SOLUTIONS OF NEWTONS LAWS OF MOTION
 EXERCISE-1
 PART - I

SECTION (A) :

A-1. Gravitational, Electromagnetic, Nuclear.
A-2. Newton's IIII Law
A-3. Newton's IInd Law
A-4.

Vertical wall does not exert force on sphere $\left(\mathrm{N}^{\prime}=0\right)$.

A-5.

For block

$$
\begin{aligned}
& \mathrm{mg}=10+\mathrm{N} \\
& \Rightarrow \quad 1 \times 10=10+\mathrm{N} \\
& \Rightarrow \quad \mathrm{~N}=0
\end{aligned}
$$

[Equilibrium]
(1) and (2) are action reaction pair
(3) and (6) are action reaction pair
(4) and (5) are action reaction pair

A-6.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 1
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

A-7. (a)

(b)
(1) and (2)
(3) and (4)
(5) and (6)
(7) and (8)

Action reaction pairs
(e)

(c)

(d)
(f)

SECTION (B)

B-1.

$$
\begin{aligned}
& N=F+m g \\
& \Rightarrow \quad N=m g+m g \\
& \Rightarrow \quad N=2 m g
\end{aligned}
$$

[equilibrium]

B-2.

It is obvious that both blocks will have same acceleration. If we take both block as one system then.
$F-F=\left(m_{1}+m_{2}\right) a$
$\left[\begin{array}{lll}\text { Newton's } & \text { second } & \text { law } \\ \text { in } & \text { horizontal } & \text { direction }\end{array}\right]$

$$
\Rightarrow \quad a=0
$$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 2
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

Now take m_{1} as a system
$\left[\begin{array}{lll}\text { Newton＇s } & \text { second } & \text { law } \\ \text { in } & \text { horizontal } & \text { direction }\end{array}\right]$
$\mathrm{F}-\mathrm{N}=\mathrm{m}_{1} \mathrm{a}$
$\Rightarrow \quad \mathrm{F}-\mathrm{N}=0$
$\Rightarrow \quad \mathrm{F}=\mathrm{N}$
$\mathrm{m}_{1} \mathrm{~g}-\mathrm{N}_{1}=0 \quad$［Equilibrium in vertical direction］
Now take m_{2} as system

$$
\left.\begin{array}{ll}
& N-F=m_{2} a
\end{array} \quad\left[\begin{array}{l}
\text { Newton's second law } \\
\text { in }
\end{array} \text { horizontal direction }\right] .\right] .
$$

B－3．The sphere is in contact at two surfaces one at wall and one at ground．
So one Normal reaction can be exerted at A and another at B．

$$
\begin{array}{ll}
& \mathrm{N}_{\mathrm{w}}=0 \\
\mathrm{~N}_{\mathrm{G}}-\mathrm{mg}=0 & \text { [Equilibrium in horizontal direction] } \\
\Rightarrow \quad & \text { [Equilibrium in vertical direction] } \\
\mathrm{N}_{\mathrm{G}}=\mathrm{mg} &
\end{array}
$$

B
B－4．

Due to symmetry normal reactions due to left and right wall are same in magnitude $W-N \cos 60-N \cos 60=0$
［Equilibrium in vertical direction］

$$
\begin{array}{ll}
\Rightarrow & W-\frac{N}{2}-\frac{N}{2}=0 \\
\Rightarrow & N=W
\end{array}
$$

Reg．\＆Corp．Office ：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－ 324005	
Website ：www．resonance．ac．in｜E－mail ：contact＠resonance．ac．in	ADVNL－ 3
Toll Free ： 18002585555 ｜CIN ：U80302RJ2007PLC024029	

B-5.

B-6. $\quad \mathrm{N}_{1} \cos 30^{\circ}=50+\frac{\mathrm{N}_{2}}{\sqrt{2}}$
$\mathrm{N}_{1} \frac{\sqrt{3}}{2}-\frac{\mathrm{N}_{2}}{\sqrt{2}}=50$

$\mathrm{N}_{1} \sin 30^{\circ}=\frac{\mathrm{N}_{2}}{\sqrt{2}}$
$\mathrm{N}_{1}=\sqrt{2} \mathrm{~N}_{2}$
Solving equation (1) \& (2)
$\mathrm{N}_{1}=136.6 \mathrm{~N}$
$\mathrm{N}_{2}=96.59 \mathrm{~N}$

Resonance ${ }^{\oplus}$ Educating for better tomorrow SECTION（C）：
C－1．

$\mathrm{T}_{1}-10=0$
［Equilibrium of A ］
$\mathrm{T}_{1}=10 \mathrm{~N}$
Similarly T_{2} and T_{3} are also 10 N

C－2．

Resロாョாce『 Educating for better tomorrow

C-3.

C-4. For finding distance travelled we need to know the acceleration and initial velocity of block.

$m_{2} g-T=m_{2} a$
[Newton's second law for m_{2}]
$T-m_{1} g=m_{1} a$ [Newton's second law for m_{1}]
$m_{2} g-m_{1} g=\left(m_{2}+m_{1}\right) a$ [adding both the equation]

$$
\begin{aligned}
\Rightarrow \quad a & =\frac{\left(m_{2}-m_{1}\right) g}{m_{2}+m_{1}} \\
a & =\frac{6-3}{6+3} \times g \\
a & =\frac{g}{3}=\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2} \\
\mathrm{~s} & =u t+1 / 2 \mathrm{at}^{2} \\
& =0 \times 2+1 / 2 \times 10 / 3 \times 2^{2} \\
\mathrm{~S} & =\frac{20}{3} \mathrm{~m} \\
\mathrm{~T} & =\mathrm{m}_{1} \mathrm{~g}=\mathrm{m}, \mathrm{a}
\end{aligned}
$$

$$
\mathrm{T}=\mathrm{m}_{1}\left(\mathrm{~g}+\frac{\mathrm{g}}{3}\right)=3 \times 40 / 3 \quad \mathrm{~T}=40 \mathrm{~N}
$$

Force exerted by clamp on pulley is $2 T$
$\Rightarrow \quad 2 \times 40=80 \mathrm{~N}$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 6
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

C-5.

$\mathrm{T}_{1}=\mathrm{F}$ [Equilibrium of string]
$\mathrm{T}_{3}=\mathrm{T}_{1}$ [String is massless and pulley is friction less so tension must be same on both sides of string] $\Rightarrow \quad \mathrm{T}_{3}=\mathrm{F}$

$$
\text { Similarly } T_{2}=F
$$

$$
T_{5}=T_{2}+T_{3} \quad \text { [Equilibrium of lower pulley] }
$$

$$
\Rightarrow \mathrm{T}_{5}=2 \mathrm{~F}
$$

$$
\mathrm{T}_{5}=\mathrm{mg} \quad \text { [Equilibrium of block] }
$$

$$
\mathrm{F}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}=\frac{\mathrm{Mg}}{2} \quad \mathrm{~T}_{4}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}
$$

[Equilibrium of upper pulley]

$$
\Rightarrow \mathrm{T}_{4}=\frac{3 \mathrm{Mg}}{2}
$$

Section (D)

D-1.

Since string is inextensible length of string can't change
$\therefore \quad$ Rate of decreases of length of left string $=$ rate of increase of length of right string
$\Rightarrow \quad \mathrm{V}_{1} \cos \theta_{1}=\mathrm{V}_{2} \cos \theta_{2}$
$\Rightarrow \quad \frac{V_{1}}{V_{2}}=\frac{\cos \theta_{2}}{\cos \theta_{1}}$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 7
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

D-2.

Velocity of point 1 is V_{1} which is 0 because string is fixed.
Velocity of point 2 is V_{2}

$$
\begin{gathered}
\frac{V_{1}+V_{2}}{2}=u \\
\frac{0+V_{2}}{2}=u \\
V_{2}=2 u
\end{gathered}
$$

D-3.

$V_{A}=\frac{V_{1}+V_{2}}{2}$
[Pulley 1]
$\mathrm{V}_{1}+\mathrm{V}_{2}=2 \mathrm{~V}_{\mathrm{A}}$ \qquad
$\frac{V_{A}+V_{1}}{2}=V_{3}$
[Pulley 2]
$\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{1}=0 \ldots \ldots \mathrm{II}$
$\Rightarrow \quad V_{1}=-0.6$
$-0.6+V_{2}=2 V_{A}$
$V_{2}=2 \times 0.6+0.6$
$V_{2}=1.8 \mathrm{~m} / \mathrm{s}$
$V_{B}=V_{2}=1.8 \mathrm{~m} / \mathrm{s}$

D-4. $\quad \tan 37^{\circ}=\frac{a_{A}}{a_{B}} \quad$ (wedge constrained relation)

$N \sin 37^{\circ}=$ maв
For Rod $\rightarrow \mathrm{mg}-\mathrm{N} \cos 37^{\circ}=$ maA $_{\mathrm{A}}$
From equation (1) \& (2) $a_{A}=\frac{9 g}{25}, a_{B}=\frac{12 g}{25}$

Resonance ${ }^{\circ}$ Educating for better tomorrow

D-5.

$V_{1}=\frac{10-20}{2} \quad$ [constrained relation of P_{1}]
$\mathrm{V}_{1}=-5 \mathrm{~m} / \mathrm{s}$
$10=\frac{-5+V_{2}}{2}$
$\mathrm{V}_{2}=25 \mathrm{~m} / \mathrm{s} \uparrow$
$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{2}=25 \mathrm{~m} / \mathrm{s}$ upwards
$V_{P_{1}}=V_{1}=-5 \mathrm{~m} / \mathrm{s}$
$\Rightarrow V_{P}=5 \mathrm{~m} / \mathrm{s}$ downward
[because we have assumed upward direction as +ve for V_{1}]

D-6.

$\ell_{1}+\ell_{2}=C$
$\ell_{1}{ }^{\prime \prime}+\ell_{2}=0$
$b-a=0 \quad a=b$
Acceleration of $\mathbf{A} \mathbf{b} \hat{i}+\mathbf{b} \hat{j}$

Resロ円əПсе® Educating for better tomorrow

SECTION (E)
E-1.

Since point A is massless net force on it must be zero other wise it will have ∞ acceleration.

$$
\begin{array}{ll}
\Rightarrow & \mathrm{F}_{1}-60 \cos 45=0 \\
\Rightarrow & \mathrm{~F}_{1}=30 \sqrt{2} \mathrm{~N} \\
\mathrm{~F}_{2}-60 \cos 45=0 \\
& \mathrm{~F}_{2}=30 \sqrt{2} \mathrm{~N} \\
\mathrm{~W}-60 \sin 45=0 \\
& \mathrm{~W}=30 \sqrt{2} \mathrm{~N}
\end{array}
$$

E-2. $\quad \vec{F}=m \vec{a}$

$$
\begin{aligned}
\vec{a} & =a_{x} \hat{i}+a_{y} \hat{j} \\
& =\frac{d^{2} x}{d t^{2}}+\frac{d^{2} y}{d t^{2}} \hat{i} \\
& =(10) \hat{i}+(18 t) \hat{j} \\
a t t & =2 \sec t=2 \sec \\
\vec{a} & =10 \hat{i}+36 \hat{j} \\
\vec{F} & =3(10 \hat{i}+36 \hat{j}) \\
& =30 \hat{i}+108 \hat{j} \\
|\vec{F}| & =\sqrt{30^{2}+108^{2}}=112.08 \mathrm{~N}
\end{aligned}
$$

E-3.

