<sub>3</sub>)<sub>3</sub>
- 2. Which of the following statement is false for trisilylamine?
  - (A) Three sp<sup>2</sup> orbitals are used for  $\sigma$  bonding, giving a plane triangular structure.
  - (B) The lone pair of electrons occupy a p-orbital at right angles to the plane triangle and this overlaps with empty p-orbitals on each of the three silicon atoms resulting in  $\pi$  bonding.
  - (C) The N-Si bond length is shorter than the expected N-Si bond length.
  - (D) It is a weaker Lewis base than trimethyl amine.
- 3. In which of the following molecules/species all following characteristics are found?
  - (a) Tetrahedral hybridisation
  - (b) Hybridisation can be considered to have taken place with the help of empty orbital(s).
  - (c) All bond lengths are identical i.e. all A–B bond lengths are identical.
  - (A) B<sub>2</sub>H<sub>6</sub>
- (B) Al<sub>2</sub>Cl<sub>6</sub>
- (C) BeCl<sub>2</sub> (g)
- (D) BF<sub>4</sub>-

- 4. H-bonding is maximum in
  - (A) C<sub>6</sub>H<sub>5</sub>OH
- (B) C<sub>6</sub>H<sub>5</sub>COOH
- (C) CH<sub>3</sub>CH<sub>2</sub>OH
- (D) CH<sub>3</sub>COCH<sub>3</sub>
- **5.** Which one of the following does not have intermolecular H-bonding?
  - (A) H<sub>2</sub>O
- (B) o-nitro phenol
- (C) HF
- (D) CH<sub>3</sub>COOH
- **6.** Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is false.
  - S<sub>1</sub>: HF boils at a higher temperature than HCl.
  - S<sub>2</sub>: HBr boils at lower temperature than HI.
  - S<sub>3</sub>: Bond length of N<sub>2</sub> is less than N<sub>2</sub>+.
  - S<sub>4</sub>: F<sub>2</sub> has higher boiling point than Cl<sub>2</sub>.
  - (A) TFTT
- (B) TTFF
- (C) TTTF
- (D) TTTT



Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

| Chemical Bonding | g-III |
|------------------|-------|
|------------------|-------|

- 7. Select the correct statement for the sulphuric acid.
  - (I) It has high boiling point and viscosity.
  - (II) There are two types of bond lengths in its bivalent anion.
  - (III)  $p\pi$ -d $\pi$  bonding between sulphur and oxygen is observed.
  - (IV) Sulphur has the same hybridisation that is of boron in diborane.
  - (A) II and III only
- (B) II, III and IV only
- (C) I, III and IV only
- (D) III and IV only

- **8.** Which of the following is least volatile?
  - (A) HF
- (B) HCI
- (C) HBr
- (D) HI

## PART - II: SINGLE AND DOUBLE VALUE INTEGER TYPE

- 1. How many of the following has hydrogen bonding
  - (a) NH<sub>3</sub>
- (b) CH<sub>4</sub>
- (c) H<sub>2</sub>O
- (d) HI

- (e) HF
- (f) HCOOH
- (g) B(OH)<sub>3</sub>
- (h) CH<sub>3</sub>COOH

(i) HCO<sub>3</sub><sup>-</sup> ion

## PART - III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- 1. Which compounds are lewis acids?
  - (A) AICI<sub>3</sub>
- (B) BCl<sub>3</sub>
- (C) H<sub>2</sub>O
- (D) NH<sub>3</sub>
- 2.a Which of the following is/are electron deficient compounds?
  - (A) NaBH<sub>4</sub>
- (B) B<sub>2</sub>H<sub>6</sub>
- (C) AICI<sub>3</sub>
- (D) LiAlH<sub>4</sub>

- 3. Which of the following have coordinate bonds?
  - (A) NH<sub>4</sub>Cl
- (B) NaCl
- (C) O<sub>3</sub>
- (D) Cl<sub>2</sub>

