SOLUTIONS OF MOLE CONCEPT

EXERCISE \# 1

PART - I

A-1. (i) 2 g of $\mathrm{H}_{2}=1 \mathrm{~mole}_{\mathrm{H}}^{2}$ $1 \mathrm{~mole}=22.4 \mathrm{~L}$
(ii) 16 g of $\mathrm{O}_{3}=\frac{1}{3}$ mole of O_{3}

A-2. Number of moles of $\mathrm{N}_{2} \mathrm{O}$ in 100 g mixture $=\frac{66}{44}=1.5$
Number of moles of H_{2} in 100 g mixture $=\frac{34}{2}=17$

$$
M_{\text {average }}=\frac{100}{18.5}=5.40
$$

B-2. $\quad 1 \mathrm{~g}$ atom of $\mathrm{Fe}(56 \mathrm{~g} \mathrm{Fe})$ is present in 1 mole of the compound. As 4.6 g Fe are present in 100 g of the compound, 56 g of Fe will be present in $\frac{100}{4.6} \times 56 \mathrm{~g}=1217 \mathrm{~g}$ of the compound.

B-3.

Element	Atomic mass	\%	Relative no. of atoms	Simple ratio	Simplest whole No.
H	$\mathbf{1}$	$\mathbf{2 5}$	25	$\frac{25}{6.25}=4$	$\mathbf{4}$
C	$\mathbf{1 2}$	$\mathbf{7 5}$	$\frac{75}{12}=6.25$	$\frac{6.25}{6.25}=1$	$\mathbf{1}$

So empirical formula CH_{4}.
C -1. $\quad \mathrm{Ag}_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} 2 \mathrm{Ag}+\mathrm{CO}_{2}$
$276 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{CO}_{3}=216 \mathrm{~g}$ of Ag
$\therefore 2.76 \mathrm{~g}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}=2.16 \mathrm{~g}$ of Ag .
C-2. $\quad 3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
$\frac{\text { Mole of } \mathrm{Fe}}{\text { Mole of } \mathrm{H}_{2} \mathrm{O}}=\frac{3}{4}$
Mole of $\mathrm{Fe}=\frac{18}{18} \times \frac{3}{4}=\frac{3}{4}$
Weight of $\mathrm{Fe}=\frac{3}{4} \times 56=42 \mathrm{~g}$.
C-3. (i) Mole of oxygen $=\frac{448}{22400}=0.02$
Wt . of oxygen $=0.02 \times 32=0.64 \mathrm{~g}$.
$2 \mathrm{KClO}_{3} \xrightarrow{\Delta} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
0.02 mol
$2 \mathrm{~mol}_{\mathrm{KClO}}^{3}$ $\equiv 2 \mathrm{~mol} \mathrm{KCl} \equiv 3 \mathrm{~mol} \mathrm{O}_{2}$
(ii) Mass of KClO_{3} originally taken $=\frac{2}{3} \times 0.2 \times 122.5=1.64 \mathrm{~g}$
(iii) Mass of KCl produced $=\frac{2}{3} \times 0.02 \times 74.5=0.993 \mathrm{~g}$

D-1.

$$
3 \mathrm{CaCO}_{3}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}
$$

Initial mole

$$
\frac{50}{100} \quad \frac{73.5}{98}=\frac{3}{4} \quad 0 \quad 0
$$

final mole $\quad 0 \quad \frac{3}{4}-\frac{1}{2} \times \frac{2}{3}=\frac{5}{12} \quad \frac{1}{6}$

D-2. (a) $\mathrm{Br}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{BrCl}$

$$
1 \mathrm{~mol} 1 \mathrm{~mol} 2 \mathrm{~mol}
$$

$$
0.025 \quad 0.025 \quad 0.050 \mathrm{~mol}
$$

$$
\text { Theoretical yield of } \mathrm{BrCl}=0.050 \mathrm{~mol}
$$

$$
\text { actual yield is }=\frac{0.05 \times 80}{100}=0.04 \text { mole }
$$

(b) $\quad \mathrm{Br}_{2}$ left unreacted $=0.025-0.02=0.005 \mathrm{~mol}$.

E-1.