It is obevious that acceleration of both the blocks is same in magnitude.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 10
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

$\mathrm{F}-\mathrm{T}=\mathrm{m}_{2} \mathrm{a}$
[Newtons second law for m_{2}]
$T-m_{1} g=m_{1} a$
[Newtons second law for m_{1}]
After adding the above equations.
$F-m_{1} g=\left(m_{2}+m_{1}\right) a$

$$
\begin{aligned}
& \frac{m_{1} g}{2}-m_{1} g=\left(m_{2}+m_{1}\right) a \\
& \Rightarrow \quad a=-\frac{m_{1} g}{2\left(m_{1}+m_{2}\right)}
\end{aligned}
$$

The value of a is -ve it means
$a=\frac{m_{1} g}{2\left(m_{1}+m_{2}\right)}$ in the direction opposite to assumed direction

E-4.
$R_{4}-m g=m a$

$$
\mathrm{R}_{4}-1=0.1 \times 2
$$

$$
\mathrm{R}_{4}=1.2 \mathrm{~N}
$$

$$
\mathrm{R}_{3}-\mathrm{mg}-\mathrm{R}_{4}=\mathrm{ma}
$$

$$
R_{3}-1-1.2=0.1 \times 2
$$

E-5. $\quad \int d p=p_{i}-p_{i}=\int F d t=$ Area under the curve.
$p_{i}=0$
Net Area $16-2-1=13 \mathrm{~N}-\mathrm{s}$
$V_{\mathrm{f}}=13 / 2=6.5 \mathrm{i} \mathrm{m} / \mathrm{s}$
[As momentum is positive, particle is moving along positive x axis.]
E-6. (a) When the block m is pulled $2 x$ towards left the pully rises vertically up by x amount.
$\therefore \mathrm{ab}=2 \mathrm{a} \mathrm{A}$
F.B.D. of blocks

$\mathrm{T}=\mathrm{m} 2 \mathrm{a}$
F.B.D.

FBD of A,

$2 m g-2 T=2 m a$
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
.(1)

(1) $+(2) \Rightarrow \mathrm{mg}=3 \mathrm{ma}$
$a=g / 3$
$\therefore \quad a b=2 g / 3$
(b) $\ell=\mathrm{x}_{\mathrm{B}}+3 \mathrm{x}_{\mathrm{A}}$
$\Rightarrow \quad 0=\frac{d^{2} x_{B}}{d t^{2}}+3 \frac{d^{2} x_{A}}{d t^{2}}$

$\Rightarrow \quad 0=-a_{B}+3 a_{A}$
$\Rightarrow \quad \mathrm{a}_{\mathrm{B}}=3 \mathrm{a}_{\mathrm{A}}$
For B,
$\mathrm{T}=\mathrm{ma}$ в
For A,
$3 m g-3 T=3 m_{A}$
$\mathrm{mg}-\mathrm{T}=\mathrm{ma} A$
By (1), (2) \& (3)
$\therefore \quad a_{B}=3 g / 4$ Ans.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
	Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in
	Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029

E-7. (a)

```
For Block (A)
```


$\mathrm{T}=50 \mathrm{~N}$
For Block (B)
$\mathrm{T}=\mathrm{mg} \sin 30^{\circ}$
$\therefore \quad 50=m_{B} \times 10 \times 1 / 2$
$\Rightarrow \quad m_{B}=10 \mathrm{~kg}$ Ans.
(b)

$\mathrm{T}-\mathrm{m}_{\mathrm{Bg}}=0$
$\Rightarrow \quad 100=m_{B g}$
$\therefore \quad \mathrm{m}_{\mathrm{B}}=10 \mathrm{~kg}$ Ans.

SECTION (F)

F-1. Reading of weighing machine is equal to the normal reaction Normal reaction is not affected by velocity of lift, it is only affected by acceleration of lift.
For I, II and III a = 0

$$
\begin{aligned}
& N-m g=0 \\
& N=m g=600 \mathrm{~N}
\end{aligned}
$$

[Equilibrium of man]
For IV, VI and VII IV, $a=+2 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{N}-\mathrm{mg}=\mathrm{ma}$
$N=60 \times 2+60 \times 10=720 \mathrm{~N}$
For V and VIII $\quad a=-2 m / s^{2}$
$\mathrm{N}-\mathrm{mg}=\mathrm{ma}$
[Newtons II law]
$N=60 \times(-2)+60 \times 10=480 \mathrm{~N}$
[Newtons II law]

$$
N=00 \times(-\angle)+0 U \times 10=400 N
$$

F-2. Reading of spring balance is equal to the tension in spring balance which doesn`t depend on velocity of lift but depend on acceleration.
For I, II and III $\mathrm{a}=0 \quad \mathrm{a}=0$

$$
\begin{array}{ll}
\mathrm{T}-100=0 & \text { [Equilibrium] } \\
\mathrm{T}=100 \mathrm{~N} &
\end{array}
$$

For IV, VI and VII

$$
\begin{aligned}
& T-100=\mathrm{ma} \quad \text { [Newton's II law] } \\
& \mathrm{T}-100=10 \times 2 \\
& \mathrm{~T}=120 \mathrm{~N}
\end{aligned}
$$

For V and VII

$$
\begin{array}{ll}
T-100=\mathrm{ma} & \text { [Newton`s II law] } \\
T-100=10(-2) & \\
T=80 \mathrm{~N}
\end{array}
$$

F-3. Initially
$\mathrm{T}_{\mathrm{AB}}=2 \mathrm{mg}, \mathrm{T}_{\mathrm{BC}}=\mathrm{mg}$
(a)

For $A \quad 2 m g+m g=m a_{A} \quad \Rightarrow \quad a_{A}=3 g$
For B $\quad T_{A B}-m g-T_{B C}=m a_{B}$
$\Rightarrow \quad 2 \mathrm{mg}-\mathrm{mg}-\mathrm{mg}=\mathrm{maв} \Rightarrow \quad \mathrm{maв}=\mathrm{aв}=0$
$T_{B C}-m g=m a_{c} \quad \Rightarrow \quad a_{c}=0$.
(b)

mg
$\mathrm{T}_{\mathrm{AB}}=2 \mathrm{mg}$
$\mathrm{T}_{\mathrm{AB}}-\mathrm{mg}=\mathrm{ma} \mathrm{a}_{\mathrm{B}}$
$2 m g-m g=$ maв
$\Rightarrow \quad \mathrm{a}_{\mathrm{B}}=\mathrm{g}(\uparrow)$
$a_{A}=0 \& a_{c}=g(\downarrow)$.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 14
	Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029

SECTION (G)

G-1. If we take both A and B as a system then there is no external force on system.
$\begin{array}{ll}\Rightarrow \quad & m_{A} a_{A}+m_{B} a_{B}=0 \\ & 60 a_{A}+75 \times 3=0\end{array}$
[Newton's II law for system]

-ve sign means that acceleration is in direction opposite to the assumed direction.

G-2.

$4 \mathrm{~F}-(\mathrm{M}+\mathrm{m}) \mathrm{g}=(\mathrm{M}+\mathrm{m}) \mathrm{a}$
$a=\frac{4 F-(M+m) g}{M+m}=\frac{4 F}{M+m}-g$
G-3. $\quad T_{D}=W_{A_{\text {app }}}+W_{B_{\text {app }}}+W_{C_{\text {app }}}$
$T_{D}=W_{A_{\text {siman }}}+W_{B_{B_{\text {suma }}}}+W_{C_{\mathrm{S}_{\text {mman }}}}$
$=10(10-2)+(15 \times 10)+8(10+1.5)$
$=322$ N Ans.

SECTION (H)

H-1. Pseudo force depends on mass of object and acceleration of observer (frame) which is zero in this problem.
$\Rightarrow \quad$ Pseudo force is zero.

H-2.

F.B.D. in frame of lift

It is obevious that block can accelerate only in x direction. ma is Pseudo force.

$$
\begin{aligned}
& \Rightarrow \quad m g \sin \theta+m a \sin \theta=m a_{x} \quad \text { [Newton`s II law for block in } x \text { direction] } \\
& \Rightarrow \quad a_{x}=(g+a) \sin \theta
\end{aligned}
$$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 15
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

PART - II

SECTION (A)

A-1. Force exerted by string is always along the string and of pull type.
When there is a contact between a point and a surface the normal reaction is perpendicular to the surface and of push type.

A-2. The ground on the horse

SECTION (B)

B-1.

[Newton`s II law for block B]
$\Rightarrow \quad \mathrm{N}=\mathrm{F} / 3$

A
$N=2 \mathrm{ma}_{2}$
$\mathrm{F}-\mathrm{N}=\mathrm{m}_{2} \mathrm{a}$
$\Rightarrow \quad N=2 F / 3$ so the ratio is $1: 2$

B-2.

Both blocks are constrained to move with same acceleration.

$$
\begin{array}{ll}
& 6-\mathrm{N}=2 \mathrm{a} \\
\mathrm{~N}-3=1 \mathrm{a} & \text { [Newtons II law for } 2 \mathrm{~kg} \text { block] } \\
\Rightarrow \quad & \mathrm{N}=4 \text { Newton }
\end{array}
$$

Resロாaாce『 Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
	Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in
	Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029

SECTION (C)

C-1.

Point A is mass less so net force on it most be zero otherwise it will have ∞ acceleration.
$\Rightarrow \quad \mathrm{F}-\mathrm{T} \sin \theta=0 \quad$ [Equilibrium of A in horizontal direction]
$\Rightarrow \quad \mathrm{T}=\frac{\mathrm{F}}{\sin \theta}$

C-2.

$\mathrm{T} \cos \theta+\mathrm{T} \cos \theta-150=0 \quad$ [Equilibrium of point A]
$2 \mathrm{~T} \cos \theta=150$
$\mathrm{T}=\frac{75}{\cos \theta}$
When string become straight θ becomes 90°
$\Rightarrow \quad \mathrm{T}=\infty$
C-3.

$$
\begin{array}{ll}
10-\mathrm{T}_{2}=1 \mathrm{a} & {[\text { Newton's II law for A] }} \\
\mathrm{T}_{2}+30-\mathrm{T}_{1}=3 \mathrm{a} & {[\text { Newton's II law for B] }} \\
\mathrm{T}_{1}-30=3 \mathrm{a} & {[\text { Newton's II law for C] }} \\
\Rightarrow \quad \mathrm{a}=\mathrm{g} / 7 &
\end{array}
$$

$$
\Rightarrow \quad \mathrm{T}_{2}=6 \mathrm{~g} / 7
$$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 17
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

C-4.

T2 \quad [Newton's II law for 8 kg block]
$\Rightarrow \quad \mathrm{T}_{2}=8 \times 2.2+8 \times 9.8$

$$
=96 \mathrm{~N}
$$

$\Rightarrow \quad \mathrm{T}_{1}=12 \times 2.2+12 \times 9.8+96$
$\mathrm{T}_{1}=240 \mathrm{~N}$

C-5.