- 4.> Which of the following is/are correct.
  - (A) Boiling point of alcohol is higher than than of diethyl ether
  - (B) Density of water is higher than ice.
  - (C) Glycerol is more viscous than ethanol
  - (D) Ammonia is more easily liquified than HCl due to H-bonding in NH<sub>3</sub>
- 5. Which of the following statements is **correct** regarding phosphoric acid?
  - (A)  $p\pi$ – $d\pi$  back bonding exist between O and P.
  - (B) The anion is resonance stablized.
  - (C) It is a dibasic acid.
  - (D) Inter molecular H bonding between molecules make it a syrupy (viscous) liquid.
- **6.** Which of the following is correct order of strength of hydrogen bonding?
  - (A) N H - N > N H - O

(B) F - H - - N > O - H - - N

(C) N—H- - -Cl > N—H- - -N

(D) O - H - - F > O - H - - O

#### **PART - IV : COMPREHENSION**

#### Read the following passage carefully and answer the questions.

#### Comprehension # 1

Bridge bonding is a specific kind of bonding in pages of chemistry. In general  $\sigma$ -bond pair delocalisation is very difficult. But electron deficiency of the central atom forces to delocalised and forms this kind of bond.

- 1.5. The state of hybridisation of central atom in dimer form of both BH<sub>3</sub> and BeH<sub>2</sub> is
  - (A) sp<sup>2</sup>, sp
- (B) sp<sup>3</sup>, sp<sup>2</sup>
- (C)  $sp^3$ ,  $sp^3$
- (D)  $sp^2$ ,  $sp^3$

- 2. Which of the following molecule has complete octet
  - (A) B<sub>2</sub>H<sub>6</sub>
- (B) Al<sub>2</sub>Cl<sub>6</sub>
- (C) Be<sub>2</sub>Cl<sub>4</sub>
- (D) BeH<sub>2</sub>
- 3. The B<sub>2</sub>H<sub>6</sub> molecule is dissolved in tetrahydrofuran. Which atom(s) is/are having changes of hybridisation with respect to reactant and final product of the process given.
  - (A) B only
- (B) B and O
- (C) B, O and C
- (D) None of these



Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

### Chemical Bonding-III



- 4. In which of the dimerisation process, the achievement of the octet is not the driving force.
  - (A)  $2AICI_3 \longrightarrow AI_2CI_6$

(B)  $BeCl_2 \longrightarrow BeCl_2$  (solid)

(C)  $2ICI_3 \longrightarrow I_2CI_6$ 

- (D)  $2NO_2 \longrightarrow N_2O_4$
- 5. The molecule is not having 3c 2e bond.
  - (A) BeH<sub>2</sub> (dimer)
- (B) BeH<sub>2</sub> (solid)
- (C) C<sub>2</sub>H<sub>6</sub>
- (D) B<sub>2</sub>H<sub>6</sub>

#### Comprehension # 2

Answer Q.6, Q.7 and Q.8 by appropriately matching the information given in the three columns of the following table.

| Obse                          | Observe the three columns in which column-1 represents species, column-2 |       |                      |                      |              |  |  |  |  |
|-------------------------------|--------------------------------------------------------------------------|-------|----------------------|----------------------|--------------|--|--|--|--|
| repre                         | represents hybridization and shape while column-3 represents properties. |       |                      |                      |              |  |  |  |  |
| Col                           | Column-1 Column-2 Column-3                                               |       |                      |                      |              |  |  |  |  |
| Species Hybridization & shape |                                                                          |       | /bridization & shape | Properties           |              |  |  |  |  |
| (I)                           | O <sub>2</sub>                                                           | (i)   | sp <sup>3</sup>      | (P)                  | Peramegnetic |  |  |  |  |
| (II)                          | XeF <sub>2</sub>                                                         | (ii)  | sp <sup>3</sup> d    | (Q)                  | Diamegnetic  |  |  |  |  |
| (III)                         | H <sub>2</sub> O                                                         | (iii) | Linear               | (R) H-bond formation |              |  |  |  |  |
| (IV)                          | ICl <sub>2</sub> +                                                       | (iv)  | Angular (V-shape)    | (S)                  | Polar nature |  |  |  |  |

**6.** Correct combination is/are:

(A) (I) (iii) (q)

(B) (II) (i) (p)

(C) (I) (iii) (q)

(D) (IV) (iii) (p)

7. Correct combination is/are:

(A) (I) (iii) (q)

