SOLUTIONS OF RECTILINEAR MOTION

EXERCISE-1
 PART - I

Section (A)

A-1. $\quad a=7 m$,

$$
\mathrm{b}=8 \mathrm{~m}
$$

$$
\mathrm{r}=\frac{11}{\pi}\left[\pi=\frac{22}{7}\right]
$$

Distance travelled by the car from P to R
$=a+\pi r+b+2 \pi r=a+b+3 \pi r=7+8+3 \pi \times \frac{11}{\pi}=48 \mathrm{~m}$
Ans
Displacement of the car from P to R
$=a+2 r+b+4 r=a+b+6 r=7+8+6 \times \frac{11}{\pi}=15+6 \times \frac{11}{22} \times 7=36 \mathrm{~m}$ Ans
A-2.

(a) Distance covered by the man to reach the field.

$$
=50+40+20=110 \mathrm{~m} \text { Ans }
$$

(b) Displacement of man from his house to the field

$$
=\sqrt{(40)^{2}+(30)^{2}}=\sqrt{1600+900}=\sqrt{2500}=50 \mathrm{~m} \text { Ans }
$$

Direction of displacement can be known by finding θ

$$
\begin{aligned}
& \tan \theta=\frac{40}{30} \\
\Rightarrow \quad & \theta=\tan ^{-1}\left(\frac{4}{3}\right) \text { West of South Ans }
\end{aligned}
$$

Section (B) :

B-1. Initial reading of meter $=12352 \mathrm{~km}$
Final reading of meter $=12416 \mathrm{~km}$
Time taken by car $=2 \mathrm{hr}$
(a) Distance covered by car
$=($ Final reading - Initial reading $)$
$=(12416-12352)=64 \mathrm{~km}$
Average speed of car $=64 / 2=32 \mathrm{~km} / \mathrm{h}$ Ans
(b) As the car returns to the initial point after whole journey,
hence, displacement of car $=0$
Therefore, average velocity = 0 Ans

Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 1
Toll Free : 18002585555 \| CIN : U80302RJ2007PLC024029	

B-2.

Suppose the total distance covered by the particle i.e., $\mathrm{AD}=\mathrm{x}$
Particle covers first one - third distance $A B$ with speed V_{1}
second one - third distance $B C$ with speed V_{2} and
third one - third distance CD with speed V_{3}.
Average speed of the particle $=\frac{\text { Total distance covered by the particle }}{\text { Total time taken by the particle }}$

$$
=\frac{X}{\frac{X / 3}{V_{1}}+\frac{X / 3}{V_{2}}+\frac{X / 3}{V_{3}}}=\frac{1}{\frac{1}{3 V_{1}}+\frac{1}{3 V_{2}}+\frac{1}{3 V_{3}}}=\frac{3 V_{1} V_{2} V_{3}}{V_{1} V_{2}+V_{2} V_{3}+V_{3} V_{1}} \quad \text { Ans }
$$

Section (C)

C -1. The position of a body is given as $\mathrm{x}=\mathrm{At}+4 \mathrm{~B} \mathrm{t}^{3}$
(a) $\mathrm{x}=\mathrm{At}+4 \mathrm{Bt}^{3}$
$V=\frac{d x}{d t}=A+12 B t^{2}$, So, $a=\frac{d V}{d t}=24 \mathrm{Bt}$ Ans
(b) $A t t=5 s, \quad V=A+12 B(5)^{2}$,
i.e., $\quad V=A+300$ B Ans

At $t=5 \mathrm{~s}, \mathrm{a}=24 \mathrm{~B}(5)$ i.e., $\quad \mathrm{a}=120 \mathrm{~B}$ Ans
C-2. Maximum speed $\quad \mathrm{V}=18 \mathrm{~km} / \mathrm{h}$
$=18 \times 5 / 18=5 \mathrm{~m} / \mathrm{s}$
Avg. acc. $=\frac{0+\mathrm{V}_{\text {max }}}{2}=\frac{0+5}{2}$,
So average acceleration $=\frac{5}{2} \mathrm{~m} / \mathrm{s}^{2}$ Ans
C-3 The particle starts from point A \& reaches point D passing through $B \& C$ as shown in the figure.

Now, $A E=40 \mathrm{~m} \& \mathrm{DE}=30 \mathrm{~m}$
$\therefore \quad$ Displacement $=A D=\sqrt{\mathrm{AE}^{2}+\mathrm{DE}^{2}}=\sqrt{40^{2}+30^{2}}=50 \mathrm{~m}$
Total time taken in the motion $=t_{A B}+t_{B C}+t_{C D}$

$$
=2+\frac{40}{5}+8=18 \mathrm{~s}
$$

Total distance travelled $=A B+B C+C D=10+40+40=90 \mathrm{~m}$
Average velocity $=\frac{\text { Displacement }}{\text { time }}=\frac{50}{18}=\frac{25}{9} \mathrm{~m} / \mathrm{s}$
Average speed $=\frac{\text { Distance }}{\text { time }}=\frac{90}{18}=5 \mathrm{~m} / \mathrm{s}$.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 2
Toll Free : 18002585555 \| CIN : U80302RJ2007PLC024029	

Section（D）
D－1．$u=36 \mathrm{~km} / \mathrm{h}=36 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}=10 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}=90 \mathrm{~km} / \mathrm{h}=90 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}=25 \mathrm{~m} / \mathrm{s}$
From the equation of motion；
$V=u+a t \quad$ putting $t=5 s$
$25=10+a(5)$ ，i．e．，$\quad a=\frac{25-10}{5} \Rightarrow a=3 \mathrm{~m} / \mathrm{s}^{2}$ Ans
For distance travelled by the car in 5 sec ，we use
$s=u t+\frac{1}{2} \mathrm{at}^{2}=10 \times 5+\frac{1}{2} \times 3(5)^{2}=\frac{100+75}{2}=\frac{175}{2}$ i．e．，$=87.5 \mathrm{~m}$ Ans
D－2．

（a）For motion from A to B ：

$$
u_{B}=u_{A}+a_{1} t_{1}=0+2(30)=60 \mathrm{~m} / \mathrm{s}
$$

Also，$S_{1}=u_{A} t_{1}+\frac{1}{2} a_{1} t_{1}{ }^{2}=0+\frac{1}{2}(2)(30)^{2}$

$$
\Rightarrow \quad \mathrm{S}_{1}=900 \mathrm{~m}
$$

For motion from B to C ：
$\mathrm{V}_{\mathrm{C}}=\mathrm{u}_{\mathrm{B}}-\mathrm{a}_{2} \mathrm{t}_{2} ; \quad 0=60-\mathrm{a}_{2}(60)$ ；
i．e．，$\quad a_{2}=\frac{60}{60}=1 \mathrm{~m} / \mathrm{s}^{2}, \quad$ Also $V_{c}{ }^{2}=U_{B}{ }^{2}-2 a_{2} s_{2}$
$\Rightarrow(0)^{2}=(60)^{2}-2(1) \mathrm{S}_{2}$ ，
i．e，$S_{2}=\frac{60 \times 60}{2}$ ，i．e，$S_{2}=1800 \mathrm{~m}$
Now，total distance moved by the train
$S=S_{1}+S_{2}=900+1800 \Rightarrow S=2700 m$ Ans
（b）Maximum speed attained by the train will be at the point B ，as after this point train starts retarding
So，$V_{\text {max }}=V_{B}=60 \mathrm{~m} / \mathrm{s}$
Ans
（c）There will be two positions at which the train will be at half the maximum speed for motion from A to B ．

Let D be a point where $u_{0}=\frac{u_{B}}{2}=\frac{60}{2} ; u_{D}=30 \mathrm{~m} / \mathrm{s}$
$u_{D}{ }^{2}=u A^{2}+2 a_{1}(A D)$
$\Rightarrow A D=\frac{u_{D}^{2}-u_{A}^{2}}{2 \mathrm{a}_{1}} \quad \Rightarrow \quad A D=\frac{(30)^{2}-(0)^{2}}{2 \times 2}$
$\Rightarrow A D=\frac{900}{4} \quad \Rightarrow \quad A D=225 \mathrm{~m}$ Ans
For motion from B to C

Let E be a point where $u_{E}=\frac{u_{B}}{2}=\frac{60}{2}=30 \mathrm{~m} / \mathrm{s}$ ．
$U^{2} E=u_{B}{ }^{2}+2 \mathrm{a}_{2}(\mathrm{BE}) \quad \Rightarrow \quad(30)^{2}=(60)^{2}+2(-1) B E$
$\Rightarrow \quad \mathrm{BE}=\frac{(60)^{2}-(30)^{2}}{2} \quad \Rightarrow \quad \mathrm{BE}=\frac{2700}{2}$
$\Rightarrow \quad B E=1350 \mathrm{~m}$
Hence，the position of point from initial point（A）
$\Rightarrow \quad A E=A B+B E=900+1350=2250 \mathrm{~m}$

$$
\mathrm{AE}=2.25 \mathrm{~km} \mathrm{Ans}
$$

Reg．\＆Corp．Office ：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－ 324005	
Website ：www．resonance．ac．in｜E－mail ：contact＠resonance．ac．in	ADVRM－ $\mathbf{3}$
Toll Free ： 18002585555 ｜CIN ：U80302RJ2007PLC024029	

D-3. Given $u=72 \mathrm{~km} / \mathrm{h}$
$=72 \times \frac{5}{18}=20 \mathrm{~m} / \mathrm{s} \quad \& \quad a=-2 \mathrm{~m} / \mathrm{s}^{2}$
(a) $V=0, \quad s=$?

