SOLUTIONS OF INTRODUCTION TO CHEMISTRY

EXERCISE

PART - I

1. $\quad 10^{10}$ grains are distributed in 1 second
$\therefore \quad 6.02 \times 10^{23}$ grains are distributed in $\frac{6.02 \times 10^{23}}{10^{10}} \mathrm{sec}=\frac{6.02 \times 10^{23}}{10^{10} \times 60 \times 60 \times 24 \times 365}$ years
$=1.9 \times 10^{6}$ years (approx.)
2. No. of atoms $=$ mole $\times \mathrm{Na}$
$1=\frac{x}{238} \times \mathrm{Na}_{\mathrm{a}}$ (x is wt. of uranium)
$x=\frac{238}{6} \times 10^{-23}$
$x=3.95 \times 10^{-22}$
3. No. of moles of $\mathrm{C}=\frac{12.044 \times 10^{23}}{6.022 \times 10^{23}}=2$.

Wt. of C atoms $=2 \times 12=24 \mathrm{~g}$.
4. mass of $\mathrm{Si}=$ mole \times Atomic mass

$$
=35 \times 28=980 \mathrm{~g}
$$

8. We know that, $1 \mathrm{amu}=\frac{1}{12} \times$ weight of one ${ }^{12} \mathrm{C}$ atom
or weight of one ${ }^{12} \mathrm{C}$ atom $=12 \mathrm{amu}$ (at. wt. of $\mathrm{C}=12 \mathrm{amu}$).
Similarly, as the atomic weight of He is 4 amu ,
weight of one He atom $=4 \mathrm{amu}$.
Thus, the number of atoms in 100 amu of $\mathrm{He}=\frac{100}{4}=25$.
9. 1 litre Hg metal
volume $=1000$
$d=\frac{m}{v} \quad$ mass $=d \times V=13.6 \times 1000$
No of mole of Hg metal $=\frac{13.6 \times 1000}{200}=68$ mole
10. Fractional abundance of ${ }^{35} \mathrm{CI}=0.75, \quad$ Molar mass $=35.0$

Fractional abundance of ${ }^{37} \mathrm{Cl}=0.25, \quad$ Molar mass $=37.0$
$\therefore \quad$ Average atomic mass $=(0.75)(35.0 \mathrm{amu})+(0.25)(37.0 \mathrm{amu})=35.5$
11. Let mole $\%$ of ${ }^{26} \mathrm{Mg}$ be x .

$$
\begin{array}{ll}
\therefore & \frac{(21-x) 25+x(26)+79(24)}{100}=24.31 \\
& x=10 \%
\end{array}
$$

12. No. of molecules $=$ mole $\times N_{a}=\frac{16}{16} \times N_{a}$
$\mathrm{Na}=6.02 \times 10^{23}$
13. In 18 g , no. of molecules $=\mathrm{N}_{\mathrm{A}}$
so in 0.09 g no. of molecules $=\frac{\mathrm{N}_{\mathrm{A}}}{18} \times 0.09=\frac{\mathrm{N}_{\mathrm{A}}}{2 \times 100}=3.01 \times 10^{21}$.
14. Let the number of $\mathrm{C}_{2} \mathrm{H}_{6}$ molecules in the sample be n. As given, mass of $\mathrm{C}_{2} \mathrm{H}_{6}=$ mass of 10^{7} molecules of CH_{4}
$\frac{n}{\text { Av.constant }} \times$ mol. wt. of $\mathrm{C}_{2} \mathrm{H}_{6}=\frac{10^{7}}{\text { Av.constant }} \times$ mol. wt. of CH_{4}
$\frac{\mathrm{n} \times 30}{\text { Av.constant }}=\frac{10^{7} \times 16}{\text { Av.constant }}=5.34 \times 10^{6}$.
15. No. of moles of $\mathrm{CaCO}_{3}=\frac{\text { no. of molecules }}{A v . \text { cons. }}=\frac{6.022 \times 10^{23}}{6.022 \times 10^{23}}=1$

Weight of $\mathrm{CaCO}_{3}=1 \times 100=100 \mathrm{~g}$.
17. Total no. of moles of $\mathrm{CO}_{2}=\frac{\mathrm{wt} . \mathrm{ing}}{\mathrm{mol} . \mathrm{wt} .}=\frac{0.2}{44}=0.00454$.