[Newton's II law for M]
[Newton's II law for m]
If $m \ll M$ than $m+M \approx M$
$\Rightarrow \quad T=\frac{2 \mathrm{~m} \mathrm{Mg}}{\mathrm{m}+\mathrm{M}}$
$\Rightarrow \quad \mathrm{T}=2 \mathrm{mg}$
Total downward force on pulley is $2 \mathrm{~T}=4 \mathrm{mg}$.

SECTION (D)

D-1.

The length of string $A B$ is constant.
$\Rightarrow \quad$ Speed A and B along the string are same $u \sin \theta=V$

$$
u \sin \theta=V \quad u=\frac{V}{\sin \theta}
$$

D-2. $\quad A=\frac{a_{1}-a_{2}}{2}$

D-3.

By symmetry we can conclude that block will move only in vertical direction. Length of string $A B$ remains constant
\therefore Velocity of point A and B along the string is same.

$$
V \cos \theta=u \quad \Rightarrow \quad V=\frac{u}{\cos \theta}
$$

D-4. Let $\quad A B=\ell, B=(x, y)$

$$
\begin{array}{lll}
& \vec{v}_{B}=v_{x} \hat{i}+v_{y} \hat{j} \\
& \vec{v}_{B}=\sqrt{3} \hat{i}+v_{y} \hat{j} \quad \rightarrow \quad \text { (i) } \\
x^{2}+y^{2}=\ell^{2} \\
& 2 x v_{x}+2 y v_{y}=0 \quad & \Rightarrow \\
\Rightarrow \quad \sqrt{3}+\frac{y}{x} v_{y}=0 \\
& \sqrt{3}+\left(\tan 60^{\circ}\right) v_{y}=0 \quad \Rightarrow \quad v_{y}=-1
\end{array}
$$

Hence from (i)

$$
\vec{v}_{B}=\sqrt{3} \hat{\mathrm{i}}-\hat{\mathrm{j}}
$$

Hence $v_{b}=2 \mathrm{~m} / \mathrm{s}$
D-5.

$$
\begin{aligned}
& V=\text { (velcoity of } B \text { w.r.t ground) } \\
& \begin{array}{ll}
\frac{V-4}{2}=2 & V=8 \mathrm{~m} / \mathrm{s} \text { (velcoity of } B \text { w.r.t ground) } \\
& V^{\prime}=6 \mathrm{~m} / \mathrm{s} \text { (velcoity of } B \text { w.r.t lift) }
\end{array}
\end{aligned}
$$

D－6．$u \cos 45^{\circ}=v \cos 60^{\circ}$

or $v=\sqrt{2} u$

SECTION（E）

E－1．$\quad \vec{F}=m a \vec{a}$
$\vec{a}=\frac{d \vec{v}}{d t}$
E－2．$\quad \vec{F}=m a \vec{a}$
E－3．In free fall gravitation force acts．
E－4．

$$
\begin{array}{ll}
M_{2} g \sin \alpha-T=M_{2} a & {\left[\text { Newton's II law for } M_{2}\right]} \\
T-M_{1} g \sin \beta=M_{1} a & {\left[\text { Newton's II law for } M_{1}\right]}
\end{array}
$$

By adding both equations
$a=\left[\begin{array}{l}M_{2} \sin \alpha-M_{1} \sin \beta \\ M_{1}+M_{2}\end{array} g\right.$
E－5．Case 1

$\mathrm{T}_{1}-\mathrm{mg}=\mathrm{ma}_{1}$
［Newton＇s II law for m］
$2 \mathrm{mg}-\mathrm{T}_{1}=2 \mathrm{ma}_{1}$
［Newton＇s II law for 2m］
$\Rightarrow \quad a_{1}=g / 3$
Case 2

$$
\Rightarrow \quad 2 \mathrm{mg}-\mathrm{mg}=\mathrm{ma}_{2} \quad \Rightarrow \quad \mathrm{a}_{2}=\mathrm{g} \quad \Rightarrow \quad \mathrm{a}_{2}>\mathrm{a}_{1}
$$

$$
\begin{aligned}
& \mathrm{F}-\mathrm{mg}=\mathrm{ma}_{2} \\
& \text { Resロпヲпсе }{ }^{\circledR} \\
& \text { Educating for better tomorrow }
\end{aligned}
$$

E-6.

$\mathrm{F}=\mathrm{m}_{1} 4$
$F=m_{2} 6$
$F=\left(m_{1}+m_{2}\right) a$

[Newton's II law for m_{1}]
[Newton's II law for m_{2}]
[Newton's II law for $\left(m_{1}+m_{2}\right)$]

$\Rightarrow \quad \mathrm{F}=\left[\frac{\mathrm{F}}{4}+\frac{\mathrm{F}}{6}\right] \mathrm{a}$
$\Rightarrow \quad \mathrm{a}=2.4 \mathrm{~m} / \mathrm{s}^{2}$.

E-7.

Due to symmetry we can say net force on body M is 0 .
$\therefore \quad$ Acceleration is 0

E-8. $\quad \mathrm{mg}-\frac{3}{4} \mathrm{mg}=\mathrm{ma}$
[Newton's II law for man]
$\Rightarrow \quad a=g / 4$
E-9. $\quad \overrightarrow{\mathrm{F}}=6 \hat{\mathbf{i}}-8 \hat{\mathbf{j}}+10 \hat{\mathrm{k}}$
$\vec{F}=m \vec{a}$
$|\vec{F}|=m \quad|\vec{a}|$

$$
\sqrt{6^{2}+8^{2}+10^{2}}=m 1 \quad m=10 \sqrt{2} \mathrm{~kg}
$$

E-10. $v^{2}=v^{2}+2$ as

$$
0^{2}=1^{2}+2 \frac{\mathrm{~F}}{\mathrm{~m}} \mathrm{x}
$$

$x=\frac{-m}{2 F}$
$v^{2}=v^{2}+2$ as
$\mathrm{O}^{2}=3^{2}+\frac{2 \mathrm{~F}^{1}}{m} \quad x \quad 0=9+\frac{2 \mathrm{~F}^{1}}{m}\left(\frac{-\mathrm{m}}{2 \mathrm{~F}}\right) \Rightarrow \quad \mathrm{F}^{1}=9 \mathrm{~F}$

E-11.

$\mathrm{Mg} \sin \theta-\mathrm{T}=\mathrm{Ma}$
$\mathrm{T}=\mathrm{Ma}$
By dividing both equations
$2 \mathrm{~T}=\mathrm{Mg} \sin \theta \quad \mathrm{T}=\frac{\mathrm{Mg} \sin \theta}{2}$

Resonance『
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 21
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

SECTION (F)
F-1.

$\mathrm{T}-\mathrm{mg}=0 \quad$ [Equilibrium of block]
$\mathrm{T}-10=0$
$\mathrm{T}=10$
Reading of spring balance is same as tension in spring balance.

F-2.

$$
\begin{array}{ll}
F-k x=m_{1} a_{1} & \text { [Newton's II law for } \left.\mathrm{M}_{1}\right] \\
k x=m_{2} \mathrm{a}_{2} & \text { [Newton's II law for } \mathrm{M}_{2} \text {] }
\end{array}
$$

By adding both equations.

$$
F=m_{1} a_{1}+m_{2} a_{2} \quad \Rightarrow \quad a_{2}=\frac{F-m_{1} a_{1}}{m_{2}}
$$

F-3.

Reading of spring balance is same as tension in the balance.

$$
\overrightarrow{\mathrm{T}}=2 \mathrm{a}=10 \mathrm{~g}=98 \mathrm{~N}
$$

[Newton's II law for 2 kg block]

$$
\Rightarrow \quad a=49 \mathrm{~m} / \mathrm{s}^{2}
$$

F-4. Weight of man in stationary lift is mg .

$\Rightarrow \frac{m g}{m(g-a)}=\frac{3}{2} \quad \Rightarrow \quad a=\frac{g}{3}$

	Reg. \& Corp. Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
	Website : www.resonance.ac.in \| E-mail : contact@resonance	ADVNL - 22
	Toll Free : 18002585555 \| CIN : U80302RJ2007PLC024029	

F-5. $\quad N=m(g-a), N<m g$ if $a(\downarrow)$
$N=m(g-a) N<m g$
and $N>m g$ if a (\uparrow)
Reading of spring balance is less than m if a (\downarrow) and reading of spring balance is

SECTION (G)

G-1.

G-2.

$$
\begin{aligned}
& 180=20 a_{1} \\
& \Rightarrow \quad a_{1}=9 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Net force on m_{2} is 0 therefore acceleration of m_{2} is 0 .

SECTION (H)

H-1.

FBD of block is shown w.r.t. wedge and FBD of wedge is shown w.r.t. ground. F_{p} is pseudo force. $\mathrm{mg} \sin 37-\mathrm{ma} \cos 37=\mathrm{mab}$

$$
\Rightarrow \quad a_{b}=g \sin 37-\mathrm{a} \cos 37=10 \times 3 / 5-5 \times 4 / 5=2 \mathrm{~m} . \mathrm{s}^{2} \text { w.r.t. wedge }
$$

Resconance ${ }^{\text {E }}$
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 23
Toll Free : $18002585555 \mid$ CIN : U80302RJ2007PLC024029	

$\Rightarrow \quad$ Block is not stationary w.r.t. wedge
$\mathrm{N}-\mathrm{ma} \sin 37-\mathrm{mg} \cos 37=0 \quad$ [Newton's II law for block]
$\Rightarrow \quad \mathrm{N}=1 \times 10 \times 4 / 5+1 \times 5 \times 3 / 5$
$\Rightarrow \quad \mathrm{N}=11 \mathrm{~N}$.
Net force acting on block w.r.t. ground.

$\mathrm{mg} \cos 37$

$$
\begin{aligned}
F & =\sqrt{(\mathrm{mg} \sin 37)^{2}+(\mathrm{mg} \cos 37-\mathrm{N})^{2}} \\
& =\sqrt{\left(10 \times \frac{3}{5}\right)^{2}+\left(10 \frac{4}{5}-11\right)^{2}}=\sqrt{6^{2}+3^{2}}
\end{aligned}
$$

$$
F=3 \sqrt{5} N
$$

H-2.

F.B.D. of wedge is w.r.t. ground and
F.B.D. of block is w.r.t. wedge.

Let a is the acceleration of wedge due to force F.
F_{p} is pseudo force on block
$\mathrm{mg} \sin 30^{\circ}-\mathrm{ma} \cos 30^{\circ}=0 \quad$ [Equilibrium of block in x direction w.r.t. wedge] $\mathrm{a}=\mathrm{g} \tan 30^{\circ}$
$F=(M+m) a \quad$ [Newtons II law for the system of block and wedge in horizontal direction]
$\Rightarrow \quad F=(M+m) g \tan 30^{\circ}$.

H-3.