From the equation of motion;

$$
V^{2}=u^{2}+2 a s
$$

$(0)^{2}=(20)^{2}+2 \times(-2)$ S, i.e., $\quad 4 \mathrm{~s}=400, \quad$ or $\quad S=100 \mathrm{~m}$ Ans
(b) $V=0, \quad t=?$

From the equation of motion;

$$
\begin{aligned}
& V=u+a t \\
& 0=20+(-2) t \quad \Rightarrow \quad 2 t=20 \quad \Rightarrow \quad t=10 \mathrm{~s} \text { Ans }
\end{aligned}
$$

(c) Distance travelled during the first second

$$
\begin{aligned}
& \quad\left[S_{t}=u+\frac{1}{2}(-2)(2 \times t-1)\right] \\
& S_{1}=20+\frac{1}{2}(-2)(2 \times 1-1) \quad \Rightarrow \quad S_{1}=20-1 \\
& \Rightarrow \quad S_{1}=19 \mathrm{~m} \text { Ans }
\end{aligned}
$$

Distance travelled during the third second
$S_{3}=20+1 / 2(-2)(2 \times 3-1) ;$ or $\quad S_{3}=20-5 ; \quad$ or, $\quad S_{3}=15 \mathrm{~m}$ Ans

Alternatively :

as चूंकि $u=72 \times 5 / 18=20 \mathrm{~m} / \mathrm{s}, \mathrm{a}=-2 \mathrm{~m} / \mathrm{s}^{2}$.
(a) $v^{2}=u^{2}+2 a s$

$$
(0)^{2}=400+2 \times-2 \times s, s=100 \mathrm{~m}
$$

(b) $v=u+a t, 0=20-2 t \quad t=10 \mathrm{sec}$.
(c) $D_{n}=u+a / 2(2 n-1)$
\Rightarrow In First second
$D_{1}=20-2 / 2(2 \times 1-1)=19 m$
$\Rightarrow \quad$ In Third second
$D_{3}=20-2 / 2(2 \times 3-1)=15 m$
D-4. Let h be the height of the tower and t be the total time taken by the ball to reach the ground.
Distance covered in $t^{\text {th }}$ (last second) second $=15 \mathrm{~m}$
$\left[\mathrm{s}_{\mathrm{t}}=\mathrm{u}+1 / 2 \mathrm{~g}(2 \mathrm{t}-1)\right]$
$0+1 / 2 g(2 t-1)=15$ or, $\quad 1 / 2(10)(2 t-1)=15$;
or, $2 \mathrm{t}-1=3 \quad$ or $\quad t=2 \mathrm{sec}$
Now, height of the tower is given by

$$
h=u t+1 / 2 g t^{2} \quad ; \quad h=0+1 / 2(10)(2)^{2} ; ; \text { i.e., } h=20 \mathrm{~m} \text { Ans }
$$

D-5. (i) Maximum height reached by ball $=20 \mathrm{~m}$.
So, taking upward direction as positive, $v^{2}=u^{2}+2$ as
So, $\quad 0=u^{2}-2 \times 10 \times 20$
or $\quad u=20 \mathrm{~m} / \mathrm{sec}$
Ans.
Also time taken by ball $=t=u / g=20 / 10=2 \mathrm{sec}$. (for touching the plane)
(ii) Horizontal distance travelled by plane in this time $t=s=u_{x} t+1 / 2 a_{x} t^{2}$
where, $u_{x}=$ initial velocity of plane, $a_{x}=$ acceleration of plane.
So, $s=0 \times 2+1 / 2 \times 2 \times 2^{2}=4 \mathrm{~m}$
(iii) Man catches the ball back 2 seconds after it touches the plane.

Velocity of plane when ball touches it
$\Rightarrow \quad v_{x}=u_{x}+a_{x} t=0+2 \times 2=4 \mathrm{~m} / \mathrm{sec}$.
Now, acceleration of plane becomes : $a_{x}{ }^{\prime}=4 \mathrm{~m} / \mathrm{sec}^{2}$
so, $\quad s_{x}{ }^{\prime}=$ horizontal distance travelled by plane after touch with ball $=u_{x}{ }^{\prime}+1 / 2 a_{x}{ }^{\prime} t^{2}$ $=4 \times 2+1 / 2 \times 4 \times 4=8+8=16 \mathrm{~m}$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 4
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

Final distance between man and plane $=\mathrm{s}=\sqrt{(20)^{2}+(16)^{2}}=\sqrt{656} \mathrm{~m}$

Section (E)

E -1. For a particle moving along x - axis, $\mathrm{v}-\mathrm{t}$ graph is as shown.

Distance travelled by the particle $=$ sum of areas under $V-t$ graph
$=1 / 2(3+1) 4+1 / 2 \times 2 \times 2=8+2=10 \mathrm{~m}$
Displacement of the particle $=$ area above t-axis - area below t-axis
$=1 / 2(3+1) 4-1 / 2 \times 2 \times 2=8-2=6 \mathrm{~m}$
Average velocity $=\frac{\text { Displacement }}{\text { time }- \text { int erval }}=\frac{6}{5}=1.2 \mathrm{~m} / \mathrm{s}$
E-2.

Distance travelled = area under V-t curve
$=2000 \mathrm{~m}$
E-3. $\quad v-t$ diagram for the two situations is shown below

$\tan \theta_{1}=\mathrm{a}$

$\tan \theta_{2}=2 \mathrm{a}$

In v-t graph, distance travelled = area under the graph

ResロПŋПсе ${ }^{\circledR}$ Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 5
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

Area (AOD) = Area ($A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$)
Area (ABC) = Area (O'A'D')
Area (ACED) < Area (A'C'E'D')
particle B has covered larger distance.

Aleternate Solution:

For particle A :

For $v-t$ graph, slope $=$ acceleration, Suppose the slope of $O A$, i.e., $\tan \theta_{1}=m$; hence, the slope of $A B$, i.e.,
$\tan \theta_{2}=2 \mathrm{~m}, \mathrm{AD}=\mathrm{mt}, \mathrm{BC}=2 \mathrm{mt}$
Distance travelled by the particle A
$S_{A}=1 / 2(t)(m t)+1 / 2(m t+3 m t) t$
$\mathrm{S}_{\mathrm{A}}=2.5 \mathrm{mt}$
For particle B

slope of $O A^{1} \tan \theta_{2}=2 m$
slope of $A^{1} B^{1} \tan \theta_{1}=m$
$A D=2 \mathrm{mt}$,
$B C=m t$
Distance travelled by the particle B
$\mathrm{S}_{\mathrm{B}}=1 / 2(\mathrm{t})(2 \mathrm{mt})+1 / 2(2 \mathrm{mt}+3 \mathrm{mt}) \mathrm{t}$
$\mathrm{S}_{\mathrm{B}}=3.5 \mathrm{mt}$
Therefore; $\mathrm{S}_{\mathrm{B}}>\mathrm{S}_{\mathrm{A}}$
E-4 Let the total time of race be T seconds and the distance be $S=100 \mathrm{~m}$.
The velocity vs time graph is
Area of $\triangle \mathrm{OAD}$

$\Delta=s / 5$
$\therefore \quad \frac{\mathrm{s}}{5}=\frac{1}{2} a\left(\frac{T}{3}\right)^{2}=\frac{1}{2} 8\left(\frac{T}{3}\right)^{2}$
or $\quad T=3 \sqrt{5} \mathrm{~m} / \mathrm{s}$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029 ADVRM - 6	

PART - II

Section (A)

A-1. Dimension of hall, length of any side $=10 \mathrm{~m}=\mathrm{a}$ (say) (B) Ans
Magnitude of displacement $=$ Length of diagonal $=a \sqrt{3}=10 \sqrt{3} \mathrm{~m}$

Section (B)

B-1. Suppose $A B=x \mathrm{~km}$
Average speed $=\frac{\text { Total distance covered }}{\text { Total time taken }}$

$$
=\frac{2 x}{\frac{x}{20}+\frac{x}{30}}=\frac{2}{\frac{1}{20}+\frac{1}{30}}=\frac{20 \times 60}{20+30}=24 \mathrm{~km} / \mathrm{h}=24 \mathrm{kmh}^{-1}
$$

(B) Ans

B-2. Average velocity $=\frac{\text { Total displacement }}{\text { Total time int erval }}$

Mid point

$$
\Rightarrow \quad V=\frac{d}{\frac{d}{2 v_{1}}+\frac{d}{2 v_{2}}}=\frac{2 V_{1} V_{2}}{V_{1}+V_{2}}
$$

(A) Ans

B-3. Let x be the length of whole journey.

B-4. \quad Average speed $=\frac{\text { Total distance }}{\text { Total time taken }}=\frac{2 \pi r}{62.8}$
$=\frac{2 \times 3.14 \times 100}{62.8}=10 \mathrm{~m} / \mathrm{s}$
Average velocity $=\frac{\text { Total displacement }}{\text { Total time taken }}=\frac{0}{62.8}=$ zero
Hence option (B) is correct.