No. of moles removed $=\frac{10^{21}}{6.022 \times 10^{23}}=0.00166$.
No. of moles of CO_{2} left $=0.00454-0.00166=0.00288$.
18. (a) mole of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{\text { mass }}{\text { molar mass }}=\frac{196}{98}=2$.

1 molecule $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains 2 atom hydrogen, 1 atom sulphur and 4 atom of oxygen.
Hence, $\mathrm{H}=4 \mathrm{~N}_{\mathrm{A}}$ atoms, $\mathrm{S}=2 \mathrm{~N}_{\mathrm{A}}$ atoms, $\mathrm{O}=8 \mathrm{~N}_{\mathrm{A}}$ atoms
(b) molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{196}{98}=2$.

Hence, $\mathrm{H}=4$ atoms, $\mathrm{S}=2$ atoms, $\mathrm{O}=8$ atoms.
(c) 5 mole $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ contains
$H=10 \mathrm{~N}_{\mathrm{A}}$ atoms, $\mathrm{S}=10 \mathrm{~N}_{\mathrm{A}}$ atoms, $\mathrm{O}=40 \mathrm{~N}_{\mathrm{A}}$ atoms
(d) 3 molecules $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$ contains
$H=6$ atoms, $S=6$ atoms, $O=18$ atoms.
19. 10 mole NH_{3} have mole of 'H' atom $=10 \times 3$

5 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ have mole of ' H ' atom $=10$
Total mole of 'H' atom $=40$
mole of $\mathrm{H}_{2}=20$
Hence: number of H_{2} molecules $=20 \mathrm{~N}_{\mathrm{A}}$
20. no. of atoms $=3 \times 11 \times \mathrm{N}_{\mathrm{A}}$

So no. of O_{3} molecules formed $=11 \mathrm{~N}_{\mathrm{A}}$
21. Mol. wt. of air $=\frac{78 \times 28+21 \times 32+0.9 \times 40+0.1 \times 44}{78+21+0.9+0.1}=28.964$.
$\left(\mathrm{N}_{2}=28, \mathrm{O}_{2}=32, \mathrm{Ar}=40\right.$ and $\left.\mathrm{CO}_{2}=44\right)$
22. From ideal gas equation, $\mathrm{pV}=\mathrm{nRT}$. In SI sytem the parameters of the gas are:

Pressure $=\mathrm{p} \times 1000(\mathrm{~Pa}) ; \quad$ Volume $=\mathrm{V} \times 10^{-6}\left(\mathrm{~m}^{3}\right) ; \quad$ Temperature $=\mathrm{t}+273(\mathrm{~K}) ; \quad$ moles $=\mathrm{w} / 32$
Therefore, $R=\frac{32 p V}{1000 \times w \times(t+273)}$
23. $\mathrm{PV}=\mathrm{nRT}, \mathrm{N}=\mathrm{n} \times \mathrm{N}_{\mathrm{A}}$
24. $P V=n R T$,
$\mathrm{n}=\mathrm{W} / \mathrm{M} 16 \mathrm{AMU}$
25. Pressure $=7.6 \times 10^{-10} \mathrm{~mm}$

$$
\begin{aligned}
& =0.76 \times 10^{-10} \mathrm{~cm} \\
& \frac{0.76 \times 10^{-10}}{76}=\mathrm{atm}(1 \text { atom }=76 \mathrm{~cm})=10^{-12} \mathrm{~atm}
\end{aligned}
$$

Volume $=1$ litre, $R=0.0821$ lit. $\mathrm{atm} / \mathrm{K} /$ mole, temperature $=273 \mathrm{~K}$.
We know that $\mathrm{pV}=\mathrm{nRT}$ or $\mathrm{n}=\frac{\mathrm{pV}}{\mathrm{RT}}$

$$
\mathrm{n}=\frac{10^{-12} \times 1}{0.082 \times 273}=0.44 \times 10^{-13}
$$

No. of molecules $==0.44 \times 10^{-13} \times 6.022 \times 10^{23}=2.65 \times 10^{10}$.