Acceleration of point A and B must be some along the line \perp to the surface

$$
\begin{aligned}
\Rightarrow \quad & a \sin \theta=g \cos \theta \\
& a=g \cot \theta
\end{aligned}
$$

PART - III

1. Let a be acceleration of two block system towards right

$$
a=\frac{F_{2}-F_{1}}{m_{1}+m_{2}}
$$

The F.B.D. of m_{2} is

$\therefore \quad \mathrm{F}_{2}-\mathrm{T}=\mathrm{m}_{2} \mathrm{a}$
Solving $T=\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\frac{F_{2}}{m_{2}}+\frac{F_{1}}{m_{1}}\right)$
(B) Replace F_{1} by $-F_{1}$ is result of A
$\therefore \quad T=\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\frac{F_{2}}{m_{2}}-\frac{F_{1}}{m_{1}}\right)$
(C) Let a be acceleration of two block system towards left
$\therefore \quad a=\frac{F_{2}-F_{1}}{m_{1}+m_{2}}$

The FBD of m_{2} is

$\therefore \mathrm{F}_{2}-\mathrm{N}_{2}=\mathrm{m}_{2} \mathrm{a}$
Solving $N=\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\frac{F_{1}}{m_{1}}+\frac{F_{2}}{m_{2}}\right)$
(D) Replace F_{1} by $-F_{1}$ in result of C

$$
N=\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\frac{F_{2}}{m_{2}}-\frac{F_{1}}{m_{1}}\right)
$$

2.

(a)

F.B.D. of m

$\frac{k x}{2}=m g$
$x=\frac{2 m g}{k}$
$\mathrm{T}=\mathrm{mg}$
(b)

F.B.D of pulley

$x=\frac{m g}{k}$
$T=k x$
$\therefore \mathrm{T}=\mathrm{mg}, \mathrm{T}^{\prime}=\mathrm{kx}+\mathrm{T}=2 \mathrm{mg}$
(c)

F.B.D. Block A
$k x=m g+T$

F.B.D. Block B

$$
\begin{equation*}
\mathrm{T}=\mathrm{mg} \tag{2}
\end{equation*}
$$

$\therefore \mathrm{kx}=2 \mathrm{mg}$
$x=\frac{2 m g}{k}$
(d)

F.B.D. of Upper Block A

.B.D. of Lower Block (B)

$$
\mathrm{kx}=\mathrm{mg} \ldots . . \text { (2) } \therefore \mathrm{x}=\frac{\mathrm{mg}}{\mathrm{k}}
$$

$$
\mathrm{By}(1) \&(2) \quad \mathrm{T}=2 \mathrm{mg}
$$

3.

(a) Let b be acceleration of block B w.r.t. wedge
i.e. $\left|\vec{a}_{B W}\right|=b \vec{a}_{B w}=b \cos \theta \hat{i}-b \sin \theta \hat{j}$

$$
\begin{array}{ll}
& \ell=x_{1}+x_{2} \\
\Rightarrow & 0=\frac{d x_{1}}{d t}+\frac{d x_{2}}{d t} \quad \Rightarrow 0=-a+b \\
\Rightarrow \quad & b=a \\
\therefore \quad & \vec{a}_{B W}=a \cos \theta \hat{i}-a \sin \theta \hat{j} \tag{3}
\end{array}
$$

$\vec{a}_{W G}=$ acceleration of wedge w.r.t. ground $=-a \hat{i}$ \qquad
$\vec{a}_{B G}=\vec{a}_{B W}+\vec{a}_{W G}$
$\therefore \vec{a}_{B G}=(a \cos \theta-a) \hat{i}-a \sin \theta \hat{j}$ Ans.
(b)

$$
\ell=4 x_{B}+x_{A} \Rightarrow 0=4 \frac{d^{2} x_{B}}{d t^{2}}+\frac{d^{2} x_{A}}{d t^{2}} ; \quad \frac{d^{2} x_{A}}{d t^{2}}=-a_{A B} ; \frac{d^{2} x_{B}}{d t^{2}}=b \Rightarrow 4 b=a_{A B}
$$

(c)

$\vec{a}_{C A}=\frac{d^{2} x_{c}}{d t^{2}} ; \quad a=\frac{d^{2} x_{A}}{d t} \quad, \quad b=-\frac{d^{2} x_{B}}{d t^{2}}$
Length $=x_{C}+x_{B}-x_{A}+C+x_{B}-x_{A}$
$\Rightarrow \quad \ell=x_{C}+2 x_{B}-2 x_{A}+C$
$\Rightarrow 0=\frac{d^{2} x_{C}}{{d t^{2}}^{2}}+2 \frac{d^{2} x_{B}}{d t^{2}}-2 \frac{d^{2} x_{A}}{d t^{2}}$
$\Rightarrow 0=\mathrm{aCA}-2 \mathrm{~b}-2 \mathrm{a} \quad \therefore \overrightarrow{\mathrm{a}}_{\mathrm{CA}}=-(2 \mathrm{a}+2 \mathrm{~b})$
$\vec{a}_{\mathrm{CG}}=\overrightarrow{\mathrm{a}}_{\mathrm{CA}}+{\overrightarrow{a_{A G}}}^{\mathrm{A}}=-(2 \mathrm{a}+2 \mathrm{~b}) \hat{j}+\mathrm{a} \hat{i}$
$\therefore \overrightarrow{\mathrm{a}}_{\mathrm{CG}}=\mathrm{a} \hat{\mathrm{i}}-2(\mathrm{a}+\mathrm{b}) \hat{\mathrm{j}}$ Ans.
(d) Let a be acceleration of wedge A.

Acceleration of blocks A \& B along normal to contact surface (shown by dotted line) must be equal.

i.e. $b \sin \theta=a \cos \theta \quad a=b \tan \theta$
$\therefore \quad \vec{a}_{A}=-b \tan \theta \hat{j}$ Ans.

EXERCISE-2

PART - I
1.

$a=\frac{N \sin \theta}{M}$ along (-ve x axis)
2. The free body diagram of cylinder is as shown.

Since net acceleration of cylinder is horizontal,

$$
\begin{align*}
& \mathrm{N}_{\mathrm{AB}} \cos 30^{\circ}=\mathrm{mg} \quad \text { or } \quad \mathrm{N}_{\mathrm{AB}}=\mathrm{mg} \tag{1}\\
& \text { and } \quad N_{B C}-N_{A B} \sin 30^{\circ}=m a \quad \text { or } \quad N_{B C}=m a+N_{A B} \sin 30^{\circ} \tag{2}
\end{align*}
$$

Hence $N_{A B}$ remains constant and $N_{B C}$ increases with increase in a.
3.

Acceleration of two mass system is $a=\frac{F}{2 m}$ leftward FBD of block A
$N \cos 60^{\circ}-F=m a=\frac{m F}{2 m}$ solving $N=3 F$
4.

2T $\sin \theta=W$
$\mathrm{T}=\mathrm{W} / 2 \operatorname{cosec} \theta$
5.

$\mathrm{T}_{1} \cos 45^{\circ}=\mathrm{T}_{2} \cos 45^{\circ}$
$\Rightarrow \quad \mathrm{T}_{1}=\mathrm{T}_{2}$
$\left(T_{1}+T_{2}\right) \sin 45^{\circ}=m g$
$\sqrt{2} \mathrm{~T}_{1}=\mathrm{mg}$
$\mathrm{T}_{1}=\frac{\mathrm{mg}}{\sqrt{2}}$.
$\square \square \square \square \square \square^{B}$
Educating for better tomorrow
$T \sin \theta=M g+\frac{T_{1}}{\sqrt{2}}$
$T \sin \theta=M g+\frac{m g}{2}$
$\mathrm{T} \cos \theta=\frac{\mathrm{T}_{1}}{\sqrt{2}}=\frac{\mathrm{mg}}{2}$
Dividing (i) and (ii)
$\tan \theta=\frac{M+m / 2}{m / 2}=1+\frac{2 M}{m}$ Ans.
6.

$$
\begin{aligned}
& \mathrm{T}=\mathrm{mg} \\
& 2 \mathrm{~T} \cos \theta=\mathrm{T}^{\prime} \\
& \mathrm{T}^{\prime}=\mathrm{Mg} \\
& 2 \mathrm{mg} \cos \theta=\mathrm{Mg} \\
& \cos \theta=\frac{M}{2 m}<1 \\
& \quad M<2 m
\end{aligned}
$$

7. let L_{1} and L_{2} be the portions (of length) of rope on left and right surface of wedge as shown
$\therefore \quad$ Magnitude of acceleration of rope

$$
a=\frac{\frac{M}{L}\left[L_{1} \sin \alpha-L_{2} \sin \beta\right] g}{M}=0 \quad\left(\because L_{1} \sin \alpha=L_{2} \sin \beta\right)
$$

8. By setting string length constant

$$
\mathrm{L}=\ell_{1}+2 \ell_{2}+2 \ell_{3}
$$

After differentiation $\mathrm{L}^{\prime}=0$ so

$$
\Rightarrow \quad \begin{aligned}
& -2 v_{A}+v_{0}+2 v_{0}=0 \\
& 3 v_{0}=2 v_{A} \\
& v_{A}=\frac{3}{2} v_{0} \\
& \\
& v_{A B}=v_{A}-v_{B}
\end{aligned}
$$

$=\frac{v_{0}}{2}$ towards right.

Resonance•
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 30
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

10.

$\mathrm{w}-\mathrm{f}=\mathrm{ma} \quad \mathrm{w}-\mathrm{ma}=\mathrm{g}$
$w\left\{1-\frac{m}{w} a\right\}=f \quad w\left\{1-\frac{m}{m g} a\right\}=f$ $w\left\{1-\frac{a}{g}\right\}=f$
11. Legnth of groove $=\sqrt{3^{2}+4^{2}}=5 \mathrm{~m}$

Acceleration along the incline $=g \sin \theta=g \sin 30^{\circ}=g / 2$
Acceleration along the groove $=g / 2 \cos (90-\alpha)=g / 2 \sin \alpha=\frac{g}{2} \times \frac{4}{5}=4 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}^{2}=2 \mathrm{as}$
$v=\sqrt{2 \times 4 \times 5}=\sqrt{40} \mathrm{~m} / \mathrm{sec}$.
12.

(Force diagram in the frame of the car)
Applying Newton's law perpendicular to string

$$
m g \sin \theta=m a \cos \theta
$$

$$
\tan \theta=\frac{\mathrm{a}}{\mathrm{~g}}
$$

Applying Newton's law along string
$\Rightarrow \quad T-m \sqrt{g^{2}+a^{2}}=m a \quad \mathbf{T}=\mathbf{m} \sqrt{\mathbf{g}^{2}+\mathbf{a}^{2}}+\mathbf{m a}$ Ans.
13.

$$
\begin{aligned}
& 900-300-m \times 10=m a \quad 600=m(10+a) \\
& \frac{600}{10+a}=m \\
& \frac{600}{10+10}=m=\frac{600}{20}=30 \mathrm{~kg} .
\end{aligned}
$$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 31
Toll Free : 18002585555 \| CIN : U80302RJ2007PLC024029	

14. For first case tension in spring will be
$\mathrm{T}_{\mathrm{s}}=2 \mathrm{mg} \quad$ just after ' A ' is released.

$2 m g-m g=m a \Rightarrow a=g$

In second case $\mathrm{T}_{\mathrm{s}}=\mathrm{mg}$
$2 \mathrm{mg}-\mathrm{mg}=2 \mathrm{mb}$
$b=g / 2$
$a / b=2$
15. $\mathrm{T} \sin \theta=m\left(g \sin \alpha+\mathrm{a}_{0}\right)$

$$
\begin{gathered}
\mathrm{T} \cos \theta=\mathrm{mg} \cos \alpha \\
\Rightarrow \quad \tan \theta=\left(\frac{\mathrm{g} \sin \alpha+\mathrm{a}_{0}}{\mathrm{~g} \cos \alpha}\right) \\
\theta=\tan ^{-1}\left(\frac{g \sin \alpha+\mathrm{a}_{0}}{\mathrm{~g} \cos \alpha}\right)
\end{gathered}
$$

16. Slope of $v_{\text {rel }}-t$ curve is Constant.
$\Rightarrow \quad a_{\text {rel }}=$ Const. $=a_{1}-a_{2} \neq 0$
Inference that at least one reference frame is accelerating both can't be non - accelerating simultaneously.

