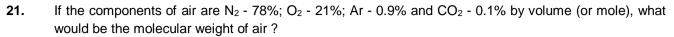
Introduction to Chemistry

Exercise

A Marked questions are recommended for Revision.


PART - I : SUBJECTIVE QUESTIONS

- 1. How much time (in years) would it take to distribute one Avogadro number of wheat grains if 10¹⁰ grains are distributed each second ?
- 2. The weight of one atom of Uranium is 238 amu. Its actual weight is g.
- **3.** Calculate the weight of 12.044×10^{23} atoms of carbon.
- 4. How many grams of silicon is present in 35 gram atoms of silicon (Given at. wt. of Si = 28).
- 5. Find the total number of nucleons present in 12 g of ¹²C atoms.
- **6.** Find (i) the total number of neutrons, and (ii) the total mass of neutrons in 7 mg of ¹⁴C. (Assume that the mass of a neutron = mass of a hydrogen atom)
- **7.** Calculate the number of electrons, protons and neutrons in 1 mole of ${}^{16}O^{-2}$ ions.
- 8. How many atoms are there in 100 amu of He?
- **9.** The density of liquid mercury is 13.6 g/cm³. How many moles of mercury are there in 1 litre of the metal? (Atomic mass of Hg = 200.)
- **10.** Calculate the atomic mass (average) of chlorine using the following data:

	% Natural Abundance	Molar Mass
³⁵ Cl	75	35.0 g
³⁷ Cl	25	37.0 g

- **11.** Average atomic mass of Magnesium is 24.31 amu. This magnesium is composed of 79 mole % of ²⁴Mg and remaining 21 mole % of ²⁵Mg and ²⁶Mg. Calculate mole % of ²⁶Mg.
- 12. The number of molecules in 16 g of methane is :
- **13.** Calculate the number of molecules in a drop of water weighing 0.09 g.
- 14. A sample of ethane has the same mass as 10.0 million molecules of methane. How many C_2H_6 molecules does the sample contain ?
- **15.** The number of neutrons in 5 g of D_2O (D is ${}_1^2H$) are :
- **16.** Calculate the weight of 6.022×10^{23} formula units of CaCO₃.
- 17. From 200 mg of CO_2 , 10^{21} molecules are removed. How many moles of CO_2 are left?
- 18. Find the total number of H, S and 'O' atoms in the following :
 (a) 196 g H₂SO₄
 (b) 196 amu H₂SO₄
 (c) 5 mole H₂S₂O₈
 (d) 3 molecules H₂S₂O₆.
- **19.** If from 10 moles NH₃ and 5 moles of H₂SO₄, all the H-atoms are removed in order to form H₂ gas, then find the number of H₂ molecules formed.
- **20.** If from 3 moles MgSO₄.7H₂O, all the 'O' atoms are taken out and converted into ozone find the number of O₃ molecules formed.

22.2 Find the expression of Universal Gas Constant R in SI system in terms of the given properties of oxygen gas. Pressure = p(kPa)

Volume = V (mL)Temperature = $t (^{\circ}C)$ Mass of oxygen = w(g)

- 23. The volume of a gas at 0°C and 700 mm pressure is 760 cc. The number of molecules present in this volume is :
- 24. The weight of 350 mL of a diatomic gas at 0°C and 2 atm pressure is 1 g. The weight of one atom is :
- Oxygen is present in a 1-litre flask at a pressure of 7.6 × 10⁻¹⁰ mm of Hg at 0°C. Calculate the number 25.2 of oxygen molecules in the flask.
- Fill in the blanks : 26. 🔊

(i) $1\mu m = nm$ (ii) 10 MJ = J (iii) 100 Pa = kPa (iv) 1dm = mm (v) 10 pm = cm

PART - II : OBJECTIVE QUESTIONS

Single Correct Questions (SCQ)

- 1. Which is not a basic postulate of Dalton's atomic theory ?
 - (A) Atoms are neither created nor destroyed in a chemical reaction.
 - (B) Different elements have different types of atoms.
 - (C) Atoms of an element may be different due to presence of isotopes.
 - (D) Each element is composed of extermely small particles called atoms.
- The modern atomic weight scale is based on : 2. (A) ¹²C (B) ¹⁶O (C) ¹H
- 1 amu is equal to 3.2