PART - II

1. Atoms of an element are alike.
2. mole $=\frac{\text { mass }}{\text { at. } w t .}=\frac{46}{23}=2$ mole.
3. $4 \mathrm{~g} \mathrm{He}=\mathrm{N}_{\mathrm{A}}$ atoms
4.

	A	B
Atomic mass	40	80
given weight	x gram	$2 x$ gram
No. of mole	$\frac{x}{40}$	$\frac{2 x}{80}$
No. of Atom	$\frac{x}{40} \times N_{A}$	$\frac{x}{40} \times N_{A}$

But according to question $=\frac{x}{40} \times N_{A}=y$
8. Mole of Aluminium $=\frac{54}{27}=2$ mole.

Al and Mg have same number of atoms (given). Hence same moles also.
\therefore Mass of magnesium $=2 \times 24=48 \mathrm{~g}$.
9. $558.5 \mathrm{~g} \mathrm{Fe}=\frac{558.5}{55.85}$ mole $\mathrm{Fe}=10$ mole $\mathrm{Fe}=2 \times 5$ mole $\mathrm{C}=2 \times \frac{60}{12}$ mole C
11. $12 \mathrm{~g}_{6} \mathrm{C}^{12}$ contains $6 \mathrm{~N}_{\mathrm{A}}$ electrons and $6 \mathrm{~N}_{\mathrm{A}}$ neutrons.
12. $M x=2 \times 12=24$
$M_{Y}=\frac{M_{x}}{0.3}=80$.
13. 1 gram ion $=1$ mole
charge on 1 mole Al^{3+} is $=3 \times \mathrm{e}\left(\mathrm{N}_{\mathrm{A}}\right)$.
14. Number of protons in ${ }_{6} \mathrm{C}^{14}=6$;

Number of neutrons in ${ }_{6} \mathrm{C}^{14}=8$;
As per given new atomic mass of

$$
{ }_{6} C^{14}=12+4=16
$$

(As the mass of electron negligible as compared to neutron and proton)
$\%$ increase in mass $=\frac{16-14}{14} \times 100=14.28$
15. Weight of $C-14$ isotope in 12 g sample $=\frac{2 \times 12}{100}$

No. of isotopes $=\frac{2 \times 12 \times \mathrm{N}}{100 \times 14}=1.032 \times 10^{22}$ atom
17. $\quad 114.8=115 \times 0.95+\mathrm{M} \times 0.05$
$M=111$
19. $17 \mathrm{~g} \mathrm{NH}_{3}=\mathrm{N}_{\mathrm{A}}$ molecules
21. Gram mol. wt. of $\mathrm{C}_{60} \mathrm{H}_{22}=742 \mathrm{gm}$
i.e. wt. of 6.023×10^{23} molecules $=742$
so wt. of 1 molecules $=\frac{742}{6.023 \times 10^{23}}=1.24 \times 10^{-21} \mathrm{~g}$.
22. Number of electrons $=\frac{1.8 \times 10}{18} \times \mathrm{N}_{\mathrm{A}}$
23. 1 mole $\mathrm{P}_{4}=\mathrm{N}$ molecules of $\mathrm{P}_{4}=4 \mathrm{~N}$ atoms of P_{4}.
24. $\quad \ln \left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
$\frac{\text { mole of Hatom }}{\mathrm{mole} \text { of O atom }}=\frac{12}{4}$
mole of ' O ' atom $=\frac{4}{12} \quad($ mole of H atom $)=\frac{1}{3}(3.18)=1.06$.
25. (B) 1 Torr $=1 \mathrm{~mm}$.
27. This is the required relation in Centigrade and Fahrenheit scales.
28. $\quad \frac{\mathrm{F}-32}{9}=\frac{\mathrm{C}}{5}$