PART - II

1.

It is obvious that aceleration of cylinder is II to the wedge I and acceleration of triangular block is II to the wedge 2.
$\mathrm{a}_{2} \operatorname{cas} \alpha=\mathrm{a}_{1} \cos \beta$
$N \cos \beta-m_{1} g \sin \beta=m_{1} a_{1}$
[constrained relation between the contact surface of block and cylinder]
$m_{2} g \sin \alpha-N \cos \alpha=m_{2} a_{2}$
[Newton's II law for cylinder along the direction parallel to the wedge1]
By solving equation I, II and III we get
$N=m g\left(\frac{\sin \alpha \cos \alpha+\sin \beta \cos \beta}{\cos ^{2} \alpha+\cos ^{2} \beta}\right)=5 N$ Ans

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 32
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

2.

$\mathrm{mg}-\mathrm{N}-\mathrm{F} \sin \alpha=0 \quad$［Equilibrium of block in vertical direction］
at breaking off the contact $N=0$ ．
$\Rightarrow \quad F \sin \alpha=m g$
$\Rightarrow \quad$ at $\sin \alpha=\mathrm{mg}$
$\Rightarrow \quad \mathrm{t}=\frac{\mathrm{mg}}{\mathrm{a} \sin \alpha}$
$\mathrm{F} \cos \alpha=\mathrm{mA}$
［Newton＇s second law for block in horizontal direction］
$\Rightarrow \quad$ at $\cos \alpha=m \frac{d v}{d t}$
$\int_{0}^{v} d v=\frac{a \cos \alpha}{m} \int_{0}^{t=\frac{m g}{a \sin \alpha}} t d t$
$\Rightarrow \quad v=\frac{a \cos \alpha}{m} \frac{t^{2}}{2}$
．． 1
After putting time limits $v=\frac{\mathrm{mg}^{2} \cos \alpha}{2 a \sin ^{2} \alpha}$
equation I can be written as $\frac{d x}{d t}=\frac{a \cos \alpha}{2 m} \quad t^{2}$
$\int_{0}^{x} d x=\frac{a \cos \alpha}{2 m} \int_{0}^{t} t^{2} d t=\frac{a \cos \alpha}{2 m} \frac{t^{3}}{3}$
After putting limits．$x=\frac{m^{2} g^{3} \cos \alpha}{6 a^{2} \sin ^{3} \alpha}$
3． $\mathrm{V}_{\mathrm{nm}}=\frac{\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{A}} / 2}{2}=\frac{4+4 / 2}{2}=\frac{4+2}{2}=3$
4．$\quad a_{A}=\frac{d^{2} y}{d t^{2}}=\frac{1}{2}$
$a_{B}=8 a_{A} \quad$ by constrained relation
$\mathrm{a}_{\mathrm{B}}=4 \mathrm{~m} / \mathrm{s}^{2}$
5.

Reg．\＆Corp．Office ：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－ 324005	
Website ：www．resonance．ac．in｜E－mail ：contact＠resonance．ac．in	ADVNL－ 33
Toll Free ： 18002585555 ｜CIN ：U80302RJ2007PLC024029	

$2 a_{A}=a+a_{B}$
$2 a_{A}=3+a_{B}$
$2 T-100=10 a_{A}$
$50-T=5 a_{в}$
$\Rightarrow \quad a_{B}+a_{A}=0$
$2 a_{A}-3+a_{A}=0$
$\mathrm{a}_{\mathrm{A}}=1 \mathrm{~m} / \mathrm{s}^{2}$
$\Rightarrow \quad a_{B}=-1 \mathrm{~m} / \mathrm{s}^{2}$.
6.

$\mathrm{a}_{\mathrm{B}}+\mathrm{a}^{\prime}=2 \mathrm{a}_{\mathrm{A}} \quad$ [constrained relation for pulley 1]
$\mathrm{O}+\mathrm{a}^{\prime}=2 \mathrm{a}_{\mathrm{B}} \quad$ [contrained relation for pulley 2]
From above two equations
$3 a_{B}=2 a_{A}$
$\Rightarrow \mathrm{a}_{\mathrm{A}}=\frac{3}{2} \mathrm{a}_{\mathrm{B}}$
$\mathrm{F}-2 \mathrm{~T}=2 \mathrm{ma}_{\mathrm{A}} \quad$ [Netwon's II law for block A]
$3 \mathrm{~T}=4 \mathrm{~m}$ ав [Netwon's II law for block B]
From equation I, II and III
$\mathrm{a}_{\mathrm{B}}=\frac{3 \mathrm{~F}}{17 \mathrm{~m}}$.
7. $m_{A g}-2 T=m_{A} a_{A}$ [Newton's II law for block A]

T- $\mathrm{m}_{\mathrm{B}} \mathrm{=}$ = пвав $_{\text {в }}$ [Newton's II law for block B]
$\mathrm{a}_{\mathrm{B}}+\mathrm{O}=2 \mathrm{a}_{\mathrm{A}}$ [constrained relation for pulley P1]
$m_{A}=4 m_{B}$ [Given in question]
From above four equations
$a_{A}=\frac{g}{4}=2.5 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{a}_{\mathrm{B}}=\frac{\mathrm{g}}{2}=5 \mathrm{~m} / \mathrm{s}^{2}$
$h=\frac{1}{2} a_{A} t^{2}$ [Equation of motion for block A]
$\Rightarrow \quad \mathrm{t}=\frac{2}{5} \mathrm{sec}$.
H is the distance travelled by block B in vertical direction till $\frac{2}{5}$

second
$\Rightarrow \quad \mathrm{H}=\frac{1}{2} \mathrm{aBt}^{2}$
[Equation of motion for block B]

$$
\begin{array}{r}
\Rightarrow \quad \frac{1}{2} 5\left(\frac{2}{5}\right)^{2} \\
H=0.4 \mathrm{~m}
\end{array}
$$

H^{\prime} is the distance travelled by block B due to gained velocity.

$$
\begin{aligned}
& \mathrm{v}_{1}=\mathrm{ast} \\
& =5 \times 0.4 \\
& \mathrm{v}_{1}=2 \mathrm{~m} / \mathrm{s} \\
& \mathrm{v}_{2}^{2}=\mathrm{v}_{1}^{2}+2 \mathrm{aH} \mathrm{H}^{\prime} \\
& 0^{2}=2^{2}+2(-10) \mathrm{H}^{\prime} \\
& \mathrm{H}^{\prime}=\frac{2}{10}=0.2 \mathrm{~m}
\end{aligned}
$$

Total distance $=\mathrm{H}+\mathrm{H}^{\prime}$

$$
=0.6 \mathrm{~m}=60 \mathrm{~cm} .
$$

8.

$\Rightarrow \quad$ If acceleration of wedge is x then acceleration of block w.r.t. wedge is $\mathrm{x}+\mathrm{x} \cos 60^{\circ}$.

$\mathrm{T}+\mathrm{N} \sin 60^{\circ}=\mathrm{Ma}$
$T+N \frac{\sqrt{3}}{2}=M a$
$\mathrm{T} \cos 60^{\circ}-\mathrm{N} \sin 60^{\circ}=\mathrm{m}\left[\mathrm{a}-\mathrm{a} \cos 60^{\circ}-\mathrm{a} \cos ^{2} 60^{\circ}\right]$
$\frac{T}{2}-\frac{N \sqrt{3}}{2}=m a\left[1-\frac{1}{2}-\frac{1}{4}\right]$
$\Rightarrow \quad \mathrm{T}-\mathrm{N} \sqrt{3}=\frac{\mathrm{ma}}{2}$
$\mathrm{mg}-\mathrm{N} \cos 60^{\circ}-\mathrm{T} \sin 60^{\circ}=\mathrm{m}\left(\mathrm{a} \sin 60^{\circ}+\mathrm{a} \cos 60^{\circ} \sin 60^{\circ}\right)$
$m g-\frac{N}{2}-\frac{T \sqrt{3}}{2}=m a\left[\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{4}\right]$
$2 \mathrm{mg}-\mathrm{N}-\mathrm{T} \sqrt{3}=\frac{3 \sqrt{3}}{2} \mathrm{ma} \Rightarrow \quad \mathrm{a}=\frac{30 \sqrt{3}}{23} \mathrm{~m} / \mathrm{s}^{2}$.
9.

$F_{\text {net }_{\text {कुल }}}=m g-2 F \cos \theta$
$a_{\text {net }}=g-\frac{2 k}{m}\left(\sqrt{L^{2}+x^{2}}-L\right) \frac{x}{\sqrt{L^{2}+x^{2}}}$
10. Acceleration of bead along rod is

$$
\begin{aligned}
& \frac{m a \cos \alpha}{m}=a \cos \alpha \\
& \frac{1}{2} a \cos \alpha t^{2}=\ell \\
& t=\sqrt{\frac{2 \ell}{a \cos \alpha}}=2 \sec
\end{aligned}
$$

11.

All the forces shown are in ground frame. a_{w} is the acceleration of wedge w.r.t ground and a is the acceleration of blocks w.r.t wedge.
$m_{A g} \sin 45^{\circ}-T=m_{A}\left(a-a_{w} \cos 45^{\circ}\right)$
$m_{A} g \cos \theta-N=m_{A} a_{w} \sin 45^{\circ}$
ground frame.]
$T-m_{B g} \sin 45=m_{B}\left(a-a_{w} \cos 45\right) \quad$ [Newton's II law for block B along the wedge in ground frame.]
$N_{B}-m_{B} g \cos 45^{\circ}=m_{B}\left(a_{w} \sin 45\right)$
[Newton's II law for block B in direction \perp to the wedge in
ground frame]
$N_{A} \sin 45+T \cos 45-N_{B} \sin 45-T \cos 45=m_{w} a_{w}$
[Newton's II law for wedge in horizontal direction in ground frame].
After solving above five equations we will get

$$
\mathrm{a}_{\mathrm{w}}=\frac{2}{5} \mathrm{~m} / \mathrm{s}^{2}=40 \mathrm{~cm} / \mathrm{s}^{2}
$$

PART - III
1.