Section (C)

$\mathbf{C - 1}$. The displacement of a body is given as $2 \mathrm{~s}=\mathrm{gt}^{2}$
Differentiating both sides w.r.t. 't'

$$
\Rightarrow \quad 2 \frac{\mathrm{ds}}{\mathrm{dt}}=2 \mathrm{gt} \quad \Rightarrow \quad 2 \mathrm{~V}=2 \mathrm{gt} \quad \Rightarrow \quad \mathrm{~V}=\mathrm{gt} \quad \text { (A) Ans }
$$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 7
Toll Free : 18002585555 \| CIN : U80302RJ2007PLC024029	

C-2. I mothod - Let downward direction is taken as +ve. Initial vel is $-\mathrm{ve}=-\mathrm{u}$ (say)
$\therefore \quad$ From the equation $; \mathrm{v}^{2}-\mathrm{u}^{2}=2$ as we get $(3 \mathrm{u})^{2}-(-\mathrm{u})^{2}=2 \mathrm{hg}$

$\Rightarrow \quad \mathrm{h}=\frac{4 \mathrm{u}^{2}}{\mathrm{~g}}$
"B" Ans.
The stone is thrown vertically upward with an initial velocity u from the top of a tower it reaches the highest point and returns back and reaches the top of tower with the same velocity u vertically downward.
Now, from the equation, $\quad V^{2}=u^{2}+2 g h$
$\Rightarrow(3 u)^{2}=u^{2}+2 g h \quad \Rightarrow 2 g h=9 u^{2}-u^{2} \quad \Rightarrow h=\frac{8 u^{2}}{2 g} \quad \Rightarrow h=\frac{4 u^{2}}{g} \quad$ "B" Ans.
C-3. $\quad u=0$,
Acceleration $=\mathrm{a}$
$\mathrm{t}=\mathrm{n}$ sec,
The velocity after n sec is
n sec
$V=u+a t$
$V=0+a(n)$
$\mathrm{V}=\mathrm{an}$
$\mathrm{a}=\mathrm{V} / \mathrm{n}$
The displacement of the body in the last two seconds [$\left.S=u t+1 / 2 a t^{2}=1 / 2 a t^{2}\right]$
$\mathrm{S}_{2}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-2}$
$=\frac{1}{2} a n^{2}-\frac{1}{2} a(n-2)^{2}=\frac{1}{2} a\left[n^{2}-(n-2)^{2}\right]$
$=\frac{1}{2} a\left[n^{2}-n^{2}-4+4 n\right]$
$S_{2}=2 a(n-1)$
From equation (i)

$$
\mathrm{S}_{2}=\frac{2 \mathrm{~V}(\mathrm{n}-1)}{\mathrm{n}} \quad \text { "A" Ans }
$$

Aliter :

$\mathrm{BC}=$?
$B C=A C-A B$

$$
=\left[0 \times n+\frac{1}{2} a n^{2}\right]-\left(0 \times(n-2)+\frac{1}{2} a(n-2)^{2}\right) .
$$

$B C=\frac{a}{2}\left[n^{2}-n^{2}-4+4 n\right]=\frac{4 a}{2}[n-1]$

$$
\begin{equation*}
B C=2 a(n-1) \tag{1}
\end{equation*}
$$

For $\quad A C \quad A C$ के लिए
$V=u+a t$
$V=0+a n$
$\mathrm{a}=\mathrm{V} / \mathrm{n}$
From (1) and (2)

$$
\begin{equation*}
B C=\frac{2 V}{n}(n-1) \tag{2}
\end{equation*}
$$

$\square P^{B} \square \underbrace{B}$
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 8
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

Section (D)

D-1. $u=0, \quad$ Let acceleration $=a$
Total time $\mathrm{t}=30 \mathrm{~s}$
$\mathrm{X}_{1}=$ distance travelled in the first 10 s.
Using ,

$$
S=u t+\frac{1}{2} a t^{2}, \text { we get }
$$

$X_{1}=0+\frac{1}{2} a(10)^{2}$, i.e., $X_{1}=50 a$
Similarly,
$\mathrm{X}_{2}=$ distance travelled in the next 10 s
So, $X_{2}=(0+10 a) 10+\frac{1}{2} a(10)^{2}$
So, $X_{2}=100 a+50 a$
or, $X_{2}=150 \mathrm{a}$
and, $X_{3}=$ distance travelled in the last 10 s
So, $X_{3}=(10 a+10 a) 10+\frac{1}{2} a(10)^{2}$
or या, $X_{3}=200 a+50 a$
or, $X_{3}=250$ a
Hence, $X_{1}: X_{2}: X_{3}=50 a: 150 a: 250 a=1: 3: 5$

"C" Ans

D-2. Let x be the distance of the top of window from the top of building and t be the time taken by the ball from the top of building to the top of window.

(i) Since, acceleration is constant $=g$

So, $S=\frac{u+v}{2} t$ (across the window)
$3=\frac{\mathrm{V}_{\mathrm{T}}+\mathrm{V}_{\mathrm{B}}}{2} \mathrm{t} \Rightarrow \quad 3=\frac{\mathrm{V}_{\mathrm{T}}+\mathrm{V}_{\mathrm{B}}}{2} 0.5$
So, $V_{T}+V_{B}=12 \mathrm{~m} / \mathrm{sec}$.

Aliter :

For motion from O to A
$V_{T}{ }^{2}=u^{2}+2 g x=(0)^{2}+2 g x$
$V_{T}{ }^{2}=2 g x$
$V_{T}=u+g t=0+g t$
$\mathrm{V}_{\mathrm{T}}=\mathrm{gt}$
For motion from O to B
$V_{B}{ }^{2}=u^{2}+2 g(x+3)$
$V_{B}^{2}=(0)^{2}+2 g(x+3)$
$V_{B}{ }^{2}=2 g(x+3)$
$V_{B}=u+g(t+0.5)$
$V_{B}=0+g(t+0.5)$
$V_{B}=g(t+0.5)$
From equations (ii) and (iv)
$V_{B}-V_{T}=g(0.5)$
From equations (i) and (iii)
$V_{B}{ }^{2}-V_{T}{ }^{2}=2 \mathrm{~g}(3)$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 9
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	AD

From equations (v) and (vi)
$\frac{V_{B}^{2}-V_{T}^{2}}{V_{B}-V_{T}}=\frac{2 g(3)}{g(0.5)} \Rightarrow \quad \frac{\left(V_{B}-V_{T}\right)\left(V_{B}+V_{T}\right)}{\left(V_{B}-V_{T}\right)}=12 \quad \Rightarrow \quad V_{T}+V_{B}=12 m s^{-1}$
(A) Ans

D-3.

After the release of stone from the elevator going up with an acceleration a, stone will move freely under gravity (g), hence the acceleration of the stone will be g towards downwards.
"D" Ans

Aliter :

Acceleration of stone $=g$ downward [free fall under gravity]
D-4. Initial velocity $=u$, acceleration $=f=a t$
$f=$ at $\quad d V / d t=a t \quad d V=$ at $d t$
Integrating both sides

$$
\Rightarrow \quad \int_{u}^{v} d V=\int_{0}^{t} a t d t \quad \Rightarrow \quad V-u=\frac{a t^{2}}{2} \quad \Rightarrow \quad V=u+\frac{a t^{2}}{2} \quad \text { "B"Ans }
$$

D-5.
Suppose, $\mathrm{t}_{1}=$ time taken by stone to reach the level of water
$\mathrm{t}_{2}=$ time taken by sound to reach the top of well
so, $\quad T=t_{1}+t_{2}$
For $t_{1}: u=0$
$h=u t+\frac{1}{2} g t^{2} \quad h=0+\frac{1}{2} g t_{1}{ }^{2} \quad t t_{1}=\sqrt{\frac{2 h}{g}}$
For t_{2} : As the velocity of sound is constant
$\mathrm{h}=\mathrm{V} \mathrm{t}_{2} \quad \Rightarrow \quad \mathrm{t}_{2}=\frac{\mathrm{h}}{\mathrm{V}}$
Therefore, $\quad \mathrm{T}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}+\frac{\mathrm{h}}{\mathrm{V}}$

Aliter :

$T=$ Time taken by stone from top to level water. $\left(T_{1}\right)+$ Time taken by sound from level water to top of the well. (T_{2})
for downward journey of stone :
$\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \Rightarrow \mathrm{~h}=0+\frac{1}{2} \mathrm{~g} \mathrm{~T}_{1}{ }^{2} \quad \Rightarrow \quad \mathrm{~T}_{1}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}$
for upward journey of sound, Time $\quad\left(T_{2}\right)=\frac{h}{v}$
$\therefore \mathrm{T}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}+\frac{\mathrm{h}}{\mathrm{v}}$
Hence option (B) correct.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 10
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

D-6.