(A) $\frac{1}{12}$ of C-12 (B) $\frac{1}{14}$ of O-16 (C) 1 g of H ₂	(D) 1.66 × 10 ^{−23} kg
---	---------------------------------

(D) ¹⁸O

- 4. If the atomic mass of sodium is 23, the number of moles in 46 g of sodium is : (A) 1 (B) 2 (C) 2.3 (D) 4.6
- 5. How many grams are contained in 1 gram-atom of Na?

(B) $\frac{y}{4}$

(A) 13 g	(B) 23 g	(C) 1 g	(D) $\frac{1}{23}$ g
----------	----------	---------	----------------------

1.0 g of hydrogen contains 6×10^{23} atoms. The atomic weight of helium is 4. It follows that the number 6. of atoms in 1 g of He is :

(A)
$$\frac{1}{4} \times 6 \times 10^{23}$$
 (B) $4 \times 6 \times 10^{23}$ (C) 6×10^{23} (D) 12×10^{23}

The atomic weights of two elements A and B are 40u and 80u respectively. If x g of A contains y atoms, 7.2 how many atoms are present in 2x g of B?

(A)
$$\frac{y}{2}$$

(C) y	(D) 2y

	Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhala	war Road, Kota (Raj.)-324005
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ITC - 7
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	IIC-7

Introduction to Chemistry

8.	atoms? (At. wt. Al = 2	7, Mg = 24)		the same number of magnesium
	(A) 12 g	(B) 24 g	(C) 48 g	(D) 96 g.
9.24	The number of atoms (A) Twice that in 60 g (C) Half in 8 g He	in 558.5 g of Fe (at wt.= carbon	55.85) is : (B) 6.022 × 10 ²² (D) 558.5 × 6.023 × 10	0 ²³
10.	Which of the following	has the Maximum mass	?	
	(A) 1 g-atom of C		(B) $\frac{1}{2}$ mole of CH ₄	
	(C) 10 mL of water		(D) 3.011 × 10 ²³ atom	s of oxygen
11.	The total number of p	otons, electrons and neu	utrons in 12 g of ${}^{12}_{6}$ C is :	
	(A) 1.084 × 10 ²⁵	(B) 6.022 × 10 ²³	(C) 6.022×10 ²²	(D) 18
12.		has mass, 3/10 times tl 2 times the mass of one (B) 15.77		lement Y. One average atom of atomic weight of Y? (D) 40.0
13.2	The charge on 1 gram	ions of AI^{3+} is : (N _A = Av	ogadro number, e = cha	rge on one electron)
	(A) $\frac{1}{27}$ NAe coulomb	(B) $\frac{1}{3} \times N_{Ae}$ coulomb	(C) $\frac{1}{9} \times N_{A}e$ coulomb	(D) $3 \times N_A e$ coulomb
14.		ue whereas that of proto		e mass of neutron is assumed to ice of its original value, then the
	(A) same	(B) 114.28 % less	(C) 14.28 % more	(D) 28.56 % less
15.		ce of C–12 and C–14 is be in 12 g carbon sample	e ?	respectively. What would be the
	(A) 1.032×10 ²²	(B) 3.01×10 ²³	(C) 5.88×10 ²³	(D) 6.02×10 ²³
16.	equal to : (X ²⁰ has 99	percent abundance)		s (X ²⁰ , X ²¹ , X ²²) is approximately
	(A) 20.002	(B) 21.00	(C) 22.00	(D) 20.00
17.১				, the predominant one form has isotopic weights is the most likely
	(A) 111	(B) 112	(C) 113	(D) 114
18.	The number of molecu	les of CO2 present in 44	g of CO ₂ is :	
	(A) 6.0×10 ²³	(B) 3×10 ²³	(C) 12×10^{23}	(D) 3×10 ¹⁰
19.	The number of mole o (A) 0.425	f ammonia in 4.25 g of a (B) 0.25	mmonia is : (C) 0.236	(D) 0.2125
20.	Which one of the follow (A) 16 g of O_2 and 14 (C) 28 g of N_2 and 22	-	ains the same number of (B) 8 g of O₂ and 22 g (D) 32 g of O₂ and 32	of CO ₂
21.24	The weight of a molec (A) 1.09 × 10 ⁻²¹ g	ule of the compound C ₆₀ (B) 1.24 × 10 ⁻²¹ g	H₂₂ is : (C) 5.025 × 10 ^{−23} g	(D) 16.023 × 10 ^{−23} g
		Reg. & Corp. Office: CG To	wer. A-46 & 52. IPIA. Near Citv Ma	all, Jhalawar Road, Kota (Raj.)-324005