$$
2 \mathrm{~mol} \mathrm{KClO}_{3} \equiv 3 \mathrm{~mol} \mathrm{O}_{2}
$$

Also $4 \mathrm{~mol} \mathrm{KClO}_{3} \equiv 3 \mathrm{~mol} \mathrm{KClO}_{4}$
or $\quad \frac{4}{3} \mathrm{~mol} \mathrm{KClO}_{3} \equiv 1 \mathrm{~mol} \mathrm{KClO}_{4}$
$\therefore \quad \mathrm{KClO}_{3}, 2+\frac{4}{3}=\frac{10}{3}$ moles.
E-2. Moles of Ca in $\mathrm{Ca}=$ moles of Ca in CaO
or $1 \times$ moles of $\mathrm{Ca}=1 \times$ moles of CaO
$\frac{1}{40}=\frac{m}{56} \quad$ or $\quad m=1.4 \mathrm{~g}$
E-3. On heating $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ remains unchanged while NaHCO_{3} changes into $\mathrm{Na}_{2} \mathrm{CO}_{3}$, CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. The loss in weight is due to removal of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ which escape out on heating.
\therefore wt. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the product $=2.00-0.248=1.752 \mathrm{~g}$.
Let the weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture be $X \mathrm{~g}$.
\therefore wt. of $\mathrm{NaHCO}_{3}=(2.00-X) \mathrm{g}$.
Since $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the products contains $X \mathrm{~g}$ of unchanged reactant $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and rest produced from NaHCO_{3}.
The wt. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ produced by NaHCO_{3} only $=(1.752-X) \mathrm{g}$.
Now, we have ,

Applying POAC for Na atoms ,
moles of Na in $\mathrm{NaHCO}_{3}=$ moles of Na in $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$1 \times$ moles of $\mathrm{NaHCO}_{3}=2 \times$ moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
\begin{aligned}
& \frac{2.0-X}{84}=2 \times \frac{1.752-X}{106} \\
& X=\frac{82}{62}=1.328 \mathrm{~g} . \\
\therefore \quad & \% \text { of } \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{1.328}{2.0} \times 100=66.4 \% .
\end{aligned}
$$

E-4. Let x g chalk $\left(\mathrm{CaCO}_{3}\right),(5-\mathrm{x}) \mathrm{g}$ clay present
wt of $\mathrm{H}_{2} \mathrm{O}+$ wt of $\mathrm{CO}_{2}=1.1$

$$
\begin{aligned}
& (5-x) \times \frac{11}{100}+\frac{x}{100} \times 44=1.1 \\
& \text { so } \quad x=5 / 3 \\
& \text { so } \quad \% \text { of chalk }=\frac{5 / 3}{5} \times 100=33.33 \%
\end{aligned}
$$

F-1.
(a) $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
(b) $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
$1+x-4+0=0$
$x=+3$

$$
\begin{aligned}
& 4+2 x-14=0 \\
& 2 x=10 \\
& x=+5
\end{aligned}
$$

(c) $\mathrm{CrO}_{2} \mathrm{Cl}_{2} \quad$ (d) $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}\left(\mathrm{NO}^{+}\right)\right]$
$x-4-2=0$
$2+x-5+1=0$
$\mathrm{x}=+6$
(e) $\mathrm{Mn}_{3} \mathrm{O}_{4}$
$3 x-8=0$
$x=+8 / 3$

$$
\text { (f) } \mathrm{Ca}\left(\mathrm{ClO}_{2}\right)_{2}
$$

$$
\begin{array}{r}
2+2 x-8=0 \\
2 x=6 \\
x=+3
\end{array}
$$

(g) $\left[\mathrm{Fe}\left(\mathrm{NO}^{+}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{SO}_{4}$
(h) $\mathrm{ZnO}_{2}{ }^{2-}$
$x+1+0-2=0$
$x-4=-2$
$x=+1$
$x=+2$
(i) $\mathrm{Fe}_{0.93 \mathrm{O}}$

$$
\begin{aligned}
& 0.93 x-2=0 \\
& 0.93 x=2 \\
& x=\frac{2}{0.93}=\frac{200}{93}=2.15
\end{aligned}
$$

H-1. mole of $\mathrm{KOH}=\mathrm{M} \times \mathrm{V}(\ell)=1 \times 0.1=0.1$
Hence : mass of $\mathrm{KOH}=$ mole \times molecular mass $=0.1 \times 56=5.6 \mathrm{~g}$
H-2. \quad Molar mass of $\mathrm{KCl}=(39+35.5) \mathrm{g}=74.5 \mathrm{~g}$
$\mathrm{W}_{2}=7.45 \mathrm{~g}, \mathrm{MW}_{2}=74.5 \mathrm{~g}$
$\mathrm{V}_{\text {sol }}=500 \mathrm{~mL}$
$\mathrm{d}_{\text {sol }}=1.2 \mathrm{~g} \mathrm{~mL}^{-1}$
$\mathrm{m}=\frac{\mathrm{W}_{2} \times 1000}{\mathrm{Mw}_{2} \times \mathrm{W}_{1}}$
In the above relation, W_{1} is unknown, so find W_{1}.
$\mathrm{W}_{1}=\left(\mathrm{W}_{\text {sol }}-\mathrm{W}_{2}\right) \mathrm{g}=\left(\mathrm{V}_{\text {sol }} \times \mathrm{d}_{\text {sol }}-\mathrm{W}_{2}\right) \mathrm{g}=(500 \times 1.5-7.45) \mathrm{g}$
$\therefore \quad \mathrm{m}=\frac{7.45 \times 1000}{74.5 \times 592}=0.168 \mathrm{~mol} \mathrm{~kg}^{-1}=0.168 \mathrm{~m}$.
H-3. (i) Molarity of $\mathrm{NaOH}=2$
Density $=1 \mathrm{~g} / \mathrm{ml}$
Let volume of solution $=1000 \mathrm{ml}$
\therefore mass of solute $=2 \times 40=80$
Mass of solution $=1000 \times 1=1000 \mathrm{~g}$
Mass of solvent $=1000-80=920 \mathrm{~g}$