(B) (II) (iii) (s)

(C) (III) (iv) (p)

(D) (IV) (i) (s)

**8. Inc**orrect combination is/are :

(A) (I) (iii) (p)

(B) (II) (ii) (q)

(C) (III) (i) (r)

(D) (IV) (ii) (p)

# **Exercise-3**

## PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1. Amongst  $H_2O$ ,  $H_2S$ ,  $H_2Se$  and  $H_2Te$  the one with highest boiling point is :

[JEE-2000, 1/135]

- (A) H<sub>2</sub>O because of H-bonding.
- (B) H<sub>2</sub>Te because of higher molecular weight.
- (C) H<sub>2</sub>S because of H-bonding.
- (D) H<sub>2</sub>Se because of lower molecular weight.
- Specify the coordination geometry around and hybridisation of N and B atoms in a 1 : 1 complex of BCl<sub>3</sub> & NH<sub>3</sub>.
   [JEE-2002(S), 3/150]
  - (A) N: tetrahedral sp<sup>3</sup>, B: tetrahedral sp<sup>3</sup>

(B) N: pyramidal sp<sup>3</sup>, B: pyarmidal sp<sup>3</sup>

- (C) N: pyramidal sp3, B: planar sp2
- (D) N: pyramidal sp3, B: tetrahedral sp3
- Which one is more soluble in diethyl ether anhydrous AlCl<sub>3</sub> or hydrous AlCl<sub>3</sub> ? Explain in terms of bonding.
  [JEE-2003(M), 2/144]
- 4. AlF<sub>3</sub> is insoluble in anhydrous HF but when little KF is added to the compound it becomes soluble. On addition of BF<sub>3</sub>, AlF<sub>3</sub> is precipitated. Write the balanced chemical equations. [JEE-2004(M), 2/144]
- **5.** Predict whether the following molecules are iso-structural or not. Justify your answer.

[JEE-2005(M), 2/144]

- (i) NMe<sub>3</sub>
- (ii) N(SiMe<sub>3</sub>)<sub>3</sub>
- 6. The number of water molecule (s) directly bonded to the metal centre in CuSO<sub>4</sub>. 5H<sub>2</sub>O is

[JEE-2009, 4/160]

- 7.\* Hydrogen bonding plays a central role in the following phenomena : [JEE(Advanced) 2014, 3/120] (A) Ice floats in water.
  - (B) Higher Lewis basicity of primary amines than tertiary amines in aqueous solutions.
  - (C) Formic acid is more acidic than acetic acid.
  - (D) Dimerisation of acetic acid in benzene.



Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

PAGE NO.-68

<sup>\*</sup> Marked Questions may have more than one correct option.



## PART - II: JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

#### JEE(MAIN) OFFLNE PROBLEMS

| 1. | The states of hybridization | of boron and oxygen atoms in | boric acid (H <sub>3</sub> BO <sub>3</sub> ) | are respectively: |
|----|-----------------------------|------------------------------|----------------------------------------------|-------------------|
|    |                             |                              |                                              |                   |

[AIEEE-2004, 3/225]

(1) sp<sup>2</sup> and sp<sup>2</sup>

(2) sp<sup>2</sup> and sp<sup>3</sup>

(3) sp<sup>3</sup> and sp<sup>2</sup>

(4) sp<sup>3</sup> and sp<sup>3</sup>

**2.** The structure of diborane  $(B_2H_6)$  contains :

[AIEEE-2005, 4½/225]

- (1) four 2c–2e bonds and four 3c–2e bonds
- (2) two 2c-2e bonds and two 3c-3e bonds
- (3) two 2c–2e bonds and four 3c–2e bonds
- (4) four 2c-2e bonds and two 3c-2e bonds
- 3. A metal, M forms chlorides in +2 and +4 oxidation states. Which of the following statements about these chlorides is correct? [AIEEE-2006, 3/165]
  - (1) MCl2 is more volatile than MCl4
  - (2) MCl<sub>2</sub> is more soluble in anhydrous ethanol than MCl<sub>4</sub>
  - (3) MCl2 is more ionic than MCl4
  - (4) MCl<sub>2</sub> is more easily hydrolysed than MCl<sub>4</sub>