$\square \square \square$	Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mail, Jhaia	awar Road, Rota (Raj.)-324005
A Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	116-8

22.		1.8 mL of $H_2O(\ell)$ is about the second sec					
	(A) 6.02 × 10 ²³	(B) 3.011 × 10 ²³	(C) 0.6022×10^{21}	(D) 60.22 × 10 ²⁰			
23.	One mole of P ₄ molecu (A) 1 molecule		(B) 4 molecules				
	(C) $\frac{1}{4} \times 6.022 \times 10^{23}$	atoms	(D) 24.088 × 10 ²³ atom	ns			
24.≿	A sample of ammoniur atoms in the sample is (A) 0.265		contains 3.18 mole of H atoms. The number of mole of C (C) 1.06 (D) 3.18				
25.	Torr is unit of : (A) Temperature	(B) Pressure	(C) Volume	(D) Density			
26.	The atmospheric press (A) 0.63	sure on Mars is 0.61 kPa (B) 4.6	a. What is the pressure in (C) 6.3	n mm Hg ? (D) 3.2			
27.	0	Theit scales are related a (B) $\frac{C}{9} = \frac{F - 32}{5}$		(D) None of these			
28.	At what temperature, b (A) 100º	ooth Celsius and Fahren (B) 130º	heit scale read the same (C) 60º	value : (D) –40º			
29.	The value of universal (A) temperature of gas (C) number of moles o		ls on : (B) volume of gas (D) units of volume and pressure				
30.	The value of gas const (A) 1 cal	ant in calorie per degree (B) 2 cal	e temperature per mol is (C) 3 cal	approximately : (D) 4 cal			
31.	The value of R in SI ur (A) 8.314 × 10 ⁻⁷ erg K ⁻¹ (C) 0.082 litre atm K ⁻¹	⁻¹ mol ⁻¹	(B) 8.314 JK ⁻¹ mol ⁻¹ (D) 2 cal K ⁻¹ mol ⁻¹				
32.	container ?		ntainer is 9.5 torr at 927 (C) 4.2 × 10 ¹⁷	⁷⁰ C. How many atoms are in the			
33.	(A) 9.7×10^7 The pressure of a gas (A) 1 atm	 (B) 7.5 × 10¹⁹ having 2 mole in 44.8 lit (B) 2 atm 		(D) 9.7 × 10 ¹⁹ (D) 4 atm			
34.			me of a gas is given by : (C) 8RT / PV				
35.			gas weigh 1.00 and 19, llowing is the unknown ga (C) CS ₂	/8 grams respectively under the as? (D) CO			
36.১	•	-	m in 10 ⁴ L at 240 K. Ass I to increase the pressure (C) 1.5	suming ideal gas behaviour, how e to 4.0 × 10 ⁻³ atm ? (D) 2.0			
37.১			ne gases H ₂ , He, O ₂ and these gases present in o (C) 2 : 1 : 2 : 3	O ₃ at the same temperature and different flask would be : (D) 3 : 2 : 2 : 1			
八	Resonance	Website : www.resonance.a	wer, A-46 & 52, IPIA, Near City Ma c.in E-mail : contact@resonance.c	ac.in ITC - 9			