Let t be the time taken by the superman to reach the student for saving the students life just before reaching the ground. Hence, the time taken by the student to reach the ground $=(t+5) s$
For motion of student
$u=0, \quad h=320 \mathrm{~m}, \quad \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$
From equation, $h=u t+\frac{1}{2} g t^{2}$,
i.e., $\quad 320=0+\frac{1}{2}(10)(t+5)^{2}$
i.e., $(t+5)^{2}=64 ; \quad$ or $\quad t+5=8$; i.e., $t=3 \mathrm{sec}$

For motion of superman
Let initial velocity $u=V, h=320 \mathrm{~m}, g=10 \mathrm{~m} / \mathrm{s}^{2}$
from equation $h=u t+\frac{1}{2} g t^{2}$
i.e., $320=V(3)+\frac{1}{2}(10)(3)^{3}$,
i.e., $320=3 V+45$,
or $3 V=320-45$, or $V=\frac{275}{3} \mathrm{~m} / \mathrm{s}$ "B" Ans
D-7.

In the above problem, if height of the skyscraper is such that student covers the full height within 5 sec then superman will be unable to save him.
$u=0, \quad t=5 \mathrm{sec}, \quad g=10 \mathrm{~m} / \mathrm{s}^{2}$
Hence; from equation $\mathrm{h}=\mathrm{ut}+1 / 2 \mathrm{gt}^{2}$,
or $\quad h=0+1 / 2(10)(5)^{2}$, i.e, $h=125 m$

"C" Ans

D-8.

From the equation,
$V^{2}=u^{2}+2 g h$
$V_{1}{ }^{2}=0+2 \mathrm{ga}$
$\mathrm{V}_{1}{ }^{2}=2 \mathrm{ga}$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in ADVRM - 11 Toll Free : 18002585555 | CIN : U80302RJ2007PLC024029
$\mathrm{V}_{2}{ }^{2}=2 \mathrm{gb}$
From the equations (i) and (ii)
we get $\frac{\mathrm{V}_{1}^{2}}{\mathrm{~V}_{2}^{2}}=\frac{2 \mathrm{ga}}{2 \mathrm{gb}}=\frac{\mathrm{a}}{\mathrm{b}}$
i.e., $\frac{V_{1}}{V_{2}}=\frac{\sqrt{a}}{\sqrt{b}}$
(B) Ans
\therefore option (B) is correct

Section (E)

E-1. The slope of position-time ($\mathrm{x}-\mathrm{t}$) graph at any point shows the instantaneous velocity at that point. The slope of given $x-t$ graph at different point can be shown as

Obviously the slope is negative at the point E as the angle made by tangent with +ve X -axis is obtuse, hence the instantaneous velocity of the particle is negative at the point E i.e., $\quad \mathrm{C}$ " Ans
Aliter: As Instantaneous velocity is negative where slope of $x-t$ curve is negative .
At. point $\mathrm{C}=$ slope is positive
At. point $\mathrm{D}=$ slope is zero
At. point $\mathrm{E}=$ slope is negative
At. point $F=$ slope is positive
Hence, option (C) is correct
E-2.

The distance travelled by the particle in 4 s
$=$ Sum of areas under V-t graph
$=1 / 2 \times 1 \times 20+1 \times 20+1 / 2(20+10) \times 1+1 \times 10=55 \mathrm{~m}$
E-3. $\quad u=0, \quad a=$ Constant $=k$ (let)
From equation of motion;
$V^{2}=u^{2}+2$ as
$\mathrm{V}^{2}=(0)^{2}+2 \mathrm{ks}$
$\mathrm{V}^{2}=2 \mathrm{ks}$
This equation shows a parabola with S -axis as its axis. Hence, its graph can be shown as

i.e., "B" Ans

E-4. As the slope of displacement - time $(x-t)$ graph shows the velocity, the ratio of velocities of two particles A and B is given by

$$
\frac{V_{A}}{V_{B}}=\frac{\tan \theta_{A}}{\tan \theta_{B}}=\frac{\tan 30^{\circ}}{\tan 60^{\circ}}=\frac{1}{\sqrt{3} \times \sqrt{3}}=\frac{1}{3} \quad \text { i.e., "D" Ans }
$$

E -5. $\quad \mathrm{V}_{\mathrm{t}=3}-\mathrm{V}_{\mathrm{t}}=0=$ area under $\mathrm{a}-\mathrm{t}$ curve

$$
\therefore \quad V_{t=3}=10.5 \mathrm{~m} / \mathrm{s}
$$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 12

1. From graph (a) $\Rightarrow \quad v=k x$
where k is positive constant
Acceleration $=v \frac{d v}{d x}=k x . k=k^{2} x$
$\therefore \quad$ Acceleration is non uniform and directly proportional to x .
$\therefore \quad a \rightarrow Q, S$
From graph (b) $\Rightarrow \quad v^{2}=k x$.
Differentiating both sides with respect to x.
$2 v \frac{d v}{d x}=k \quad$ or $\quad v \frac{d v}{d x}=\frac{k}{2}$
Hence acceleration is uniform.
$\therefore \quad b \rightarrow P$
From graph (c) $\Rightarrow \quad v=k t$
Acceleration $=\mathrm{dv} / \mathrm{dt}=\mathrm{k}$
Hence acceleration is uniform $\Rightarrow c \rightarrow P$
From graph (d) $\Rightarrow \quad v=k t^{2}$
Acceleration $=d v / d t=2 k t$
Hence acceleration is non uniform and directly proportional to t.
$\therefore \mathrm{d} \rightarrow \mathrm{Q}, \mathrm{R}$

EXERCISE-2
 PART - I

1. (A) Relation between position x and time t is given as

$$
x^{2}+2 x=t
$$

Differentiating both sides w.r.t ' t '
$2 x \frac{d x}{d t}+2 \frac{d x}{d t}=1, \quad$ i.e., $\quad 2(x+1) V=1 \quad \Rightarrow \quad V=\frac{1}{2(x+1)}$
Again differentiation both sides w.r.t ' t '
$\Rightarrow \quad \frac{d V}{d t}=\frac{-1}{2(x+1)^{2}}\left(\frac{d x}{d t}\right) \quad \Rightarrow \quad a=\frac{-V}{2(x+1)^{2}} \quad \Rightarrow \quad a=\frac{-1}{4(x+1)^{3}}$
Hence, the retardation of the particle is $\frac{1}{4(x+1)^{3}}$
[Note : As v and a are oppositely directed, so particle is retarding]
Aliter: $\quad x^{2}+2 x=t$
By Differentiation w.r.t.time
$2 x v+2 v=1$
or $\quad x v+v=\frac{1}{2} \quad \ldots \ldots \ldots .(1) \quad v=\frac{1}{2}(x+1)$
or Again differentiate eq
we have
$x \frac{d v}{d t}+v \frac{d x}{d t}+\frac{d v}{d t}=0$
$x a+v^{2}+a=0$
$a=-\frac{v^{2}}{(x+1)} \quad a=-\frac{1}{4(x+1)^{3}}$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 13

2.

$\mathrm{u}=40 \mathrm{~m} / \mathrm{s}, \quad \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$
Let t be time taken by the first ball to reach the highest point.
$V=u-g t \quad 0=40-10 t \quad t=4 \mathrm{~s}$
From figure second ball will collide with first ball after 3 second, therefore the height of collision point
= height gained by the second ball in 3 sec
$=40(3)-1 / 2(10)(3)^{2}$
$=120-45=75 \mathrm{~m}$
3. $u=0, t=T ; h=u t+\frac{1}{2} g t^{2} ; h=\frac{1}{2} g T^{2}$
$\mathrm{h}=\frac{1}{2} \mathrm{~g} \mathrm{~T}^{2}$

Let x be the distance covered by the body in $t=T / 2$
$x=0+\frac{1}{2} g(T / 2)^{2}$
$x=\frac{1}{8} g T^{2}$
From equations (i) and (ii)
$\frac{h}{x}=\frac{1 / 2 \mathrm{gT}^{2}}{1 / 8 \mathrm{gT}^{2}} \quad \frac{\mathrm{~h}}{\mathrm{x}}=\frac{4}{1} \quad \Rightarrow \quad \mathrm{x}=\frac{\mathrm{h}}{4}$
Therefore height of that point from ground
$=h-x=h-\frac{h}{4}=\frac{3 h}{4}$

Aliter :

Let at $t=\frac{T}{2}$ body is at point B.

For AC
$s=u t+1 / 2 a t^{2}$
$-h=-\frac{1}{2} g T^{2}$

For AB

$$
\begin{aligned}
& s=u t+1 / 2 a t^{2} \\
& -\left(h-h_{1}\right)=-\frac{1}{2} g\left(\frac{T}{2}\right)^{2}
\end{aligned}
$$

$\square \equiv \square^{B}$
Educating for better tomorrow
$\mathrm{h}=\mathrm{g} \frac{\mathrm{T}^{2}}{2}$

$$
\begin{equation*}
h-h_{1}=g \frac{T^{2}}{2 \times 4} \tag{1}
\end{equation*}
$$

From (1) and (2) , we have
$\mathrm{h}-\mathrm{h}_{1}=\mathrm{h} / 4$
$h-\frac{h}{4}=h_{1} \quad$ or $\quad h_{1}=\frac{3 h}{4}$ from the ground
4.