**4.** Which of the following hydrogen bonds is the strongest?

[AIEEE-2007, 3/120]

(1) O – H ... O

(2) O – H ... F

(3) F – H ... H

(4) F – H ... F

**5.** The bond dissociation energy of B–F in BF<sub>3</sub> is 646 kJ mol<sup>-1</sup> whereas that of C–F in CF<sub>4</sub> is 515 kJ mol<sup>-1</sup>. The correct reason for higher B–F bond dissociation energy as compared to that of C–F is :

[AIEEE-2009, 4/144]

- (1) stronger  $\sigma$  bond between B and F in BF<sub>3</sub> as compared to that between C and F in CF<sub>4</sub>.
- (2) significant  $p\pi-p\pi$  interaction between B and F in BF<sub>3</sub> whereas there is no possibility of such interaction between C and F in CF<sub>4</sub>.
- (3) lower degree of  $p\pi$ - $p\pi$  interaction between B and F in BF<sub>3</sub> than that between C and F in CF<sub>4</sub>.
- (4) smaller size of B-atom as compared to that of C-atom.
- 6. What is the best description of the change that occurs when Na<sub>2</sub>O(s) is dissolved in water?
  - (1) Oxide ion accepts sharing in a pair of electrons

[AIEEE-2011, 4/120]

- (2) Oxide ion donates a pair of electrons
- (3) Oxidation number of oxygen increases
- (4) Oxidation number of sodium decreases

**7.** Which one has the highest boiling point?

[JEE(Main)-2015, 4/120]

(1) He

(2) Ne

(3) Kr

(4) Xe

- 8. The intermolecular interaction that is dependent on the inverse cube of distance between the molecules is:
  - (1) ion-ion interaction

(2) ion-dipole interaction

[JEE(Main)-2015, 4/120]

(3) London force

(4) hydrogen bond

**9.** Which one of the following statements about water is **FALSE**?

[JEE(Main)-2016, 4/120]

- (1) Water can act both as an acid and as a base.
- (2) There is extensive intramolecular hydrogen bonding in the condensed phase.
- (3) Ice formed by heavy water sinks in normal water.
- (4) Water is oxidized to oxygen during photosynthesis.

**10.\*** Which of the following are Lewis acids?

[JEE(Main)-2018, 4/120]

(1) PH<sub>3</sub> and SiCl<sub>4</sub>

(2) BCl<sub>3</sub> and AlCl<sub>3</sub>

(3) PH<sub>3</sub> and BCl<sub>3</sub>

(4) AICI<sub>3</sub> and SiCI<sub>4</sub>



Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in



#### **JEE(MAIN) ONLINE PROBLEMS**

1. The number of 2-centre-2-electron and 3-centre-2-electron bonds in B<sub>2</sub>H<sub>6</sub>, respectively, are:

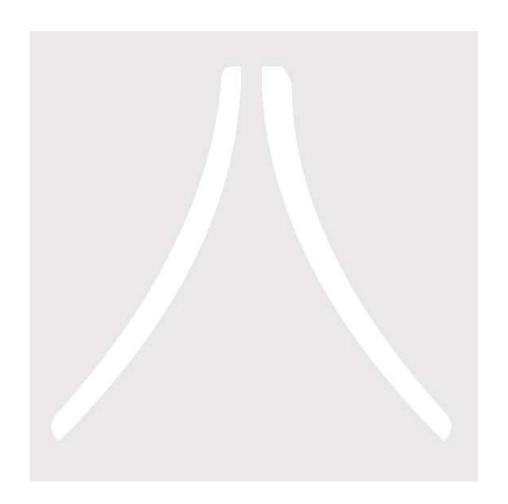
[JEE(Main) 2019 Online (10-01-19), 4/120]

(1) 2 and 4

(2) 2 and 2

(3\*) 4 and 2

(4) 2 and 1


**2.** The hydride that is NOT electron different is :

(1) GaH<sub>3</sub>

(2\*) SiH<sub>4</sub>

(3) AIH<sub>3</sub>

[JEE(Main) 2019 Online (11-01-19), 4/120] (4) B<sub>2</sub>H<sub>6</sub>





Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

PAGE NO.-70

# **Answers**

### **EXERCISE - 1**

#### PART - I

- A-1. In Me<sub>3</sub> N  $\longrightarrow$   $\stackrel{|}{\underset{F}{|}}$  , the electron deficiency of boron is compensated by the lone pair of electron donated by nitrogen atom. Where as in BF<sub>3</sub> it is compensated by back bonding with F atom; back

bonding is delocalised thus B-F bond has partial double bond character.