Λ

	oduction to Chemistry							
38.	Under the same conditions, two gases have the same number of molecules. They must(A) be noble gases(B) have equal volumes(C) have a volume of 22.4 dm³ each(D) have an equal number of atoms							
39.	16 g of an ideal gas SC (A) x = 3	D _x occupies 5.6 L. at STI (B) x = 2	P. The value of x is (C) x = 4	(D) none of these				
40.	The ratio of the weight of one litre of a gas to the weight of 1.0 L oxygen gas both measured at S.T.P. is 2.22. The molecular weight of the gas would be : (A) 14.002 (B) 35.52 (C) 71.04 (D) 55.56							
41.	(B) Number of mililitre	n one gram of the eleme which one mole of a gas les present in one gram i	eous substance occupie					
42.	The weight of 1×10^{22} (A) 41.59 g	molecules of CuSO ₄ .5H (B) 415.9 g	₂O is : (C) 4.159 g	(D) None of these				
43.2	How many moles of ele	ectron weigh one kilogra						
	(A) 6.023 × 10 ²³	(B) $\frac{1}{9.108} \times 10^{31}$	(C) $\frac{6.023}{9.108} \times 10^{54}$	(D) $\frac{1}{9.108 \times 6.023} \times 10^8$				
44.		60 g of Fe (atomic mass s N (B) Half that in 20 g H	• /	(D) None of these				
45.	Which has maximum n (A) 24 g of C (12)		(C) 27 g of Al (27)	(D) 108 g Ag (108)				
46.2	unit, the mass of one n (A) decrease twice (B) increase two fold (C) remain unchanged	nole of a substance will :		n to be the relative atomic mass				
47.	How many moles of ma (A) 0.02	agnesium phosphate, M (B) 3.125 × 10⁻²		5 mole of oxygen atoms ? (D) 2.5 × 10 ⁻²				
48.२	Given that the abunda	ances of isotopes 54Fe,	⁵⁶ Fe and ⁵⁷ Fe are 5%	, 90% and 5% respectively, the				
	atomic mass of Fe is : (A) 55.85	(B) 55.95	(C) 55.75	(D) 56.05				
	ple Correct Questic	``						
49.	Which property of an e (A) Atomic weight	lement may have non-in (B) Atomic number	tegral value. (C) Atomic volume	(D) None of these				
50.	Which of the following (A) 0.5 mole of H_2	would contain 1 mole of (B) 1 g of H-atoms	particles : (C) 16 g of O-18	(D) 16 g of methane				
51.	Which of the following (A) 1 g Hydrogen	will have the same numb (B) 2 g Oxygen	per of electrons : (C) 2 g Carbon	(D) 2 g Nitrogen				
52.2	Which the following is ((A) 0.76 cm of Hg	equal to 10 ⁻² atm : (B) 7.6 torr	(C) 0.076 dm of Hg	(D) 0.0076 torr				
				all, Jhalawar Road, Kota (Raj.)-324005				
	Resonance	Website : www.resonance.ad	c.in E-mail : contact@resonance.	ac.in ITC - 10				

53.Pressure exerted by a sample of oxygen is same for the following conditions :
(A) 2 L, 27°C(B) 1 L, 150 K(C) 4 L, 54°C(D) 10 L, 1227°C

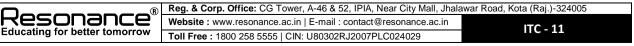
Assertion / Reasoning (A/R)

Each question has 5 choices (A), (B), (C), (D) and (E) out of which ONLY ONE is correct.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is not correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- (E) Both statements are false.
- 54. Statement-1 : Gram molecular weight of O₂ is 32 g.Statement-2 : Relative atomic weight of oxygen is 32.
- 55. Statement-1 : 1 mole of all ideal gases exert same pressure in same volume at same temperature. Statement-2 : Behaviour of ideal gases is independent of their nature.
- 56. Statement-1 : Value of the universal gas constant depends upon the choice of sytem of units. Statement-2 : Values of universal gas constant are 8.314 J/molK, 0.0821 L.atm/molK, 2 cal/molK.