$$
\text { molality }=\frac{2}{920 / 1000}=2.17
$$

(ii) $m=5$

Density $=1.5 \mathrm{~g} / \mathrm{ml}$
Let 1 Kg solvent
\therefore mole of solute $=5$
mass of solute $=5 \times 40=200 \mathrm{~g}$

Total mass of solution $=200+1000=1200 \mathrm{~g}$
\therefore Volume of solution $=\frac{\text { mass of solution }}{\text { density }}=\frac{1200}{1.5}=800 \mathrm{ml}$

$$
M=\frac{5}{800 / 1000}=6.25
$$

(iii) In (i) mole fraction of solute $=\frac{2}{2+\frac{920}{18}}=\frac{36}{956}=\frac{9}{239}=0.0377$
(iv) In (ii) mole fraction of solute $=\frac{5}{5+\frac{1000}{18}}=\frac{90}{1090}=\frac{9}{109}=0.0826$
(v) $\ln (i) \%(w / w)$ of $\mathrm{NaOH}=\frac{80}{1000} \times 100=8 \%$
(vi) $\ln \left(\right.$ (ii) $\%(w / w)$ of $\mathrm{NaOH}=\frac{200}{1200} \times 100=16.67 \%$
(vii) In (ii) \% (w/v) of $\mathrm{NaOH}=\frac{200}{800} \times 100=25 \%$

I-1. $\left[\mathrm{Cl}^{-}\right]=\frac{2 \times \text { moles of } \mathrm{BaCl}_{2}+1 \times \text { moles } \mathrm{NaCl}+1 \times \text { moles of } \mathrm{HCl}}{0.5}=\frac{2 \times 1+1 \times 1+1 \times 1}{0.5}=\frac{4}{0.5}=8 \mathrm{M}$.
I-2. Volume of $\mathrm{HNO}_{3}=50 \mathrm{ml}$, density $=1.5$

$$
d=\frac{M}{V}, \text { mass of solution }=50 \times 1.5
$$

weight of $\mathrm{HNO}_{3}=\frac{75 \times 63}{100}=\frac{3}{4} \times 63$
Mole of $\mathrm{HNO}_{3}=\frac{3}{4} \times \frac{63}{63}=\frac{3}{4}$ Mole
$\mathrm{M}=\frac{\text { Mole of } \mathrm{HNO}_{3}}{\text { Volume of solution }}=1=\frac{3}{4 \times \mathrm{V}_{\text {lit }}}=1$
$\mathrm{V}=\frac{3}{4} \mathrm{It}=750 \mathrm{ml}$
Volume of water added $=750-50=700 \mathrm{ml}$
I-3. Molarity $=\frac{\text { Moles }}{\mathrm{V}_{\mathrm{lt}}} \quad \Rightarrow \quad 3=\frac{1+6}{\mathrm{~V}_{\mathrm{lt}}} \quad$ So $\quad \mathrm{V}=7 / 3=2.33 \mathrm{Lt}$.

I-4. (i) Mass of $\mathrm{NaOH}=300 \times \frac{30}{100}+500 \times \frac{40}{100}=90+200=290 \mathrm{~g}$
mass of solution $=300+500=800$
$\% \mathrm{w} / \mathrm{w}$ of NaOH in mixture $=\frac{290}{800} \times 100=36.25 \%$
(ii) Density of final solution $=2 \mathrm{~g} / \mathrm{ml}$

$$
\begin{aligned}
& \text { Volume of solution }=\frac{800}{2}=400 \mathrm{ml} \\
& \% \mathrm{w} / \mathrm{v} \text { of } \mathrm{NaOH}=\frac{290}{400} \times 100=72.5 \%
\end{aligned}
$$

(iii) $\operatorname{In}\left(\right.$ i) molality of final solution $=\frac{290 / 40}{(800-290) \times 1 / 1000}=\frac{29 / 4}{510} \times 1000=14.2$

PART - II

A-1. Statement of avogadro's hypothesis.
A-2. Mol. wt. of gas is $=\frac{16 \times 22.4}{5.6}=64 \mathrm{~g}$
$32+16 x=64$
$x=2$
B-1. Empircal mass of $\mathrm{CH}_{2} \mathrm{O}=12+2+16=30$
$\mathrm{n}=\frac{\text { Molar mass }}{\text { Empirical mass }}=\frac{120}{30}=4$
Hence : molecular formula $=\left(\mathrm{CH}_{2} \mathrm{O}\right) 4=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
B-2.