- A-3. (i)  $\bigcup_{S}^{O}$  two pπ-dπ bond and one pπ-pπ bond. (ii)  $\bigcup_{HO}^{O}$  OH one pπ-dπ bond OH  $\bigcup_{O}^{O}$  OH
- **B-1.** (i) In NH $_3$  molecule N atom has lone pair in sp $^3$  hybrid orbital while in PH $_3$  as suggested by its bond angle (92°) the lone pair must be present in 'S' orbital which is much more contracted than sp $^3$ . Hence PH $_3$  becomes a poor donor than NH $_3$ .
  - (ii)  $CH_3CN$  has lone pair on sp hybridized nitroge n atom while  $NH_3$  has lone pair on  $sp^3$  hybridized nitrogen atom.
- **B-2.** In BCl<sub>3</sub>, octet of Boron is incomplete. In SiF<sub>4</sub>, silicon has vacant d-orbitals, by which it can accept electron pair.
- **B-3.** BF<sub>3</sub> molecule being electron deficient gets stabilised through  $p\pi-p\pi$  back bonding. where as BH<sub>3</sub> removes its electron deficiency through dimerisation and thus exists as B<sub>2</sub>H<sub>6</sub>.
- **B-4.** sp<sup>3</sup> hybridised orbital of both aluminium and sp<sup>3</sup> hybridised orbital of carbon.
- **C-1.** Very strong hydrogen bonding occurs in the alkali metal hydrogen fluorides of formula M[HF<sub>2</sub>]; there is a linear symmetrical anion having an over all, F–H–F distance of 2.26 Å.

$$[F-H---F]^- \longleftrightarrow [F---H-F]^-$$
  
 $F^-+HF \longrightarrow [FHF]^-; \Delta H = -161 \pm 8 \text{ kJ mol}^{-1}$ 

- **C-2.** Deuterium is more electropositive than hydrogen. Therefore, stronger H-bonding is found in  $D_2O$  than in  $H_2O$ .  $D_2O$  is also denser than  $H_2O$ .
- C-3. These compounds contain polar—OH groups which can form H-bonds with water.
- **C-4.** In ethanol, there is H-bonding but in diethyl ether, there is no H-bonding (because O-atom is attached to C-atom) but there exists weak dipole-dipole attraction in diethyl ether.



Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website}: www.resonance.ac.in \mid E\text{-mail}: contact@resonance.ac.in$ 

(D)

#### PART - II

- A-1. (D)
- A-2.

C-4.

A-3. (C)

C-5.

B-1. (A)

(B)

(C) B-2.

- B-3. (B)
- B-4. (B)

(A)

(D)

- B-5. (B)
- C-1. (D)

C-6.

C-2. (D)

C-7.

C-3. (D)

(C)

C-8.

PART - III

(D)

- 1. (A - q); (B - r); (C - s,p); (D - p, r)
- (A p, q, r, s); (B p, q, r, s); (C p, q, r, s); (D r, s)2.
- (A r); (B p, r); (C p, q, r); (D p, r); (E p, r, s). 3.