For AB
$s=u t+\frac{1}{2} a t^{2}$.
$-h=v t-\frac{g}{2} t^{2}$
$\frac{g}{2} \mathrm{t}^{2}-\mathrm{vt}-\mathrm{h}=0$
$t=\frac{v \pm \sqrt{v^{2}+4 \times \frac{g}{2} \times h}}{2 \times \frac{g}{2}}$
$t=\frac{v \pm \sqrt{v^{2}+2 g h}}{g}$
$t=\frac{v}{g}\left[1+\sqrt{1+\frac{2 g h}{v^{2}}}\right], \quad t=\frac{v}{g}\left[1-\sqrt{1+\frac{2 g h}{v^{2}}}\right]$
[as time cannot be negative so we neglect it]
$\therefore \quad \mathrm{t}=\frac{\mathrm{v}}{\mathrm{g}}\left[1+\sqrt{1+\frac{2 \mathrm{gh}}{\mathrm{v}^{2}}}\right]$
Aliter

Let t_{1} be the time taken by ball from top of tower to the highest point then it will take again t_{1} time to return back to the top of tower Let t_{2} be the time taken be ball from top of tower to the ground.
For t_{1} : From equation
$\mathrm{V}=\mathrm{u}-\mathrm{gt} \quad$ i.e., $\quad 0=\mathrm{V}-\mathrm{gt}_{1} \quad$ or, $\quad \mathrm{t}_{1}=\mathrm{V} / \mathrm{g}$
For t_{2} : From equation
$\mathrm{h}=\mathrm{ut}+\frac{1}{2} \mathrm{gt}^{2} \quad \mathrm{~h}=\mathrm{Vt}^{2}+\frac{1}{2} \mathrm{gt}_{2}{ }^{2} ;$ or, $\quad \mathrm{gt}_{2}{ }^{2}+2 \mathrm{Vt}_{2}-2 \mathrm{~h}=0$, or, $\mathrm{t}_{2}=\frac{-2 \mathrm{~V} \pm \sqrt{4 \mathrm{~V}^{2}+8 \mathrm{gh}}}{2 \mathrm{~g}}$
Taking (+) sign only (as we are interested in time projection i.e., $t=0$) $\quad t_{2}=\frac{-V+\sqrt{V^{2}+2 g h}}{g}$
Note that, -ve time indicate time before the projection.

Hence, the time after which the ball strikes ground $T=2 t_{1}+t_{2} \Rightarrow T=\frac{2 V}{g}+\frac{-V+\sqrt{V^{2}+2 g h}}{g}$

$$
\mathrm{T}=\frac{\mathrm{V}+\sqrt{\mathrm{V}^{2}+2 \mathrm{gh}}}{\mathrm{~g}} \quad \Rightarrow \quad \mathrm{~T}=\frac{\mathrm{V}}{\mathrm{~g}}\left[1+\sqrt{1+\frac{2 \mathrm{gh}}{\mathrm{~V}^{2}}}\right]
$$

5.

$-H=10 \times 11-5 \times(11)^{2}$
$-\mathrm{H}=110-605$
$\mathrm{H}=495 \mathrm{~m}$
Aliter :

At the time of release, velocity of stone will be same as that of balloon, hence
$\mathrm{u}=-10 \mathrm{~ms}^{-1}, \mathrm{t}=11 \mathrm{~s}$
$h=u t+\frac{1}{2} g t^{2}$
$=(-10) \times 11+\frac{1}{2}(10)(11)^{2}=-110+605=495 \mathrm{~m} \quad$ "A" Ans
6.

Let t be the time interval between two successive drops. For the first drop :
From equation, $h=u t+\frac{1}{2} g t^{2}$
$5=0+\frac{1}{2} g(2 t)^{2} \quad \Rightarrow \quad 5=\frac{1}{2} g(2 t)^{2}$
For the second drop :

From equation , $h=u t+\frac{1}{2} g t^{2}$
$x=0+\frac{1}{2} g t^{2} \quad \Rightarrow \quad x=\frac{1}{2} g t^{2}$
From the equations (i) and (ii);
$\frac{5}{x}=\frac{\frac{1}{2} g(2 t)^{2}}{\frac{1}{2} g 2 t^{2}} \Rightarrow \frac{5}{x}=\frac{4}{1} \Rightarrow \quad x=\frac{5}{4}=1.25 \mathrm{~m}$
The distance of the second drop from the ground
$=5-x=5-1.25=3.75=\frac{15}{4} m$

Aliter :

Let the time interval b / w two consecutive drops be t .
$\therefore \quad$ Time b/w $1^{\text {st }}$ and $3^{\text {rd }}$ drop $=2 t$.
For AC

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} . \\
& -5=0+\frac{1}{2} x-10 \times(2 t)^{2} \quad \frac{1}{2}=t^{2}, \quad t=\frac{1}{2} \text { sec. }
\end{aligned}
$$

$\therefore \quad$ height of second drop.

$$
\begin{array}{ll}
s=u t+\frac{1}{2} a t^{2} & -(5-h)=0+\frac{1}{2} x-10 \times \frac{1}{4} \\
5-h=\frac{10}{8} & h=5-\frac{5}{4}=3.75 m=\frac{15}{4} m
\end{array}
$$

7. (A) the given $x-t$ graph has 5 points at which the slope of tangent is zero i.e, velocity becomes zero 5 times.
As we know that particle is at rest when its position does not change withe time. Clearly, from x-t graph, particle is at rest 5 times
\therefore option (A) is correct.
(B) Slope is not zero at $t=0$.
\therefore option (B) is incorrect.
(C) Velocity is positive, when slope of x - t curve is positive. Slope changes from positive to negative and negative to zero.
\therefore option (C) is incorrect
(D) Average velocity $=\frac{\text { Total Displacement }}{\text { Total Time taken }}$.

Total Displacement is positive
\therefore Average velocity $=$ positive
\therefore option (D) is incorrect.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 17
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

PART - II

1.

$\leftarrow \frac{x}{2}$ \qquad $\leftarrow \frac{x}{2}$ \qquad

Let T is the time to cover DB.
$\therefore \quad$ Time in $D C=C B=\frac{T}{2}$.
As mean velocity $=\frac{\text { Total Displacement (T.D) }}{\text { Total time taken.(TTT) }}$
$T . D=x$
T.T.T $=T_{A D}+T_{D C}+T_{C B}=\frac{x}{2 V_{0}}+\frac{T}{2}+\frac{T}{2}=\frac{x}{2 V_{O}}+T$

Now, $B D=D C+C B$
or $\quad \frac{\mathrm{x}}{2}=\frac{\mathrm{V}_{1} \mathrm{~T}}{2}+\frac{\mathrm{V}_{2} T}{2}$ or $\mathrm{x}=\mathrm{T}\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$. or $\mathrm{T}=\frac{\mathrm{x}}{\mathrm{V}_{1}+\mathrm{V}_{2}}$.
From (1) and (2)
T.T.T $=\frac{\mathrm{x}}{2 \mathrm{~V}_{0}}+\frac{\mathrm{X}}{\mathrm{V}_{1}+\mathrm{V}_{2}}$.
or Mean velocity $=\frac{x}{\frac{x}{2 V_{0}}+\frac{x}{V_{1}+V_{2}}}=\frac{2 V_{0}\left(V_{1}+V_{2}\right)}{\left(2 V_{0}+V_{1}+V_{2}\right)}$
2. distance travelled upto 2 and 6 sec .

As $\mathrm{x}=16 \mathrm{t}-2 \mathrm{t}^{2}$
At $t=0, \quad x=0$
Now, $\mathrm{V}=16-4 \mathrm{t}=0 \quad\left[\mathrm{a}=-4 \mathrm{~m} / \mathrm{s}^{2}\right]$

$$
\mathrm{t}=4 \mathrm{sec} .
$$

At $t=4 \mathrm{sec}, \mathrm{x}=16 \times 4-2 \times 16=32 \mathrm{~m}$
Now, At $\mathrm{t}=6 \mathrm{sec}, \mathrm{x}=16 \times 6-2 \times 36=96-72=24 \mathrm{~m}$
$\therefore \quad$ Distance upto $2 \mathrm{sec} .=$ Displacemnent in $2 \mathrm{sec}=24 \mathrm{~m}$.
[As turning point is at $t=4 \mathrm{sec}$]
and distance in $6 \mathrm{sec}=A B+B C=32+(32-24)=32+8=40 \mathrm{~m}$.

Aliter :

The distance travelled upto 6s
$=|x|_{t=4}+\left|\int_{4}^{6} \operatorname{Vdt}\right|=\left|16(4)-2(4)^{2}\right|+\left|\int_{4}^{6}(16-4 t) d t\right|$
$=64-32+\left|\left[16 t-2 t^{2}\right]_{4}^{6}\right|=32+|32-40|=32+8=40 \mathrm{~m}$ Ans

Educating for better tomorrow
3.

Let a be the acceleration of the youngman.
As the youngman catches the kid at the arms height (1.5 m) then the time taken by kid to fall through 10 m will be same as the time taken by the youngman to run 6 m on horizontal ground.
For motion of kid.
$u=0, \quad g=10 \mathrm{~m} / \mathrm{s}^{2}, \quad h=10 \mathrm{~m}$
For motion of kid.
$u=0, \quad g=10 \mathrm{~m} / \mathrm{s}^{2}, \quad \mathrm{~h}=10 \mathrm{~m}$
From the equation

$$
h=u t+\frac{1}{2} g t^{2} \Rightarrow \quad 10=0+\frac{1}{2}(10) t^{2}
$$

For motion of youngman
$6=0+\frac{1}{2} a t^{2} \quad$ substitute value of $\mathrm{t} ; \mathrm{a}=6 \mathrm{~m} / \mathrm{s}^{2}$.
4.