Elements	$\%$	\% / Atomic mass	Simple ratio	Simplest whole no.
Ca	20	$20 / 40=0.5$	1	1
Br	80	$80 / 80=1$	2	2

Hence : Empirical formula $=\mathrm{CaBr}_{2}$
$\mathrm{n}=\frac{200}{200}=1$
Hence : Molecular formula $=\mathrm{CaBr}_{2}$
B-3. 8% sulphur by mass means -8 g sulphur is present in 100 g solid.
$\therefore \quad 32 \mathrm{~g}$ sulphur (1 mole atom) will be present in $=\frac{100}{8} \times 32=400 \mathrm{~g}$
[\because compound must be having at least one atom of sulphur]
$\Rightarrow \quad$ min. mol. mass $=400 \mathrm{~g}$.
B-4. $\quad \%$ of $C=\frac{\text { mass of } C}{\text { molar mass }} \times 100$
$69.98=\frac{21 \times 12}{M} \times 100$
$M=360.1$.
$\mathbf{C - 1 .} \quad \mathrm{KClO}_{3} \longrightarrow \mathrm{KCl}+\frac{3}{2} \mathrm{O}_{2}$
$\frac{3}{2}$ mole or 33.6 litre O_{2} from 1 mole KClO_{3}
11.2 litre of O_{2} formed by $\frac{1}{3}$ mole KClO_{3}

C-3. $2 \mathrm{Al}+\frac{3}{2} \mathrm{O}_{2} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3} \quad \Rightarrow \quad$ weight of Al required $=2 \times 27=54 \mathrm{~g}$

C-4. \quad Moles of CO_{2} formed $=$ moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.01 \quad \Rightarrow \quad$ Volume of $\mathrm{CO}_{2}=22.4 \times 0.01=0.224 \mathrm{~L}$
C-5. By applying POAC for C atoms
moles of ethylene $\times 2=$ mole of polythene $\times \mathrm{n} \times 2$
$\frac{100 \mathrm{~g}}{28} \times 2=\frac{\text { wt. of polethene }}{28 \times n} \times \mathrm{n} \times 2$
$w t$. of polyethene $=100 \mathrm{~g}$

C-6. $\quad 3 \mathrm{M}+\mathrm{N}_{2} \longrightarrow \mathrm{M}_{3} \mathrm{~N}_{2}$
Let Atomic wt. of metal = a
so $\quad(3 a+28) g$ nitride contains metal $=3 a$ gram
$\therefore \quad 14.8 \mathrm{~g}$ nitride contains metal $=\frac{3 \mathrm{a}}{3 \mathrm{a}+28} \times 14.8=12$
so

$$
\mathrm{a}=40 .
$$

D-1.

$\mathrm{H}_{2} \mathrm{SO}_{4}+\underset{0}{\mathrm{Ca}(\mathrm{OH})_{2}} \underset{0.2}{ } \longrightarrow$	$\mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$	
$0.5-0.2$	0	0
0.2	0.2	

D-2.
Initial mole
finally mole
$0.5-0.2 \quad 0$
$0.2 \quad 0.4$

		Fe	2S	$\mathrm{Zn}\left(\mathrm{FeS}_{2}\right)$
initial mole	2	3	5	0
final mole	0	3-2	5-4	2

D-3.
weight
Mole
L.R. \rightarrow

$$
\begin{array}{ll}
2 \mathrm{X} \\
\mathrm{~W} \text { gram } \\
\frac{\mathrm{W}}{36}
\end{array} \quad \begin{aligned}
& 3 \mathrm{Y} \\
& \mathrm{~W} \text { gram }
\end{aligned} \quad \begin{gathered}
\mathrm{X}_{2} \mathrm{Y}_{3} \\
0 \\
\frac{\mathrm{~W}}{24}
\end{gathered}
$$

No. one is L.R.

2 Y
$\frac{w}{36}$
:---:
$\frac{\mathrm{w}}{24}$
:---:
$\frac{\mathrm{w}}{2[36]}$

Weight of $X_{2} Y_{3}=\frac{w}{2 \times 36}[72 \times 2]=2 \mathrm{w}$
So weight of $X_{2} Y_{3}=2$ [weight of X Taken]

D-4.
$\begin{array}{cl}C & + \\ \text { Given moles } & \mathrm{CO}_{2} \\ \left(\frac{6}{12}\right)=0.5 & \left(\frac{44}{44}\right)=1\end{array}$
So $\quad \mathrm{C}$ is limiting reagent
$\therefore \quad$ CO formed $=1$ moles
Now moles of Ni need to react with 1 moles of CO are $\frac{1}{4} \times 58.7=14.675 \mathrm{~g}$.