| EXERCISE - 2 |           |          |      |      |         |    |        |    |       |  |  |
|--------------|-----------|----------|------|------|---------|----|--------|----|-------|--|--|
|              | PART – I  |          |      |      |         |    |        |    |       |  |  |
| 1.           | (C)       | 2.       | (B)  | 3.   | (D)     | 4. | (B)    | 5. | (B)   |  |  |
| 6.           | (C)       | 7.       | (C)  | 8.   | (A)     |    |        |    |       |  |  |
|              |           |          |      | PAR  | T – II  |    |        |    |       |  |  |
| 1.           | 7 (Except | t (b, d) |      |      |         |    |        |    |       |  |  |
|              |           |          |      | PAR  | T – III |    |        |    |       |  |  |
| 1.           | (AB)      | 2.       | (BC) | 3.   | (AC)    | 4. | (ABCD) | 5. | (ABD) |  |  |
| 6.           | (AB)      |          |      |      |         |    |        |    |       |  |  |
|              |           |          |      | PART | T – IV  |    |        |    |       |  |  |
| 1.           | (B)       | 2.       | (B)  | 3.   | (D)     | 4. | (C)    | 5. | (C)   |  |  |
| 6.           | (C)       | 7.       | (D)  | 8.   | (D)     |    |        |    |       |  |  |
|              |           |          |      | 3.   | (D)     | 4. | (C)    | 5. | (C    |  |  |

# **EXERCISE - 3**

#### PART - I

- 1. (A)
- (A)
- 3. In diethyl ether (C<sub>2</sub>H<sub>5</sub>—Ö—C<sub>2</sub>H<sub>5</sub>) oxygen atom has two lone pairs of electrons, thus acts as lewis base while in anhydrous AICI3 aluminium has vacant 3p-orbital of valence shell and thus acts as Lewis acid. AICl<sub>3</sub> accepts a lone pair of electrons from diethyl ether to complete its octet forming a complex C2H5 → AICI<sub>3</sub>. Hence, anhydrous AICI<sub>3</sub> is more soluble in diethyl ether by means of solvolysis in

comparison to hydrous AICI3 (i.e., AICI3.6H2O). Hydrous AICI3 is a polar compound, while ether is nonpolar, so on basis of Thumb's rule, like dissolve in like solvents. Hence hydrous AICI3 is least soluble in ether.

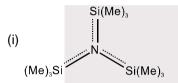


Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

## Chemical Bonding-III




4. There is inter molecular hydrogen bonding in HF and because of this it is weakly dissociated. So  $AlF_3$  is not soluble in anhydrous HF. On the other hand KF is ionic compound and thus it is highly dissociated giving a high concentration of  $F^-$  ion which leads to the formation of a colourless soluble complex,

$$AIF_3 + KF \longrightarrow K_3[AIF_6].$$

BF<sub>3</sub> is more acidic than AlF<sub>3</sub> because of the small size of B than that of Al. Thus BF<sub>3</sub> pulls out F<sup>-</sup> from  $[AlF_6]^{3-}$  forming  $[BF_4]^{-}$  and AlF<sub>3</sub>. Hence AlF<sub>3</sub> is precipitated on adding BF<sub>3</sub> to  $[AlF_6]^{3-}$ .

$$K_3[A|F_6] + 3BF_3 \longrightarrow 3K[BF_4] + A|F_3 \downarrow$$
.

- **5. (i)** N(SiMe<sub>3</sub>)<sub>3</sub> is trigonal planar because in it silicon uses its vacant d-orbital for  $p\pi$ -d $\pi$  back bonding with lone pair of electrons of central N-atom and the  $p\pi$ -d $\pi$  bonding is delocalised as given in the structure. So, N(SiMe<sub>3</sub>)<sub>3</sub> with steric number three is trigonal planar.
  - (ii) In N(Me<sub>3</sub>), there is no such  $p\pi$ -d $\pi$  delocalisation of lone pair of electrons on N atom as carbon does not have vacant d-orbital. So N(Me)<sub>3</sub> with steric number four is trigonal pyramidal with a lone pair at the apex.



(ii) N Me Me

Hence both are not isostructural.

- 6.
- **7.** (ABD)

### PART - II

| JEE(MAIN) OFFLNE PROBLEMS |     |    |     |     |     |    |     |  |      |       |
|---------------------------|-----|----|-----|-----|-----|----|-----|--|------|-------|
| 1.                        | (1) | 2. | (4) | 3.  | (3) | 4. | (4) |  | 5.   | (2)   |
| 6.                        | (2) | 7. | (4) | 8.  | (4) | 9. | (2) |  | 10.* | (2,4) |
|                           |     |    |     | 7 / |     |    |     |  |      |       |

### JEE(MAIN) ONLINE PROBLEMS

- **1.** (3)
- 2.
- (2)



Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in