Let temperature be t , same on two scale
$\therefore \quad t-32=\frac{9 t}{5}$ or $t=-40$
30. $R=2$ can $\mathrm{K}^{-1} \mathrm{~mol}^{-1}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=8.314 \times 10^{7} \mathrm{erg} \mathrm{K}^{-1} \mathrm{~mol}^{-1}=0.0821$ litre atm K${ }^{-1} \mathrm{~mol}^{-1}$.
31. Follow answer 1 in SI units.
33. $P \times 44.8=2 \times 0.0821 \times 540 . \quad \therefore \quad P=1.98 \mathrm{~atm}$.
34. Molar volume, i.e. volume when $n=1$ from $P V=n R T$ is $R T / P$.
$\begin{array}{llllllll} & & \mathrm{H}_{2} & : & \mathrm{He} & : & \mathrm{O}_{2} & : \\ \mathrm{O}_{3} \\ \text { Ratio of total no. of molecules }= & 1 & : & 1 & \vdots & 1 & \vdots & 1 \\ \text { So ratio of total no. of atoms }= & 2 & : & 1 & : & 2 & : & 3\end{array}$
38. Statement of avogadro's hypothesis.
39. Mol. wt. of gas is $=\frac{16 \times 22.4}{5.6}=64 \mathrm{~g}$

$$
32+16 x=64
$$

$$
x=2
$$

40. $\frac{\text { wt. of } 1 \text { litre gas at STP }}{\text { wt of } 1 \text { litre } \mathrm{O}_{2} \text { at STP }}=\frac{\text { molar mass of gas }}{\text { molar mass of } \mathrm{O}_{2}}$

$$
2.22=\frac{M}{32}
$$

$$
\mathrm{M}=71
$$

43. $9.108 \times 10^{-21} \mathrm{~kg}$ is the wt. of $1 \mathrm{e}^{-}=\frac{1}{\mathrm{~N}_{\mathrm{A}}}$ moles of e^{-}

So $\quad 1 \mathrm{~kg}$ is the wt. of $1 \mathrm{e}^{-}=\frac{1}{9.108 \times 10^{-31}} \times \frac{1}{\mathrm{~N}_{\mathrm{A}}}=\frac{1}{9.108 \times 10^{-31} \times 6.023 \times 10^{23}}=\frac{10^{8}}{9.108 \times 6.023}$.
44. 560 g of Fe No. of moles $=\frac{560 \mathrm{~g}}{56 \mathrm{~g}}=10$ mole

70 g of N
$14 \mathrm{~g}=1$ mole atom of N
$70 \mathrm{~g}=5$ moles of N
$20 \mathrm{~g} \mathrm{H}=20$ moles of H -atoms.
45. (A) Moles of $C=24 / 12=2$, So no. of atoms $=2 N_{A}$
(B) Moles of $\mathrm{Fe}=56 / 56=1$, So no. of atoms $=\mathrm{N}_{\mathrm{A}}$
(C) Moles of $\mathrm{Al}=27 / 27=1$, So no. of atoms $=\mathrm{N}_{\mathrm{A}}$
(D) Moles of $\mathrm{Fe}=108 / 108=1$, So no. of atoms $=\mathrm{N}_{\mathrm{A}}$
46. The mass of one mole of a substance will remain unchanged.
47. 8 moles of O -atom are contained by 1 mole $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.

48. ${ }^{54} \mathrm{Fe} \longrightarrow 5 \%$
${ }^{56} \mathrm{Fe} \longrightarrow 90 \%$
${ }^{57} \mathrm{Fe} \longrightarrow 5 \%$
Av. atomic mass $=x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}=54 \times 0.05+56 \times 0.9+57 \times 0.05=55.95$
51. Number of electron $=$ mole of $\mathrm{H} \times 1=$ Mole of $\mathrm{O} \times 8=$ Mole of $\mathrm{C} \times 6=$ Mole of $\mathrm{N} \times 7$
52. Refer Notes.
53. Pressure is same when V / T is constant.
60. Use $\%$ by moles $=\frac{M_{\text {avg }}-M_{1}}{M_{2}-M_{1}} \times 100$
$\%$ by mass $=\%$ by moles $\times \frac{M_{2}}{M_{a v g}}$