E-1. Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{21.2 \times 10^{3}}{106}=200$
So moles of $\mathrm{CO}_{2}=200$
\& \quad so moles of CaCO_{3} reqd $=200$
$\therefore \quad$ wt of CaCO_{3} reqd $=200 \times 100=20 \mathrm{~kg}$.

E-2.

M	$+\mathrm{X}_{2}$	\longrightarrow	MX_{2}
$\mathrm{MX}_{2}+\mathrm{X}_{2}$	\longrightarrow	$\mathrm{M}_{3} \mathrm{X}_{8}$	
$\mathrm{M}_{3} \mathrm{X}_{8}+\mathrm{Na}_{2} \mathrm{CO}_{3}$	\longrightarrow	$\mathrm{NX}+\mathrm{CO}_{2}+\mathrm{M}_{3} \mathrm{O}_{4}$	

mole of $N X=\frac{206}{103}=2$

POAC for X Atom :
No. of X atom in $M_{3} X_{8}=$ No. of X Atom in $N X$
$8\left[\mathrm{No}\right.$. of mole of $\left.\mathrm{M}_{3} \mathrm{X}_{8}\right]=1$ [No. of mole of $\left.N X\right]$
No. of mole of $\mathrm{M}_{3} \mathrm{X}_{8}=\left[\frac{2}{8}\right]=\frac{1}{4}$ mole
Now POAC for M Atom
3 [No. of mole of $\left.\mathrm{M}_{3} \mathrm{X}_{8}\right]=1 \times[\mathrm{No}$. of Mole of M]
$\therefore \quad 3 \times \frac{1}{4}=$ No. of mole of M

$$
\text { weight of } M \text { atom }=\frac{3}{4} \times 56=42 \text { gram }
$$

E-3. Balanced equation :

$$
\begin{aligned}
& \mathrm{NaI}+\mathrm{AgNO}_{3} \longrightarrow \mathrm{AgI}+\mathrm{NaNO}_{3} \\
& 2 \mathrm{AgI}+\mathrm{Fe}^{\longrightarrow} \mathrm{Fel}_{2}+2 \mathrm{Ag} \\
& 2 \mathrm{Fel}_{2}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{FeCl}_{3}+2 \mathrm{I}_{2}
\end{aligned}
$$

From (3)

$$
\frac{254 \times 10^{3}}{254}=\frac{\text { mole of } \mathrm{AgNO}_{3}}{2}
$$

$$
2 \times 10^{3}=\text { mole of } \mathrm{AgNO}_{3}=\frac{\text { mass of } \mathrm{AgNO}_{3}}{\text { molar mass of } \mathrm{AgNO}_{3}}
$$

$$
\text { mass of } \mathrm{AgNO}_{3}=170 \times\left(2 \times 10^{3}\right) \mathrm{g}=340 \times 10^{3} \mathrm{~g}=340 \mathrm{~kg} .
$$

E-4.
Given mass

I_{2}	+
25.4 gram	$2 \mathrm{Cl}_{2}$
0.2 gram	
0.1 mole	0.2 mole
0	0

ICl	ICl_{3}
0	0
0	0
0.1	0.1

E-5.

According to question weight of P is conserved so
Let Mole of $\mathrm{P}_{4} \mathrm{O}_{6}=\mathrm{a}$
Mole of $\mathrm{P}_{4} \mathrm{O}_{10}=\mathrm{b}$
Initial weight of $\mathrm{P}=$ Final weight of P .
$31=[a \times 4] \times 31+[b \times 4] \times 31$
$4 a+4 b=1] \quad(1) \times 3$
Initial weight of oxygen $=$ Final weight of oxygen
$32=[a \times 6] \times 16+[a \times 10] \times 16$
$3 a+5 b=1]$
(2) $\times 4$
$12 a+20 b=4$
$12 a+12 b=3$
So $\quad b=\frac{1}{8}$
$8 \mathrm{~b}=1$

Similarly $\quad a=\frac{1}{8}$
So weight of $\mathrm{P}_{4} \mathrm{O}_{6}=\frac{1}{8} \times 220=27.5 \quad \mathrm{P}_{4} \mathrm{O}_{10}=\frac{284}{8}=35.5$.

E-6. $\quad \mathrm{Li} \mathrm{AlH}_{4}+$ t-butyl alcohol $\xrightarrow{\text { Ether }} \mathrm{LiAlHC}_{12} \mathrm{H}_{27} \mathrm{O}_{3}($ M.W. $=254)$
0.05 mole

$$
12.7 \text { gram }
$$

$=\frac{12.7}{254}=0.05 \mathrm{~mole}$
Li atom remain conserved so
No. of mole of $\mathrm{LiAlH}_{4}=$ No. of mole of $\mathrm{LiAlHC}_{12} \mathrm{H}_{27} \mathrm{O}_{3}$
So No. of mole of $\mathrm{LiAlHC}_{12} \mathrm{H}_{27} \mathrm{O}_{3}=0.05$
$\%$ yield $=\frac{0.05}{0.05} \times 100=100 \%$