For motion from A to B $\quad u=0$
From equation $V^{2}=u^{2}+2 g h \quad V^{2}=(0)^{2}+2 g h \quad V^{2}=2 g h$
For motion from B to C
$u=V$
From equation $\mathrm{V}^{2}=\mathrm{u}^{2}+2 \mathrm{gh} \quad(2 \mathrm{~V})^{2}=\mathrm{V}^{2}+2 \mathrm{gh} \quad 4 \mathrm{~V}^{2}=\mathrm{V}^{2}+2 \mathrm{gh} \Rightarrow 3 \mathrm{~V}^{2}=2 \mathrm{gh}$
From equations (i) and (ii) $\frac{\mathrm{V}^{2}}{3 \mathrm{~V}^{2}}=\frac{2 g \mathrm{~h}}{2 g \mathrm{~h}^{\prime}} \quad \Rightarrow \quad \mathrm{h}^{\prime}=3 \mathrm{~h}$
(C) Ans

Aliter :

Let $h_{1}=$ distance it has to travel down further to double its velocity i.e., 2 V

For AB
$\mathrm{V}^{2}=2 \mathrm{gh}$

$$
\text { For } B C
$$

$$
\begin{aligned}
& (2 v)^{2}=(v)^{2}+2 g h_{1} \\
& 3 V^{2}=2 g h_{1} \\
& \therefore 3 h=h_{1}
\end{aligned}
$$

Resonance ${ }^{\text {® }}$
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 18002585555 |CIN : U80302RJ2007PLC024029
5.

I $\stackrel{a}{\rightarrow} 2 u$
$\mathrm{II} \xrightarrow[2 \mathrm{a}]{\longrightarrow} \mathrm{u}$
Suppose at point B (displacement S) II particle overtakes particle I
For I particle $S=(2 u) t+\frac{1}{2} a t^{2}$ \qquad
For II particle
$S=u t+\frac{1}{2}(2 a) t^{2}$.
$\therefore 2 u t+\frac{1}{2} a t^{2}=u t+\frac{1}{2}(2 a) t^{2}$
$u t=\frac{1}{2} a t^{2}$
$\mathrm{t}=\frac{2 \mathrm{u}}{\mathrm{a}}$
Putting this value in equation (1) we get
$S=2 u \times \frac{2 u}{a}+\frac{1}{2} \times a \times\left(\frac{2 u}{a}\right)^{2}$
$=\frac{4 u^{2}}{a}+\frac{2 u^{2}}{a}=\frac{6 u^{2}}{a}$
6. Let a be the retardation produced by resistive force, t_{a} and t_{d} be the time of ascent and time of descent respectively.
If the particle rises upto a height h
then $\quad h=\frac{1}{2}(g+a) t_{a}{ }^{2} \quad$ and $\quad h=\frac{1}{2}(g-a) t_{d}{ }^{2}$
$\therefore \quad \frac{t_{a}}{t_{d}}=\sqrt{\frac{g-a}{g+a}}=\sqrt{\frac{10-2}{10+2}}=\sqrt{\frac{2}{3}} \quad$ Ans. $\sqrt{\frac{2}{3}}$
7.

$200=10(\mathrm{t})+\frac{1}{2}(2) \mathrm{t}^{2}$
$t^{2}+10 t-200=0$
$t=10$ seconds
Distance $=200+200=400 \mathrm{~m}$ Ans.
8.

For AB
$V^{2}=u^{2}+2 a s$
$2400=2$ as or as = 1200

Rectilinear Motion

Now, for BA

$$
\begin{aligned}
& V_{A^{2}}=(50)^{2}+2(-\mathrm{a})(-\mathrm{s}) \\
& \mathrm{V}_{A^{2}}=2500+2 \times 1200 \\
& \mathrm{~V}_{\mathrm{A}}=\sqrt{4900} \\
& \mathrm{~V}_{\mathrm{A}}=70 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\therefore \quad$ velocity of particle when it reaches the starting point is $70 \mathrm{~m} / \mathrm{s}$.
9.
\square $\downarrow 10 \mathrm{~m} / \mathrm{s}$

Let the time be t after which the thrown stone hits the lift at a depth d below the top of shaft

$$
\begin{align*}
& d=u t+\frac{1}{2} g t^{2} \\
& d=-30 t+\frac{1}{2}(10) t^{2} \tag{1}
\end{align*}
$$

for lift

$$
\begin{equation*}
d=40+10 t \tag{2}
\end{equation*}
$$

(1) $=(2)$
$-30 t+5 t^{2}=40+10 t$
$5 t^{2}-40 t-40=0$
$\mathrm{t}^{2}-8 \mathrm{t}-8=0$

$$
\begin{aligned}
& t=\frac{8 \pm \sqrt{64+32}}{2}=\frac{8 \pm \sqrt{96}}{2}=\frac{8 \pm 4 \sqrt{6}}{2} \\
& t=4+2 \sqrt{6}
\end{aligned}
$$

Net time after to hit the lift start desending

$$
=4+4+2 \sqrt{6}=8+2 \sqrt{6} \mathrm{sec}
$$

Putting value of t in equation (2)

$$
\begin{aligned}
& d=40+(4+2 \sqrt{6}) 10 \\
& =40+40+20 \sqrt{6}=129 \mathrm{~m}
\end{aligned}
$$

PART - III

1.

anvg $=\frac{\Delta \vec{v}}{\mathrm{t}}=\frac{0}{20}=0$
From 0 to 20 time interval velocity of particle doesn't change it's direction.
Area under v-t curve is not zero.
As the magnitude of area under $v-t$ graph from $t=0$ to 10 is same as from $t=10$ to 20 , hence the average speed in both the intervals will be same.
2.

If the acceleration a is zero from $t=0$ to 5 s ，then speed is constant from $\mathrm{t}=0$ to 5 s and as the speed is zero at $t=0$ ．Hence speed is zero from $t=0$ to $t=5 \mathrm{~s}$ ．
If the speed is zero for a time interval from $\mathrm{t}=0$ to $\mathrm{t}=5 \mathrm{~s}$ ，as the speed is constant in this interval hence the acceleration is also zero in this interval．
Because zero speed $=$ object is not moving $=$ velocity $=$ constant $(=0) \Rightarrow$ acceleration $=0$
3.

If the velocity（ u ）and acceleration（a）have opposite directions，then velocity（ v ）will decrease，therefore the object is slowing down．
If the position（ x ）and velocity（ u ）have opposite sign the position（ x ）reduces to become zero．Hence the particle is moving towards the origin．

If $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{v}}>0$ speed will increase．
If velocity $\quad V=0, \quad t_{1}<t_{l}<t_{2}$
Hence；acceleration a $=\frac{\Delta V}{\Delta t}=0 ; \quad \mathrm{t}_{1}<\mathrm{t}<\mathrm{t}_{2}$
Therefore if the velocity is zero for a time interval，the acceleration is zero at any instant within the time interval．
（D）is correct
［acc，$a=\frac{d v}{d t} \Rightarrow v=u+a t$ ］
Now，$v=0 \Rightarrow a=0 \Rightarrow a=-u / t \Rightarrow$ acceleration may not be zero when vel．＇V＇$=0$ ，＇c^{\prime} is incorrect．
4．$s \propto t^{2}$
$\therefore \mathrm{s}=\mathrm{ct}^{2} \quad$ where $\mathrm{c}=\mathrm{constant}$
（i） $\mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=2 \mathrm{ct}$
$\therefore \quad v \propto t$
（ii） $\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=2 \mathrm{c}$

$$
\text { so, } \mathrm{a}=\text { constant. }
$$

5．$y=u(t-2)+a(t-2)^{2}$
Velocity of particle at time t

$$
\frac{d y}{d t}=u+2 a(t-2)
$$

Velocity at $t=0 \frac{d y}{d t}=u-4 a$
acceleration of particle

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} y}{{d t^{2}}^{2}}=2 \mathrm{a} \\
& \mathrm{yt}_{\mathrm{t}}=2=0
\end{aligned}
$$

So correct answer is（C）and（D）．
ResロாコロСе® ${ }^{\circledR}$
Educating for better tomorrow

Reg．\＆Corp．Office ：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－ 324005	
Website ：www．resonance．ac．in｜E－mail ：contact＠resonance．ac．in	
Toll Free ： 18002585555 ｜CIN ：U80302RJ2007PLC024029 ADVRM－ 22	

PART - IV

1 to 4.