$\mathrm{T}=\mathrm{m}_{1} \mathrm{~g}$
when thred is burnt, tension in spring remains same $=m_{1} \mathrm{~g}$.
$m_{1} g-m_{2} g=m_{2} a \quad \frac{\left(m_{1}-m_{2}\right)}{m_{2}} g=a=$ upwards

2. $F=\alpha t$
$a=\frac{d v}{d t}=\frac{\alpha}{m} t$
..(i) straight line curve 1
$\mathrm{dv}=\frac{\alpha}{\mathrm{m}} \mathrm{tdt}$
$v=\frac{\alpha}{m} \frac{t^{2}}{2} \quad$ curve $2 \ldots$ (ii)
divide (ii) by (ii)
$v=\frac{t}{2} a=\frac{a}{2} \times \frac{a m}{\alpha}=\frac{a^{2} m}{2 \alpha}$
\rightarrow Paacebole curve 2.
3.

$\mathrm{F}=2 \mathrm{~T} \cos \theta \quad \mathrm{~T}=\frac{\mathrm{F}}{2 \cos \theta}$
$\theta \uparrow \cos \theta \downarrow \top \uparrow$
on increasing $\theta, \cos \theta$ decreases and hence T increases.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 37
Toll Free : 18002585555 \| CIN : U80302RJ2007PLC024029	

4. By string constraint

$$
\begin{equation*}
a_{A}=2 a_{B} \tag{1}
\end{equation*}
$$

Equation for block A.

$$
\begin{equation*}
10 \times 10 \times \frac{1}{\sqrt{2}}-T=10 \mathrm{aA} \tag{2}
\end{equation*}
$$

Equation for block B.

$$
\begin{equation*}
2 \mathrm{~T}-\frac{400}{\sqrt{2}}=40 \mathrm{a}_{\mathrm{B}} \tag{3}
\end{equation*}
$$

Solving equation (1), (2) \& (3), we get $a_{A}=\frac{-5}{\sqrt{2}} m / s^{2}$

$$
\mathrm{a}_{\mathrm{B}}=\frac{-5}{2 \sqrt{2}} \mathrm{~m} / \mathrm{s}^{2} \Rightarrow \quad \mathrm{~T}=\frac{150}{\sqrt{2}} \mathrm{~N}
$$

5. Apply NLM on the system

$$
200=20 a+12 \times 10
$$

$$
\frac{80}{20}=a
$$

$=4 \mathrm{~m} / \mathrm{s}^{2}$
Spring Force $=10 \times 12=120 \mathrm{~N}$
6. There is no horizontal force on block A, therefore it does not move in x -directing, whereas there is net downward force $(\mathrm{mg}-\mathrm{N})$ is acting on it, making its acceleration along negative y-direction.
Block B moves downward as well as in negative x-direction. Downward
 acceleration of A and B will be equal due to constrain, thus w.r.t. B, A moves in positive x-direction.
Due to the component of normal exerted by C on B, it moves in negative x-direction.
7. Pseudo force depends on acceleraton of frame and mass of object
8.

F.B.D. of trolley is w.r.t. ground
F.B.D. of suspended mass is w.r.t. Trolley.

Tcos $37^{\circ}-\mathrm{mg}=0 \quad$ [Equilibrium of mass in y direction w.r.t. trolley]

$$
\Rightarrow \quad \mathrm{T}=\frac{5 \mathrm{mg}}{4} \quad \mathrm{~T}=25 \mathrm{~N}
$$

$\mathrm{T} \sin 37^{\circ}-\mathrm{ma}=0 \quad$ [Equilibrium of mass in x direction w.r.t. trolley]
$\Rightarrow \quad a=\frac{T \sin 37}{m}=\frac{15}{2}$
$\mathrm{F}-\mathrm{T} \sin 37=8 \mathrm{a} \quad$ [Newton's II law for trolley in x direction w.r.t. ground]
$\Rightarrow \quad F=8 \times 15 / 2+25 \times 3 / 5 \quad F=75 N$

Resonance『
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 38
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

9. (A) True
(B) True

Accelerated \& moving with velocity V.

Accelerated but not moving.

10.

x - t curve is
(1) straight line when $a=0$
(2) concave up when uniform $a>0$
(3) concave down when uniform $\mathrm{a}<0$.

In the region $A B \& C D$ acceleration $=0=$ Force $=0$
11.

By string constrain

$$
v_{A}+u-v_{B}=0
$$

or

$$
V_{B}=u+V_{A}
$$

Differentiating both side

$$
\mathrm{a}_{\mathrm{B}}=0+\mathrm{a}_{\mathrm{A}} \text { Ans. }
$$

Resonance Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 39
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

PART－IV

1．FBD of Block in ground frame ：
Applying N．L．$\quad 150+450-10 \mathrm{M}=5 \mathrm{M}$
$\Rightarrow \quad 15 \mathrm{M}=600 \quad \Rightarrow \quad M=\frac{600}{15}$

$\Rightarrow \quad M=40 \mathrm{Kg}$ Ans．
Normal on block is the reading of weighing machine i．e． 150 N ．
2．If lift is stopped \＆equilibrium is reached then

So block will lose the contact with weighing machine thus reading of weighing machine will be zero．

So reading of spring balance will be 40 Kg ．
3.

$a=\frac{950-400}{40} \Rightarrow a=\frac{450}{40}=\frac{45}{4} \mathrm{~m} / \mathrm{s}^{2}$
Ans．

4．$a_{p}=\frac{10 t}{10}=t$
$\therefore \quad \frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{t} \Rightarrow \quad \int_{0}^{\mathrm{v}} \mathrm{dv}=\int_{0}^{\mathrm{t}} \mathrm{t} d \mathrm{dt} \Rightarrow \quad \mathrm{v}=\frac{\mathrm{t}^{2}}{2}$
Putting $v=2$ we have $t=2$ sec．
Now $\quad \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{t}^{2}}{2} \quad \therefore \quad \mathrm{x}_{\mathrm{p}}=\left[\frac{\mathrm{t}^{3}}{6}\right]_{0}^{2}=\frac{4}{3}$
$x_{B}=2 \times 2=4 \mathrm{~m}$
Hence relative displacement $=4-4 / 3=8 / 3 \mathrm{~m}$

Reg．\＆Corp．Office ：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－ 324005	
Website ：www．resonance．ac．in｜E－mail ：contact＠resonance．ac．in	ADVNL－ 40
Toll Free ： 18002585555 ｜CIN ：U80302RJ2007PLC024029	

5．From above

$$
2 t=t^{3} / 6 \quad \Rightarrow \quad t^{2}=12 \quad \Rightarrow t=2 \sqrt{3} \mathrm{sec}
$$

6．$a=t=4$
$\therefore \quad$ after 4 seconds $V_{B}=2 \mathrm{~m} / \mathrm{s}$
$V_{p}=4^{2} / 2=8 \mathrm{~m} / \mathrm{s}$
$\therefore \quad V_{\text {rel }}=8-2=6 \mathrm{~m} / \mathrm{s}$ ．
9.

（i）
$\Delta \ell=\ell / 2$
$\mathrm{F}_{\mathrm{s}}=\mathrm{K} \Delta \ell$
$<\frac{2 \mathrm{mg}}{\ell} \frac{\ell}{2}$
$\mathrm{F}_{\mathrm{s}}<\mathrm{mg}$
$\mathrm{T}+\mathrm{F}_{\mathrm{s}}=\mathrm{mg}$
$T=m g-\frac{K \ell}{2}$
（ii）
$\mathrm{mg}-\frac{\mathrm{K} \ell}{2}=\mathrm{ma}$
$g-\frac{k \ell}{2 m}=a$
If it is so
$F_{s}>m g$
i．e．，$\quad \Delta \ell<\frac{\ell}{2}$ string unstretched \＆ $\mathrm{T}=0$ ．

EXERCISE－3

PART－I
1.

$m a \cos \theta=m g \cos (90-\theta)$

$$
\begin{array}{lll}
\Rightarrow & \frac{a}{g}=\tan \theta & \Rightarrow \\
\Rightarrow & \frac{a}{g}=\frac{d y}{d x} \\
\Rightarrow & \frac{d}{d x}\left(k x^{2}\right)=\frac{a}{g} & \Rightarrow
\end{array}
$$

PART - II

1. Vertical component of acceleration of A

$$
\begin{aligned}
a_{1} & =(g \sin \theta) \cdot \sin \theta \\
& =g \sin 60^{\circ} \cdot \sin 60^{\circ}=g \cdot 3 / 4
\end{aligned}
$$

That for B

$$
\begin{aligned}
& \mathrm{a}_{2}=\mathrm{g} \sin 30^{\circ} \cdot \sin 30^{\circ}=\mathrm{g} \frac{1}{4} \\
\therefore \quad & \left(\mathrm{a}_{\mathrm{AB}}\right)_{\perp}=\frac{3 g}{4}-\frac{\mathrm{g}}{4}=\frac{\mathrm{g}}{2}=4.9 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

2.

$F=m a=F_{0} e^{-b t}$
$\frac{d v}{d t}=\frac{F_{0}}{m} e^{-b t}$
$\int_{0}^{v} d v=\frac{F_{0}}{m} \int_{0}^{t} e^{-b t} d t \quad ; \quad v=\frac{F_{0}}{m}\left[\frac{e^{-b t}}{-b}\right]_{0}^{t}$
$v=\frac{F_{0}}{m b}\left(1-e^{-b t}\right)$
3. $a=-\left(g+\gamma v^{2}\right)$
$\frac{d v}{d t}=-\left(g+\gamma v^{2}\right)$
$\int_{v_{0}}^{0} \frac{d v}{g+\gamma v^{2}}=-\int_{0}^{t} d t$
$\frac{1}{\gamma} \int_{v_{0}}^{0} \frac{d v}{\left(\frac{g}{\gamma}+v^{2}\right)}=-\int_{0}^{t} d t$
$\frac{1}{\gamma} \frac{1}{\sqrt{\frac{g}{\gamma}}}\left[\tan ^{-1}\left(\frac{v}{\sqrt{\frac{g}{\gamma}}}\right)\right]_{v_{0}}$
$\frac{1}{\sqrt{g \gamma}} \tan ^{-1}\left(\frac{\sqrt{\gamma}}{\sqrt{g}} v_{0}\right)=t$
4.

$\frac{T}{\sqrt{2}}=100 ; \quad \frac{T}{\sqrt{2}}=F ; \quad F=100 \mathrm{~N}$.

HIGH LEVEL PROBLEMS (HLP)

1. (a) (i) acceleration at $t=1 \mathrm{~s}$
$a=\frac{3.6-0}{2-0}=1.8 \mathrm{~m} / \mathrm{s}^{2}$

$\mathrm{T}-150 \mathrm{~g}=150 \mathrm{a}$
$T=150 \times 9.8+150 \times 1.8$
$=1740 \mathrm{~N}$.
(ii) $\operatorname{At} t=6 s t=6 s, \quad a=0$
$\therefore \quad \mathrm{T}=150 \mathrm{~g} \mathrm{~N}$
$=150 \times 9.8=1470 \mathrm{~N}$
(iii) At $t=118 \quad t=118 ; \quad a=-1.8 \mathrm{~m} / \mathrm{s}^{2}$
$1.8 \mathrm{~m} / \mathrm{s}^{2}$ down
$150 \mathrm{~g}-\mathrm{T}=150 \mathrm{a}$

$T=150 \times(9.8-1.8)=1200 \mathrm{~N}$
(b) Height $=$ Area of $v-t$ graph

$$
=1 / 2(12+8) 3.6=36 \mathrm{~m}
$$

(c) Average velocity $=\frac{\text { Displacement }}{\text { time }}=\frac{36}{12}=3 \mathrm{~m} / \mathrm{s}$
(d) Average acceleration $=\frac{\text { change in velocity }}{\text { time in taken }}=\frac{0-0}{12}=0$
2.