E-7. $\quad \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Mg}^{2+}+\mathrm{NH}_{4}{ }^{+}$ \qquad $\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4} .6 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { heated }} \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
Since P atoms are conserved, applying POAC for P atoms,
moles of P in $\mathrm{NaH}_{2} \mathrm{PO}_{4}=$ moles of P in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

$$
1 \times \text { moles of } \mathrm{NaH}_{2} \mathrm{PO}_{4}=2 \times \text { moles of } \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}
$$

($\because 1$ mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ contains 1 mole of P and 1 mole of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ contains 2 moles of P)

$$
\begin{aligned}
& \frac{\text { wt. of } \mathrm{NaH}_{2} \mathrm{PO}_{4}}{\text { mol. wt. of } \mathrm{NaH}_{2} \mathrm{PO}_{4}}=2 \times \frac{\text { wt. of } \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}}{\text { mol. wt. of } \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}} \\
& \frac{\text { wt. of } \mathrm{NaH}_{2} \mathrm{PO}_{4}}{120}=2 \times \frac{1.054}{222} \\
& \text { Wt. of } \mathrm{NaH}_{2} \mathrm{PO}_{4}=1.14 \mathrm{~g} .
\end{aligned}
$$

E-8. $\quad \mathrm{CaCl}_{2}+\mathrm{NaCl}=10 \mathrm{~g}$
Let weight of $\mathrm{CaCl}_{2}=\mathrm{x} \mathrm{g}$
$\mathrm{CaCl} \rightarrow \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}$
1 mol 1 mol 1 mol
$\frac{\mathrm{X}}{111} \mathrm{~mol} \frac{\mathrm{X}}{111} \mathrm{~mol} \frac{\mathrm{X}}{111} \mathrm{~mol}$
Mole of $\mathrm{CaO}=\frac{1.62}{56}$
$\therefore \quad \frac{\mathrm{x}}{111}=\frac{1.62}{56}$

$$
x=3.21 \mathrm{~g}
$$

$\%$ of $\mathrm{CaCl}_{2}=\frac{3.21}{10} \times 100=32.1 \%$

E-9. $\quad \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
for 1 mole $\mathrm{NaOH} \frac{1}{2}$ mole $\mathrm{H}_{2} \mathrm{SO}_{4}$ required
$70 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 g solution
$\frac{98}{2} \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ in $=\frac{100}{70} \times 49=70 \mathrm{~g}$ solution.
F-1. $2(+1)+2 x=0 \quad \therefore \quad x=-1$
F-2. $\quad 2(+2)+2 x+7(-2)=0 \quad \therefore \quad x=+5$

F-3. $\quad \mathrm{SO}_{3}{ }^{2-} \Rightarrow 1(\mathrm{x})+3(-2)=-2 \therefore \mathrm{x}=+4$
$\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-} \Rightarrow \quad 2(\mathrm{x})+4(-2)=-2 \therefore \mathrm{x}=+3$
$\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-} \Rightarrow \quad 2(\mathrm{x})+6(-2)=-2 \therefore \mathrm{x}=+5$
F-4. $\quad \mathrm{NaN}_{3} 1(+1)+3(x)=0 \therefore x=-1 / 3$
$\mathrm{N}_{2} \mathrm{H}_{2} 2(\mathrm{x})+2(+1)=0 \therefore \mathrm{x}=-1$
NO 1 $(x)+1(-2)=0 \therefore x=+2$
$\mathrm{N}_{2} \mathrm{O}_{5} 2(\mathrm{x})+5(-2)=0 \therefore \mathrm{x}=+5$
F-5. $\quad \mathrm{Fe}_{3} \mathrm{O}_{4}$ can be written as $\mathrm{FeO} . \mathrm{Fe}_{2} \mathrm{O}_{3}$.
In $\mathrm{FeO}, \mathrm{Fe}$ has oxidation state +2 , in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ has oxidation state +3 .
resultant oxidation number $=\frac{1 \times 2+2 \times 3}{3}=\frac{8}{3}$.

F-6.

G-1. Valency factor ratio is inversely related to molar ratio.
(V.f.) $\mathrm{HI}:$ (V.f.) $\mathrm{HNO}_{3}=1: 3=2: 6 \therefore$ Molar ratio $=6: 2$

G-2. $\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
V.f. $=5$ V.f. $=2$
$\therefore \quad$ Balanced equation : $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

G-3.