$\left(\right.$ since $\left.\theta_{2}=\theta_{1}\right)$
(3) during first 10 sec , speed decreases
$\therefore \quad$ acceleration is opposite to the velocity
$\therefore \quad$ acceleration is in \hat{i}
(4) (C) during first 10 sec., the slope of $x-t$ curve decreases in negative direction

Motion is retarded.

$$
t=0 \text { to } t=10 \mathrm{~s}
$$

Ans. (1) $-10 \mathrm{~m} / \mathrm{s}$ (2) 0 (3) $\hat{\mathrm{i}}$ (4) $\mathrm{t}=0$ tot $=10 \mathrm{~s}$
5. $x=2\left(t-t^{2}\right)$
velocity $=\frac{\mathrm{dx}}{\mathrm{dt}}=2-4 \mathrm{t}$
acceleration $=\frac{d^{2} x}{{d t^{2}}^{2}}=-4 \quad \Rightarrow \quad$ (C) is correct.
6. velocity $=\frac{\mathrm{dx}}{\mathrm{dt}}=2-4 \mathrm{t} \quad \mathrm{v}=0 \quad \Rightarrow \quad \mathrm{t}=\frac{1}{2}$

After $t=\frac{1}{2}$ sec., particle moves to left
Position at $t=\frac{1}{2} \sec \quad x=2\left(\frac{1}{2}-\frac{1}{4}\right)=2 \times \frac{1}{4}=\frac{1}{2} m$. (C) is correct
7. (C) is correct
8. $u=0$ at $t=\frac{1}{2} s$
\therefore position at $\mathrm{t}=\frac{1}{2} \mathrm{~s} \quad \Rightarrow \mathrm{x}=\frac{1}{2}$
position at $\mathrm{t}=1 \mathrm{~s} \quad \Rightarrow \mathrm{x}=0$
\therefore distance moved $=\left|\frac{1}{2}-0\right|+\left|1-\frac{1}{2}\right|$

$$
=1 \mathrm{~m}
$$

Ans.

EXERCISE-3
 PART - I

1. Distance travelled in $\mathrm{t}^{\text {th }}$ second is,

$$
S_{t}=u+a t-\frac{1}{2} a ; u+\frac{a}{2}(2 t-1)
$$

Given: $u=0$
$\therefore \quad \frac{s_{n}}{s_{n+1}}=\frac{a n-\frac{1}{2} a}{a(n+1)-\frac{1}{2} a}=\frac{2 n-1}{2 n+1}$
Hence, the correct option is (B).
2. Area under acceleration-time graph gives the change in velocity.

Hence, $V_{\max }=\frac{1}{2} \times 10 \times 11=55 \mathrm{~m} / \mathrm{s}$
Therefore, the correct option is (C)
Resロாance『
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRM - 23
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

PART－II

1． $\int_{6.25}^{0} \frac{d v}{\sqrt{v}}=-2.5 \int_{0}^{t} d t$
$|2 \sqrt{v}|_{6.25}^{0}=-2.5 t$
2．$\sqrt{6.25}=2.5 t$
$\mathrm{t}=2 \mathrm{sec}$ ．

Ans．

2.

$\mathrm{t}=\mathrm{u} / \mathrm{g}$
$h^{1}=\frac{u^{2}}{2 g}$
$h^{1}+H=\frac{1}{2} g(n-1)^{2} t^{2}$
$\frac{u^{2}}{2 g}+H=\frac{1}{2} g(n-1)^{2} \frac{u^{2}}{g^{2}}$
$H=\frac{(n-1)^{2} u^{2}}{2 g}-\frac{u^{2}}{2 g} \quad \Rightarrow \quad H=\frac{u^{2}}{2 g}\left[n^{2}-2 n\right]$
3． $\mathrm{a}=-\mathrm{g}=$ constant
$\mathrm{dv} / \mathrm{dt}=$ constant
slop of V－t curve is
constant \＆－ve

4．As in distance vs time graph slope is equal to speed In the given graph slope increase initially which is incorrect

5．$v=b x^{1 / 2}$
$\frac{d x}{d t}=b x^{1 / 2}$
$\int_{0}^{x} \frac{d x}{x^{1 / 2}}=\int_{0}^{t} b d t$
$2 \sqrt{x}=b t$
$x=\frac{b^{2} t^{2}}{4} \Rightarrow v=\frac{d x}{d t}=\frac{b^{2} t}{2}$

קesロ円ア円டの®
Educating for better tomorrow
6. Area $=\left(\frac{1}{2} \times 2 \times 2\right)+(2 \times 2)+(1 \times 3)$

Displacement $=2+4+3=9 \mathrm{~m}$
7. $x^{2}=a t^{2}+2 b t+c$
$2 x v=2 a t+2 b$
$x v=a t+b$
$v^{2}+a x=a$
$a x=a-\left(\frac{a t+b}{x}\right)^{2}$
$a=\frac{a\left(a t^{2}+2 b t+c\right)-(a t+b)^{2}}{x^{3}}$
$a=\frac{a c-b^{2}}{x^{3}}$
$a \propto x^{-3}$
8. $\quad S_{y}=u_{y} t+\frac{1}{2} a_{y} t^{2}$
$32=0+\frac{1}{2} \times 4 t^{2} \quad \Rightarrow \quad t=4 \mathrm{sec}$
$S_{x}=u_{x} t+\frac{1}{2} a_{x} t^{2}$
$=3 \times 4+\frac{1}{2} \times 6 \times 16$
$=60 \mathrm{~m}$.

HIGH LEVEL PROBLEMS SUBJECTIVE QUESTIONS

1. Velocity of car on highway $=v$

Velocity of car on field $=v / \eta$
Let $C D=x$ and $A D=b$
$T=t_{A C}+t_{C B}=\frac{b-x}{v}+\frac{\sqrt{\ell^{2}+x^{2}}}{(v / \eta)}$
$\frac{d T}{d x}=0 \quad \Rightarrow \quad-\frac{1}{v}+\frac{\eta}{v}\left(\frac{2 x}{2 \sqrt{\ell^{2}+x^{2}}}\right)=0$

$$
\Rightarrow \quad x=\frac{\ell}{\sqrt{\eta^{2}-1}}
$$

2.

$$
\begin{array}{ll}
\text { (a) } \quad & V=\alpha \sqrt{x} \\
& \frac{d x}{d t}=\alpha \sqrt{x} \Rightarrow \int_{0}^{x} \frac{d x}{\sqrt{x}}=\int_{0}^{t} \alpha d t \\
\therefore & x=\frac{\alpha^{2} t^{2}}{4} \\
\therefore & \frac{d x}{d t}=V=\frac{\alpha^{2} t}{2} \\
\text { Also } & \quad a=\frac{d v}{d t}=\frac{\alpha^{2}}{2} .
\end{array}
$$

Resonance ${ }^{\circ}$
Educating for better tomorrow
(b) Let t_{0} be the time taken to cover the first s metre

$$
\begin{aligned}
& \therefore \quad s=\frac{\alpha^{2} t_{0}{ }^{2}}{4} \\
& \Rightarrow \quad \mathrm{t}_{0}=\frac{2 \sqrt{\mathrm{~s}}}{\alpha} \\
& \therefore \quad<v>=\frac{\int_{0}^{t_{0}} v d t}{\int_{0}^{t_{0}} d t} \\
& \therefore \quad<v>=\frac{\int_{0}^{t_{0}} \frac{\alpha^{2} t}{2} d t}{t_{0}} \\
& =\frac{\alpha^{2}}{2} \cdot \frac{1}{2} t_{0} \\
& =\frac{\alpha^{2}}{4} \cdot \frac{2 \sqrt{s}}{\alpha}=\frac{\alpha \sqrt{s}}{2} .
\end{aligned}
$$

Aliter:

$$
\begin{aligned}
v & =\alpha \sqrt{x}, \quad v^{2}=\alpha^{2} x \\
& =2 \frac{\alpha^{2}}{2} x
\end{aligned}
$$

Comparing with $v^{2}=2 a \mathrm{x}$

$$
\therefore \quad a=\frac{\alpha^{2}}{2} \text { and } \quad<v>=\frac{S}{t}=\frac{S}{\sqrt{2 S / a}}=\frac{S \sqrt{a}}{\sqrt{2 S}}=\sqrt{\frac{S^{2}}{2 S} \frac{\alpha^{2}}{2}}=\frac{\alpha}{2} \sqrt{S} .
$$

3. (a) From graph, obviously engine stopped at its highest velocity i.e., $190 \mathrm{ft} / \mathrm{s}$. Ans
(b) The engine burned upto the instant it reached to its maximum velocity. Hence it burned for 2s. Ans
(c) The rocket reached its highest point for the time upto which the velocity is positive. Hence, from graph, rocket reached its highest point in 8 s .
$y_{\text {max }} \Rightarrow d y / d t=0$
$\Rightarrow \quad$ Velocity in y direction $=v_{y}=0 \mathrm{~m} / \mathrm{s}$.
(d) When the parachute opened up, the velocity of rocket starts increasing. Hence, at $t=10.85$ (from graph), parachute was opened up. At that moment the velocity of the rocket falling down was $90 \mathrm{ft} / \mathrm{s}$.
(e) The rocket starts falling when its velocity becomes negative. From the graph hence time taken by rocket to fall before the parachute opened will be $(10.8-8) \mathrm{s}=2.8 \mathrm{~s}$.
(f) Rocket's acceleration was greatest when the slope of tangent in $V-t$ graph was maximum. As $\mathrm{t}=2 \mathrm{sec}$, the tangent is vertical i.e, slope is infinity hence the rocket's acceleration was greatest at $\mathrm{t}=2 \mathrm{~s}$.
(g) The acceleration is constant when $V-t$ graph is linear. Hence, the acceleration was constant between 2 and 10.8 s . Its value is given by slope $=-\frac{190}{8-2}=-32 \mathrm{ft} / \mathrm{s}^{2}$ (nearest to integer) Ans
4. (a) $F(x)=\frac{-k}{2 x^{2}}$
k and x^{2} both are positive hence $F(x)$ is always negative (whether x is positive or negative .)