As there is no external force along x direction

$$
\begin{array}{ll}
\therefore & 2 m a A_{x}+m a_{B x}=0 \\
\Rightarrow & 2 m(-a)+m(b \cos \theta-a)=0 \\
\Rightarrow & 3 a=b \cos \theta \ldots \ldots \ldots(1) \\
\therefore & \overrightarrow{a_{B}}=2 a \hat{i}-3 a \hat{j} \tan \theta \ldots \ldots \ldots \tag{2}
\end{array}
$$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 43
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

$\therefore \quad$ along x-direction
$N \sin \theta=m \times 2 a$
Along y-direction
$\mathrm{mg}-\mathrm{N} \cos \theta=\mathrm{m} 3 \mathrm{a} \tan \theta$
$\Rightarrow \quad \mathrm{mg}-2 \mathrm{ma} \cot \theta=3 \mathrm{ma} \tan \theta$
$\Rightarrow \quad \mathrm{g}=\mathrm{a}[2 \cot \theta+3 \tan \theta]$

$$
\begin{gathered}
a=\frac{g \sin \theta \cos \theta}{2 \cos ^{2} \theta+3 \sin ^{2} \theta} \\
a=\frac{g \sin \theta \cos \theta}{3-\cos ^{2} \theta} \quad b=\frac{3 g \sin \theta}{3-\cos ^{2} \theta}
\end{gathered}
$$

3.

F.B.D. in NIF.

$\mathrm{N}_{1}=\mathrm{mg}+\mathrm{ma}$
$80.5 \mathrm{~g}=\mathrm{mg}+\mathrm{ma} \ldots$...(1)

F.B.D. in

$$
\begin{equation*}
\mathrm{N}_{2}=\mathrm{mg} \tag{2}
\end{equation*}
$$

$\downarrow \mathrm{mg}$
F.B.D. in N.I.F.

$\mathrm{N}_{3}+\mathrm{ma}=\mathrm{mg}$
$\Rightarrow \mathrm{N}_{3}=\mathrm{mg}-\mathrm{ma} \quad \Rightarrow 59.5 \mathrm{~g}=\mathrm{mg}-\mathrm{ma}$ \qquad
(1) $+(3)$
$140 \mathrm{~g}=2 \mathrm{mg}$
m = 70 kg Ans.
(a) $\therefore \mathrm{N}_{2}=$ true weight $=\mathbf{7 0} \mathbf{~ k g}$. Ans.
(b) by (1) $80.5 \times \mathrm{g}=\mathrm{mg}+\mathrm{ma}$

$$
\Rightarrow \quad 10.5 \mathrm{~g}=70 \mathrm{a} \quad \Rightarrow \quad \mathrm{a}=\frac{10.5 \times 10}{70}=1.5 \mathrm{~m} / \mathrm{s}^{2} \text { Ans. }
$$

4．Let a be acceleration of system

$$
\begin{equation*}
\xrightarrow{a} \quad N \sin \theta=m a \tag{1}
\end{equation*}
$$

$\cos \theta=\mathrm{mg}$
Dividing（1）by（2），we get
$\mathrm{a}=\mathrm{g} \tan \theta$

$$
\begin{equation*}
T=\left(M^{\prime}+m\right) a \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Mg}-\mathrm{T}=\mathrm{Ma} \tag{5}
\end{equation*}
$$

（4）＋（5）$\quad \mathrm{Mg}=\left(\mathrm{M}^{\prime}+\mathrm{m}+\mathrm{M}\right) \mathrm{a}$
by $(3) \&(6) \quad M g=\left(M^{\prime}+m+M\right) \tan \theta$
$\Rightarrow M=\frac{M^{\prime}+m}{\cot \theta-1}$ Ans．
5.

$$
T-150=15 \times 1
$$

$\mathrm{T}=165 \mathrm{~N}$ Ans．
$S=\frac{1}{2} a t^{2} \quad 5=\frac{1}{2} \times 1 \times t^{2}$
$t=\sqrt{10} \mathrm{~s}$ Ans．

6．Let a_{1} \＆ a_{2} be acceleration of monkey \＆Block respectively

F．B．D．Monkey
$a_{1} \uparrow \square m \quad m a_{1}=T-m g \quad a_{1}=\frac{T}{m}-g$

Reg．\＆Corp．Office ：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－ 324005	
	Website ：www．resonance．ac．in｜E－mail ：contact＠resonance．ac．in
	Toll Free ： 18002585555 ｜CIN ：U80302RJ2007PLC024029

By (1) \& (2)
$\mathrm{a}_{1}=\mathrm{a}_{2} \quad \therefore \quad \mathrm{a}_{\text {rel }}=0$, as $\mathrm{u}_{\text {rel }}=0$
Relative displacement is zero.
Hence separation remains same.
7. Let b be acceleration of masses $m_{1} \& m_{2}$ with respect to wedge \& a be acceleration of wedge w.r.t. ground.

$\vec{a}_{W G}=-a \hat{i} \ldots \ldots$ (1)
$\vec{a}_{A G}=\vec{a}_{A W}+\vec{a}_{W G}$
$=b \hat{i}-a \hat{i} \Rightarrow \vec{a}_{A G}=(b-a) \hat{i}$
$\vec{a}_{B G}=\vec{a}_{B W}+\vec{a}_{W G}=b \cos 37^{\circ} \hat{i}-b \sin 37^{\circ} \hat{j}-a \hat{i}$
$\vec{a}_{B G}=\left(\frac{4 b}{5}-a\right) \hat{i}-\frac{3 b}{5} \hat{j}$
As $F_{\text {external, }} \mathrm{x}=0$
$\Rightarrow \quad M_{A} a_{A G}, x+M_{B} a_{B G}, x+m_{W}$ awg ,x=0
$\Rightarrow \quad 1.3(\mathrm{~b}-\mathrm{a})+1.5\left(\frac{4 \mathrm{~b}}{5}-\mathrm{a}\right)+3.45(-\mathrm{a})=0$
$\Rightarrow \quad(1.3+1.5+3.45) \mathrm{a}=(1.3+1.2) \mathrm{b}$
$\Rightarrow \quad 6.25 \mathrm{a}=2.5 \mathrm{~b}$
$\Rightarrow \quad 5 \mathrm{a}=2 \mathrm{~b}$
$b-a=\frac{3}{2} a$
F.B.D. System : m_{1}

Frame: $T=1.3 \times \frac{3}{2} \mathrm{a}$
F.B.D. System : m_{2}

Frame :

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 46
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

Along the incline :

	$1.5 \mathrm{a} \frac{4}{5}+1.5 \mathrm{~g} \frac{3}{5}-\mathrm{T}=1.5 \frac{5 \mathrm{a}}{2}$
$\Rightarrow \quad$	$9-\mathrm{T}=2.55 \mathrm{a}$

by (2) \& (3) (2)
$\begin{aligned} 9 & =4.5 \mathrm{a} \\ \Rightarrow \quad & \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}\end{aligned}$
$\therefore \quad b=5 \mathrm{~m} / \mathrm{s}^{2}$
$S=\frac{1}{2} b t^{2} \quad \Rightarrow \quad \frac{5}{2}=\frac{1}{2} \times 5 t^{2} \quad t=1 s$

(i) $\quad \therefore \mathrm{V}_{\mathrm{m}_{3}}=\mathrm{u}+\mathrm{a}_{\mathrm{m}_{3}}=0+2 \times 1$
$\mathrm{V}_{\mathrm{m}_{3}}=2 \mathrm{~m} / \mathrm{s}$ Ans.
(ii)

$$
\begin{aligned}
& \vec{a}_{B G}=\left(\frac{4}{5} \times 5-2\right) \hat{i}-\frac{3}{5} \times 5 \hat{j} \\
& \vec{a}_{B G}=2 \hat{i}-3 \hat{j} \\
& a_{M_{2}}=\left|\vec{a}_{B G}\right|=\sqrt{13} \mathrm{~m} / \mathrm{s}^{2} \\
& V_{M_{2}}=a_{m_{2}} t \\
& V_{M_{2}}=\sqrt{13} \mathrm{~m} / \mathrm{s}^{2} \quad \text { Ans. }
\end{aligned}
$$

by (2) $\mathrm{T}=\frac{3.9}{2} \times 2 \quad \Rightarrow \mathrm{~T}=3.9 \mathrm{~N}$ Ans.
8. $m>m$

Let a be acceleration of M w.r.t. ground
$\mathrm{b}_{1}=$ acceleration of m ' w.r.t. ground
$\mathrm{b}_{2}=$ acceleration of m w.r.t. ground

$$
\vec{a}_{M G}=a \hat{i} \quad a_{m^{\prime} G}=b_{1} \hat{i} \quad \vec{a}_{m G}=-b_{2} \hat{i}
$$

As Fexternal $\mathrm{x}=0$

$$
\begin{align*}
& \Rightarrow \quad \mathrm{m}^{\prime} \mathrm{am}_{\text {'Gx }}+\left(\mathrm{M}+\mathrm{m}+\mathrm{m}^{\prime}\right) \text { amgx }+\mathrm{m} \text { ама, } \mathrm{x} \quad=0 \\
& m^{\prime} b_{1}+\left(M+m+m^{\prime}\right) a-m b_{2} \\
& m^{\prime} b_{2}-m^{\prime} b_{1}=\left(M+m+m^{\prime}\right) a \tag{1}
\end{align*}
$$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 47
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

F.B.D. System : m^{\prime}

Frame : I.F. $\xrightarrow[\mathrm{m}^{\prime}]{\stackrel{\mathrm{b}_{1}}{\longrightarrow}} \mathrm{~T}_{1} \quad \mathrm{~T}_{1}=\mathrm{m}^{\prime} \mathrm{b}_{1}$
F.B.D. System : M

Frame:

F.B.D.

System
m^{\prime}

Frame : N.I.F.

$$
\begin{equation*}
m^{\prime} g-T_{1}=m^{\prime}\left(b_{1}-a\right) \tag{4}
\end{equation*}
$$

F.B.D.

System

Frame: :N.I.F. $m g-T_{2}=m\left(b_{2}+a\right)$
$(2)+(4) \Rightarrow m^{\prime} g=m^{\prime}\left(2 b_{1}-a\right)$

$$
\begin{gather*}
g=2 b_{1}-a \tag{6}\\
(3)+(5) \Rightarrow m g=m\left(2 b_{2}+a\right) \tag{7}\\
g=2 b_{2}+a
\end{gather*}
$$

Solving (1), (6) \& (7) we get

$$
a=\frac{\left(m-m^{\prime}\right) g}{2 M+3 m+3 m^{\prime}} \quad \text { Ans. }
$$

9. Let the acceleration of B downwards be $a_{B}=a$

From constraint ; acceleration of A and C are

$$
\begin{aligned}
& a_{A}=a \cot \theta=\frac{4 a}{3} \text { towards left } \\
& a_{C}=\frac{a}{2} \text { upwards }
\end{aligned}
$$

free body diagram of A, B and C are

$N \sin \theta=\frac{9 m}{64}(a \cot \theta)$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 48
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

$2 \mathrm{mg}-\mathrm{T}-\mathrm{N} \cos \theta=2 \mathrm{ma}$
$2 \mathrm{~T}-\mathrm{mg}=\mathrm{m} \frac{\mathrm{a}}{2}$
solving we get

$$
\mathrm{a}_{\mathrm{c}}=\frac{\mathrm{a}}{2}=3 \mathrm{~m} / \mathrm{s}^{2}
$$

Ans. 3m/s ${ }^{2}$ upwards
10.