G-4. $\mathrm{X}^{-}+\mathrm{XO}_{3}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{X}_{2}+\mathrm{H}_{2} \mathrm{O}$
V.f. $=1 \quad$ V.f. $=5$
\therefore Molar ratio $=5: 1$
G-5. Equating number of O -atoms on both sides :
$3 b=a+b+2 a+c / 2$
$\therefore 4 b=6 a+c$
Also, from charge balance : $\mathrm{c}=\mathrm{a}+\mathrm{b} \quad \therefore \mathrm{a}: \mathrm{b}: \mathrm{c}=3: 7: 10$
H-1. Molarity $=\frac{6.02 \times 10^{22}}{6.02 \times 10^{23}} \times \frac{1}{1 / 2}=0.2$
H-2. \quad Mole $=\mathrm{M} \times \mathrm{V}$
$100 \times 10^{-3}=0.8 \times V$
$V=0.125$
H-3. Molarity of $\mathrm{Cl}^{-}=3$ (molarity of $\left.\mathrm{FeCl}_{3}\right)=3\left(\frac{\mathrm{M}}{30}\right)=\frac{\mathrm{M}}{10}$.

H-4. Let, $\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{n}_{\mathrm{NaCl}}=\mathrm{n}$

$$
\begin{aligned}
m & =\frac{\text { Mole of solute }}{w t . \text { of solvent }(\mathrm{kg})}=\frac{n}{\mathrm{n} \times 18} \times 1000 \\
& =\frac{1}{18} \times 1000=55.55 \mathrm{~m}
\end{aligned}
$$

H-5. Mole fraction of A i.e. $X_{A}=\frac{n_{A}}{\text { Total moles }}$
So

$$
\mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}=\frac{\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}{\text { Total moles }}
$$

Now $\quad \frac{X_{A}}{X_{H_{2} \mathrm{O}}}=\frac{n_{A}}{n_{\mathrm{H}_{2} \mathrm{O}}}$
and molality $=\frac{n_{A} \times 1000}{n_{H_{2} \mathrm{O}} \times 18}=\frac{X_{A} \times 1000}{X_{H_{2} \mathrm{O}} \times 18}=\frac{0.2 \times 1000}{0.8 \times 18}=13.9$ Ans.

H-6. Molarity $=\frac{98 \times 10 \times 1.84}{G m m}=18.4 \mathrm{M} \quad\left\{\therefore \mathrm{M}=\frac{(\% \mathrm{w} / \mathrm{w}) \times(\mathrm{d}) \times 10}{\text { Mol. mass of solute }}\right\} \quad(\mathrm{d}$ in g / ml.
H-7. Weight of $\mathrm{KOH}=2.8$ gram
Volume of solution $=100 \mathrm{ml}$

$$
M=\frac{2.8 \times 1000}{56 \times 100}=\frac{28}{56}=0.5 \mathrm{M}
$$

I-1. $\mathrm{M}_{1} \mathrm{~V}_{1}+\mathrm{M}_{2} \mathrm{~V}_{2}=\mathrm{M}_{\mathrm{R}}\left[\mathrm{V}_{1}+\mathrm{V}_{2}\right]$
$1 \times 500+1 \times 500=M_{R}[500+500]$

$$
M_{R}=1
$$

I-2. $\quad M_{\text {tinal }}=\frac{M_{1} V_{1}+M_{2} V_{2}}{V_{1}+V_{2}+V_{\text {water }}} ; 0.25=\frac{0.6 \times 250+0.2 \times 750}{250+750+V_{\text {water }}} ; ~ S o \quad V_{\text {water }}=200 \mathrm{ml}$.

I-3. Moles of Cl^{-}in 100 ml of solution $=\frac{2}{58.5}+\frac{4}{111} \times 2+\frac{6}{53.5}=0.2184$
Molarity of $\mathrm{Cl}^{-}=\frac{0.2184}{100} \times 1000=2.184$.
I-4. Conc. of cation $=\frac{400+300+200}{400}$
conc. of anion $=\frac{200+300+400}{400}$
$\therefore \quad$ ratio of the conc. $=1$
I-5. Let volume is V ml

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

mmole $0.2 \mathrm{~V} 40 \times 0.1$
m. moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ remains $=0.2 \mathrm{~V}-\frac{40 \times 0.1}{2}$

$$
\frac{0.2 \mathrm{~V}-\frac{40 \mathrm{x} \mathrm{0.1}}{2}}{\mathrm{~V}+40}=\frac{6}{55}
$$

$\mathrm{V}=70 \mathrm{ml}$

PART - III

1. (A) $\mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{51.17}{12}: \frac{13.04}{1}: \frac{34.78}{16}=4: 12: 2$ or $2: 6: 1$

Empirical formula $=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ \& molar mass $=46 \mathrm{~g} / \mathrm{mol}$
Mol formula $=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$3 \mathrm{O}_{2}$	2 CO	
1 mole		44.8 L	
0.25 mols		(11.2	

(B) $\mathrm{C}: \mathrm{H}=\frac{10.5}{12}: \frac{1}{1}=\frac{7}{8}: 1=7: 8$ Empirical formula $=\mathrm{C}_{7} \mathrm{H}_{8}$