Comprehension

A vessel of 25 L contains 20 g of ideal gas X at 300K. The pressure exerted by the gas is 1 atm. 20 g of ideal gas Y is added to the vessel keeping the same temperature. Total pressure became 3 atm. Upon further addition of 20 g ideal gas Z the pressure became 7 atm. Answer the following questions. (Hint: Ideal gas equation is applicable on mixture of ideal gases) [Take, R = 1/12 L.atm / mol K]


57. Find the molar mass of gas X.

• · ·		e el gue / a						
	(A) 20 g	(B) 10 g	(C) 30 g	(D) 5 g				
58.	Identify the correct	statement(s) :						
	I. Gas Y is lighter than gas X.							
	II. Gas Z is lighter than gas Y							
	(A) I only	(B) II only	(C) Both I and II	(D) None of the statements				
59.	Find the average m	olar mass of the mixtu	re of gases X, Y and Z.					
	(A) 40/7	(B) 50/7	(C) 20	(D) 60/7				

60. Match the column:

	Column-I				Column-II					
	(Atomic mass (M))				(Atomic mass (M))			(9/ composition of boovier isotopo)		
	Isotope-I	Isotope-II	Average		(% composition of heavier isotope)					
(A)	(z – 1)	(z + 3)	z	(p)	25% by moles					
(B)	(z + 1)	1) (z + 3) (z + 2)		(q)	50% by moles					
(C)	z	3z	2z	(r)	% by mass dependent on z					
(D)	(z – 1) (z + 1) z		(s)	75% by mass						

Introduction to Chemistry

Answers

PART – I

1.	1.9×10^6 yea	ars (appro	ox.)	2.	3.95 ×	10 ⁻²²	3.	24 g		
4.	980 g of Si			5.	12 × 6	$12 \times 6.022 \times 10^{23}$ 6. 24.088×10^{20} , 6.) ²⁰ , 0.004 g.		
7.	10 × 6.022 ×	10 ²³ , 8 ×	6.022 ×	10 ²³ , 8 >	× 6.022 >	6.022 × 10 ²³ . 8. 25				
9.	68 mole 10.			35.5		11.	10			
12.	6.02 × 10 ²³			13.	3.01 ×	10 ²¹ molecules	s of H ₂ O			
14.	5.33 × 10 ⁶			15.	2.5 N _A		16.	100 g		
17.	0.00288									
18.	(a) H = 4N _A , S (c) H = 10N _A ,				ms	. ,		2 atoms, O = 8 a 5 atoms, O = 18		
19.	20 NA			20.	11 NA		21.	28.964 u		
22.	$R = \frac{32pV}{1000 \times w \times (t + 273)}$			23.	1.88 ×	10 ²²	24.	16 amu		
25.	2.647 × 10 ¹⁰									
26.	(i) 1000	(ii) 10	7	(iii) 0.1	1	(iv) 100	(v) 10	-9		
					PAR	хт — II				
1.	(C)	2.	(A)		3.	(A)	4.	(B)	5.	(B)
6.	(A)	7.	(C)		8.	(C)	9.	(A)	10.	(A)
11.	(A)	12.	(A)		13.	(D)	14.	(C)	15.	(A)
16.	(A)	17.	(A)		18.	(A)	19.	(B)	20.	(A)
21.	(B)	22.	(A)		23.	(D)	24.	(C)	25.	(B)
26.	(B)	27.	(A)		28.	(D)	29.	(D)	30.	(B)
31.	(B)	32.	(B)		33.	(B)	34.	(B)	35.	(C)
36.	(D)	37.	(C)		38.	(B)	39.	(B)	40.	(C)
41.	(C)	42.	(C)		43.	(D)	44.	(C)	45.	(A)
46.	(C)	47.	(B)		48.	(B)	49.	(AC)	50.	(BD)
51.	(ABCD)	52.	(ABC)		53.	(ABD)	54.	(C)	55.	(A)
56.	(B)	57.	(A)		58.	(C)	59.	(D)		
60.	(A) - (p,r) ; (B) - (q,r) ;	(C) - (q,s);(D)-	(q,r)					

60. (A) - (p,r); (B) - (q,r); (C) - (q,s); (D) - (q,r)

 Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029