$m v \frac{d v}{d x}=-\frac{k}{2 x^{2}}$
$m \int_{0}^{v} v d v=\frac{-k}{2} \int_{1}^{0.5} \frac{1}{x^{2}} d x$
$\mathrm{m}\left[\frac{\mathrm{v}^{2}}{2}\right]_{0}^{\mathrm{v}}=\frac{-\mathrm{k}}{2}\left[\frac{-1}{\mathrm{x}}\right]_{1}^{0.5}$
$v^{2}=1$
$v= \pm 1$
but v is along -ve x direction so $v=-1 \hat{i}$
(b) $m \int_{0}^{v} d v=\frac{-k}{2} \int_{1}^{x} \frac{1}{x^{2}} d x$
$v^{2}=\left[\frac{1}{x}-\frac{1}{1}\right]$
$v^{2}=\frac{1-x}{x}$
$v=\sqrt{\frac{1-x}{x}}$
but $\quad v=-\left(\frac{d x}{d t}\right)=\sqrt{\frac{1-x}{x}}$
$\therefore \quad \sqrt{\frac{\mathrm{x}}{1-\mathrm{x}} \mathrm{dx}}=-\mathrm{dt}$
or $\quad \int_{1}^{0.25} \sqrt{\frac{x}{1-x} d x}=-\int_{0}^{t} d t$
Solving this, we get $t=1.48 \mathrm{~s}$
5. After switching on parachuite propeller

$v \frac{d v}{d y}=-2 v$
$\int_{\sqrt{2 g x_{0}}}^{0} d v=-2 \int_{x_{0}}^{100} d y$
$\sqrt{2 g} x_{0}=2\left(100-x_{0}\right)$
$x_{0}{ }^{2}-205 x_{0}+10000=0$
$\mathrm{x}_{0}=80 \mathrm{~m}$
$\Rightarrow \quad$ time of free fall $t=\sqrt{\frac{2(80)}{10}}=4 \mathrm{sec}$
6. $x=t^{3} / 3-3 t^{2}+8 t+4$
$v=t^{2}-6 t+8=(t-2)(t-4)$
$a=2(t-3)$

$S_{1}=\left(\frac{32}{3}-4\right)+\left(\frac{32}{3}-\frac{28}{3}\right)+\left(\frac{32}{3}-\frac{28}{3}\right)=\frac{20}{3}+\frac{8}{3}=\frac{28}{3} \mathrm{~m}$.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	ADVRM - 27

$\mathrm{S}_{2}=\left(\frac{32}{3}-4\right)+\left(10-\frac{28}{3}\right)=\frac{20}{3}+\frac{2}{3}=\frac{22}{3} \mathrm{~m}$
$\frac{s_{1}}{s_{2}}=\frac{28}{22}=\frac{14}{11}$
7.

here, $\mathrm{v}_{\max }=\mathrm{v}$ is the maximum velocity which can be achieved for the given path from Ist part, $\tan \theta_{1}=10=\frac{v}{t_{1}} \Rightarrow t_{1}=\frac{v}{10}$
from II ${ }^{\text {nd }}$ part, $\tan \theta_{2}=5=\frac{\mathrm{v}}{\mathrm{t}_{2}} \Rightarrow \mathrm{t}_{2}=\frac{\mathrm{v}}{5}$
now, area under the graph is equal to total displacement
so, $\frac{1}{2} v\left[\mathrm{t}_{1}+\mathrm{t}_{2}\right]=1000$
$\frac{1}{2} v\left[\frac{v}{10}+\frac{v}{5}\right]=1000$
so, $v_{\text {max }}=v=\frac{100 \sqrt{2}}{\sqrt{3}} \mathrm{~m} / \mathrm{s}=81.6 \mathrm{~m} / \mathrm{s}$ (approx)
The maximum speed is $70 \mathrm{~m} / \mathrm{s}$ which is lesser than maximum possible speed v , hence the train will move with uniform speed for some time on the path.

The motion of train will be as shown
Let ${ }^{\text {st }}$ part of path has length s_{1}
then, by $v^{2}=u^{2}+2$ as, we get
$70^{2}=0^{2}+2 \times 10 \times \mathrm{s}_{1}$, so $\mathrm{s}_{1}=245 \mathrm{~m}$
Similarly by IIIrd equation of motion
$0^{2}=70^{2}-2 \times 5 \times \mathrm{S}_{3}$, so $\mathrm{S}_{3}=490 \mathrm{~m}$
Hence, $\mathrm{s}_{2}=1000-(490+245)=265 \mathrm{~m}$
for part 1 of the path, time taken $=t_{1}$
from $v=u+a t$, we get
$70=0+10 t_{1} \quad$ so, $t_{1}=7$ seconds
for part 2 of the path, time taken $=\mathrm{t}_{2}=\frac{\mathrm{s}_{2}}{70}=\frac{265}{70}=\frac{53}{14}$ seconds
for 3rd part of the path, $0=70-5 \times t_{3}$
so, $\mathrm{t}_{3}=14$ seconds.
Total time taken $=\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=7+\frac{53}{14}+14=\frac{347}{14}$ seconds
8.

Area of v - t curve is displacment which is equal to 2
$\frac{1}{2} \times v_{\text {max }} \times 4=2$
$V_{\text {max }}=1$
Also $\quad t_{1}+t_{2}=4$
$\frac{v_{\text {max }}}{x}+\frac{v_{\text {max }}}{y}=4$
$\Rightarrow \quad \frac{1}{x}+\frac{1}{y}=4$

Alter :

$$
\text { Given, } \begin{align*}
& \mathrm{S}_{1}+\mathrm{S}_{2}=2 \tag{i}\\
& \mathrm{t}_{1}+\mathrm{t}_{2}=4 \tag{ii}
\end{align*}
$$

For motion from A to C :
From, $\quad V=u+a t$

$$
\mathrm{V}=0+\mathrm{xt},
$$

$$
\mathrm{t}_{1}=\mathrm{V} / \mathrm{x}
$$

From

$$
\begin{aligned}
& \mathrm{V}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \\
& \mathrm{~V}^{2}=0+2 \mathrm{x} \mathrm{~S}_{1} \\
& \mathrm{~S}_{1}=\frac{\mathrm{V}^{2}}{2 \mathrm{x}}
\end{aligned}
$$

Similarly for motion from C to B

$$
\begin{aligned}
& \mathrm{t}_{2}=\mathrm{V} / \mathrm{y} \\
& \mathrm{~S}_{2}=\mathrm{V}^{2} / 2 \mathrm{y}
\end{aligned}
$$

From eqn.(i)

$$
\begin{align*}
& \frac{v^{2}}{2 x}+\frac{v^{2}}{2 y}=2 \\
& \frac{v^{2}}{2}\left(\frac{1}{x}+\frac{1}{y}\right)=2 \tag{iii}
\end{align*}
$$

From eqn. (ii)

$$
\begin{equation*}
V\left(\frac{1}{x}+\frac{1}{y}\right)=4 \tag{iv}
\end{equation*}
$$

Solving (iii) \& (iv) we get,

$$
\frac{1}{x}+\frac{1}{y}=4
$$

(a) $h_{A}=\frac{1}{2} g\left(\frac{t_{0}}{2}\right)^{2}$

$$
\begin{equation*}
h_{A}=\frac{\mathrm{gt}_{0}^{2}}{8} \tag{i}
\end{equation*}
$$

(b) $h=u t+g t^{2}$
$\mathrm{h}=-\mathrm{u}\left(\mathrm{t}+\mathrm{t}_{0}\right)+\frac{1}{2} \mathrm{~g}\left(\mathrm{t}+\mathrm{t}_{0}\right)^{2}$
(i) $\times\left(t+t_{0}\right)$ and (ii) $\times t$
$h\left(t+t_{0}\right)=u(t)\left(t+t_{0}\right)+\frac{1}{2} g t^{2}\left(t+t_{0}\right)$
$h(t)=-u\left(t+t_{0}\right)(t)+\frac{1}{2} g\left(t+t_{0}\right)^{2} t$
$h\left(2 t+t_{0}\right) \frac{1}{2}=g t\left(t+t_{0}\right)\left(2 t+t_{0}\right)$
$h_{T}=\frac{1}{2} g t\left(t+t_{0}\right)$
Ans. (a) $\boldsymbol{h}_{A}=\frac{g t_{0}}{8} \quad$ (b) $\boldsymbol{h}_{T}=\frac{1}{2} g t\left(t+t_{0}\right)$
10. $a=v \frac{d v}{d x}=c x+d$

Let at $x=0 \quad v=u$
$\therefore \quad \int_{u}^{v} v d v=\int_{0}^{x}(c x+d) d x$
or $\quad v^{2}=c x^{2}+2 d x+u^{2}$
v shall be linear function of x if $\mathrm{cx}^{2}+2 \mathrm{dx}+\mathrm{u}^{2}$ is perfect square
$\therefore \quad \sqrt{\frac{d^{2}}{c}}=3$