Let v_{x} and v_{y} be the horizontal and vertical component of velocity of block C.
The component of relative velocity of B and C normal to the surface of contact is zero.
$\therefore \quad 10+5 \cos 37^{\circ}-v_{x}=0$
$\mathrm{v}_{\mathrm{x}}=14 \mathrm{~m} / \mathrm{s}$
From the figure $\ell_{1}+\ell_{2}+\ell_{3}=$ constant
$\therefore \quad \frac{\mathrm{d} \ell_{1}}{\mathrm{dt}}+\frac{\mathrm{d} \ell_{2}}{\mathrm{dt}}+\frac{\mathrm{d} \ell_{3}}{\mathrm{dt}}=0$
$(-10)+\left(-5-10 \cos 37^{\circ}\right)+\left(-5 \sin 37^{\circ}+v_{y}\right)=0 \quad \therefore \quad v_{y}=26 \mathrm{~m} / \mathrm{s}$.
11. Pseudo force on a particle depends on mass of particle and negative accleration of observer.
12.

$v \cos \theta=u$
$\mathrm{v}=\mathrm{u} \sec \theta$
$\frac{d v}{d t}=u \sec \theta \tan \theta \frac{d \theta}{d t} \ldots \ldots \ldots$.
$\tan \theta=\mathrm{b} / \mathrm{y}$
$\sec ^{2} \theta \frac{d \theta}{d t}=-\frac{b}{y^{2}} \frac{d y}{d t}$
$=+\frac{b}{y^{2}} \cos ^{2} \theta \frac{u}{\cos \theta}$
$=\frac{1}{b} \frac{b^{2}}{y^{2}} \cos \theta u$
$\square P \square \square \square \square \square^{B}$
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 49
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

$=\frac{u \cos \theta}{b} \tan ^{2} \theta$ \qquad II
$\Rightarrow \frac{d v}{d t}=\frac{u^{2}}{b} \tan ^{3} \theta$ from I and II

$$
\Rightarrow \frac{d v}{d t}=\frac{u^{2}}{b} \tan ^{3} \theta
$$

13. Method - I

As cylinder will remains in contact with wedge A

$$
V_{x}=2 u
$$

As it also remain in contact with wedge B

$$
\begin{aligned}
& u \sin 30^{\circ}=V_{y} \cos 30^{\circ}-V_{x} \sin 30^{\circ} \\
& V_{y}=V_{x} \frac{\sin 30^{\circ}}{\cos 30^{\circ}}+\frac{U \sin 30^{\circ}}{\cos 30^{\circ}} \\
& V_{y}=V_{x} \tan 30^{\circ}+u \tan 30^{\circ} \\
& V_{y}=3 u \tan 30^{\circ}=\sqrt{3} u \\
& V=\sqrt{V_{x}^{2}+V_{y}^{2}}=\sqrt{7} u \text { Ans. }
\end{aligned}
$$

Method - II

In the frame of A

$$
3 u \sin 30^{\circ}=V_{y} \cos 30^{\circ}
$$

$$
\Rightarrow \quad V_{y}=3 u \tan 30^{\circ}=\sqrt{3} u
$$

$$
\text { and } V_{x}=2 u \quad \Rightarrow \quad V=\sqrt{V_{x}^{2}+V_{y}^{2}}=\sqrt{7} u \text { Ans. }
$$

14.

$4 F_{1}-F_{2}=\mathrm{ma}$ [Newtons II law for block]
$\Rightarrow a=\frac{4 F_{1}-F_{2}}{m}$
$\mathrm{t}=0$ to 2 sec .
$\mathrm{F}_{1}=30 \mathrm{~N}$
$F_{2}=10 \mathrm{~N}$
$\Rightarrow \mathrm{a}=\frac{4 \times 30-10}{40}=2.75 \mathrm{~m} / \mathrm{s}^{2}$
$t=2$ to 4 sec
$\mathrm{F}_{1}=30 \mathrm{~N}$
$\mathrm{F}_{2}=20 \mathrm{~N}$
$\Rightarrow \mathrm{a}=\frac{4 \times 30-20}{40}=2.5 \mathrm{~m} / \mathrm{s}^{2}$
For $\mathrm{t}=4$ to 6 sec .
$\mathrm{F}_{1}=10 \mathrm{~N}$
$\mathrm{F}_{2}=40 \mathrm{~N}$
$\Rightarrow \mathrm{a}=\frac{4 \times 10-40}{40}=0 \mathrm{~m} / \mathrm{s}^{2}$
For $\mathrm{t}=6$ to 12 sec
$\mathrm{F}_{1}=0, \mathrm{~F}_{2}=0$
$\Rightarrow \mathrm{a}=0 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{V}_{12}-\mathrm{V}_{0}=\mathrm{a}_{0-2}(2-0)+\mathrm{a}_{2-4}(4-2)+\mathrm{a}_{4-6}(6-4)+\mathrm{a}_{6-12}(12-6)$
$\mathrm{V}_{12}-1.5=2.75 \times 2+2.5 \times 2+0 \times 2+0 \times 6$
$V_{12}=12 \mathrm{~m} / \mathrm{s}$
15. By constraint velocity component of block along the string should be u

$$
\Rightarrow \quad v \cos \theta=u \quad \text { or } \quad v=u \sec \theta
$$

\qquad
from (1)

$$
\begin{equation*}
a=\frac{d v}{d t}=u \sec \theta \tan \theta \frac{d \theta}{d t} \tag{2}
\end{equation*}
$$

Initially when block is at a large distance θ is a small component of T in vertical direction is very small. As block comes nearer and nearer. $\mathrm{T} \sin \theta$ increases and N decreases.

When $\mathrm{T} \sin \theta=\mathrm{mg}$ then block just loses contact with the ground
so $\quad T \sin \theta=m g$. \qquad
$\mathrm{T} \cos \theta=\mathrm{ma}$
(3) \& (4) \Rightarrow
$a \tan \theta=g$ \qquad

also, $x=h \cot \theta$

$$
\frac{d x}{d t}=-h \operatorname{cosec}^{2} \theta \frac{d \theta}{d t}
$$

$$
\Rightarrow-v=-h \operatorname{cosec}^{2} \theta \frac{\mathrm{~d} \theta}{\mathrm{dt}} \quad\left[\text { as } \mathrm{x} \text { is decreasing } \frac{\mathrm{dx}}{\mathrm{dt}}=-\mathrm{v}\right]
$$

$\square \square \square \square \square \square \underbrace{B}$
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVNL - 51
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

or $\frac{u \sec \theta}{h \operatorname{cosec}^{2} \theta}=\frac{d \theta}{d t}$ \qquad (using (1))
using (2), (5) and (6) we get
$u \sec \theta \tan \theta\left(\frac{u \sec \theta}{h \operatorname{cosec}^{2} \theta}\right) \tan \theta=g$
putting values of $u, h \& g$ we get.
$\tan ^{4} \theta=1 \Rightarrow \theta=\frac{\pi}{4}$
Ans. $\quad \theta=\frac{\pi}{4}$
16.

$V_{p}=\frac{V_{1}+V_{2}}{2}$

Pulley P_{1}
$u=\frac{0+v_{1}}{2}$
Pulley P_{2}
$v=\frac{v_{1}+V_{2}}{2} \Rightarrow 2 V=V_{1}+V_{2}$
Pulley $\mathrm{P}_{3} \quad \mathrm{v}=\frac{-\mathrm{v}_{2}+\mathrm{u}}{2}$
Eliminate V_{1} \& V_{2} to get
$\Rightarrow 2 u+u-2 u=2 v \Rightarrow 3 u=4 v$
$v=\frac{3}{4} u \quad$ Ans.
17. Solving problem in the frame of pulley

$3.25 \cos \theta-1 \sin \theta=\sqrt{3} \cos 30+1 \sin 30$
$3.25 \cos \theta-\sin \theta=\frac{3}{2}+\frac{1}{2}$
$3.25 \cos \theta-\sin \theta=2$
$13 \cos \theta-4 \sin \theta=8$
$13 \sqrt{1-\sin ^{2} \theta}=8+4 \sin \theta$
$169-169 \sin ^{2} \theta=64+16 \sin ^{2} \theta+64 \sin \theta$
$185 \sin ^{2} \theta+64 \sin \theta-105=0$
$\Rightarrow \sin \theta=\frac{3}{5} \quad \Rightarrow \tan \theta=\frac{3}{4}$.
18.

$9 \cos \alpha=v \sin \alpha$
\rightarrow
$\frac{19-R}{12}=\tan \alpha$
\rightarrow
$(R+5)^{2}=(12)^{2}+(19-R)^{2}$
$\Rightarrow R=10$
Hence from (i) and (ii)

$$
\mathrm{v}=12 \mathrm{~m} / \mathrm{s}
$$

19. Before cutting the spring

$\mathrm{T}_{2}=\mathrm{mg}$
After cutting the spring

$2 m g-m g=2 m a$
$a=g / 2$
$\mathrm{T}_{3}=\mathrm{mg} / 2$
$\mathrm{T}_{2}-\mathrm{T}_{3}=\mathrm{mg}-\frac{\mathrm{mg}}{2}=\frac{\mathrm{mg}}{2}$

Resonance『
Educating for better tomorrow
20.

$\mathrm{T}-\mathrm{mg} \cos 37^{\circ}=\mathrm{ma}$
$2 \mathrm{mg} \sin 37^{\circ}-\mathrm{T}=2 \mathrm{ma}$

$$
\begin{array}{ll}
\Rightarrow & a=\frac{4}{3} \mathrm{~m} / \mathrm{s} \\
\Rightarrow & a_{B}=\frac{4}{3} \mathrm{~m} / \mathrm{s} \\
\Rightarrow & a_{A}=\frac{4 \sqrt{2}}{3} \mathrm{~m} / \mathrm{s}
\end{array}
$$

$N \sin \theta=m b$
$N \sin \theta=m(a \cos \theta-b)$
$2 \mathrm{mg}-\mathrm{N} \cos \theta=\mathrm{ma} \sin \theta$
$\Rightarrow \quad a=\frac{4 g \sin \theta}{1+\sin ^{2} \theta}$
$\Rightarrow \quad \mathrm{h}=\frac{1}{2} \mathrm{a} \sin \theta \mathrm{t}^{2} \quad \Rightarrow \quad \mathrm{t}=\sqrt{\frac{\mathrm{h}\left(1+\sin ^{2} \theta\right)}{2 g \sin ^{2} \theta}}$