Mol wt. $=2 \times$ VD $=2 \times 46=92$
Mol formula $=$ Empirical formula $=\mathrm{C}_{7} \mathrm{H}_{8}$

$$
\begin{array}{rl}
\mathrm{C}_{7} \mathrm{H}_{8}+9 \mathrm{O}_{2} \longrightarrow & 7 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{n}_{\mathrm{CO}_{2}}>\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}} \\
= & 42.857: 57.143 \\
\text { (C) } \mathrm{C}: \mathrm{H} & 3: x \quad \text { (given) }
\end{array}
$$

On solving, $x=4 \quad \therefore$ molecular formula $=\mathrm{C}_{3} \mathrm{H}_{4}$ 1 mole of $\mathrm{C}_{3} \mathrm{H}_{4}$ contains $4 \mathrm{~N}_{A}$ hydrogen atoms.
Empirical formula is same as molecular formula
$\mathrm{C}_{3} \mathrm{H}_{4}+4 \mathrm{O}_{2}$

$$
\begin{gathered}
\longrightarrow 3 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{n}_{\mathrm{CO}_{2}}>\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}
\end{gathered}
$$

(D) Mass of C in organic compound $=$ mass of C in $\mathrm{CO}_{2}=\frac{0.44}{44} \times 12=0.12 \mathrm{~g}$

Mass of H in organic compound $=$ Mass of H in $\mathrm{H}_{2} \mathrm{O}=\frac{0.18}{18} \times 2=0.02 \mathrm{~g}$
$\therefore \quad$ Mass of O in organic compound $=0.3-(0.12+0.02)=0.16 \mathrm{~g}$
$\therefore \quad \mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{0.12}{12}: \frac{0.02}{1}: \frac{0.16}{16}=0.01: 0.02: 0.01=1: 2: 1$
$\therefore \quad$ Empirical formula $=\mathrm{CH}_{2} \mathrm{O}$, but it contains 2 O atom per molecule
$\therefore \quad$ Molecular formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
1 mole of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ contains $4 \mathrm{~N}_{A}$ hydrogen atoms.

$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+2 \mathrm{O}_{2} \longrightarrow$
mole 0.25 mole
$2 \mathrm{CO}_{2}$
44.8 L
11.2 L

2. (A)

Initial mole
final mole

$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})$	$\mathrm{ZnCl}_{2}(\mathrm{~s})$	+
2	0	0
$(2-1=1)$	$\mathrm{H}_{2}(\mathrm{~g})$	
0	1	1

Excess reagent left $=\frac{2-1}{2} \times 100=50 \%$
Volume of $\mathrm{H}_{2}=22.4$ lit.
Solid product obtained = 1 mole
Limiting reagent is HCl .

(B)	$\mathrm{AgNO}_{3}(\mathrm{aq})$ Initial mole $\frac{170}{170}=1$	HCl $1-\frac{1}{2}=\frac{1}{2}$	\longrightarrow	$\mathrm{AgCl}(\mathrm{s})$	+
		$\mathrm{HNO}_{3}(\mathrm{~g})$			
	0	0	0		
		$\frac{1}{2}$	$\frac{1}{2}$		

Excess reagent $=\frac{1-\frac{1}{2}}{1} \times 100=50 \%$
Volume of gas $=11.2$ lit.
Solid product $=\frac{1}{2}$ mole
Limiting reagent is HCl .
(C)
$\mathrm{CaCO}_{3}(\mathrm{~s})$ \qquad $\mathrm{CaO}(\mathrm{s})$
$\mathrm{CO}_{2}(\mathrm{~g})$
Initial mole

$$
\frac{\frac{100}{100}}{c}=1
$$

$$
0
$$

$$
0
$$

1
1
Excess reagent not present
Volume of gas = 22.4 lit. at STP
Solid product is 1 mole
$\begin{array}{llccc}\text { (D) } & 2 \mathrm{KClO}_{3}(\mathrm{~s}) & 2 \mathrm{KCl} \\ \text { Initial mole } & 2 / 3 & 0 & 3 \mathrm{O}_{2}(\mathrm{~g}) \\ & 0 & 2 / 3 & 0 \\ & & \end{array}$
No excess reagent left
Volume of gas $=44.8$ lit.
Solid product is $\frac{2}{3}$ mole.
3. (A) Molarity of cation $=\frac{M_{1} V_{1}+M_{2} V_{2}}{V_{1}+V_{2}}=\frac{0.2 \times 100+0.1 \times 400}{500}=\frac{0.6}{5}=0.12$

Molarity of $\mathrm{Cl}^{-}=\frac{3(0.2) 100+0.1 \times 400}{500}=\frac{0.6+0.4}{5}=0.2$
(B) Molarity of cation $=\frac{50 \times 0.4+0}{100}=0.2$

Molarity of $\mathrm{Cl}^{-}=\frac{0.4 \times 50+0}{100}=0.2$
(C) Molarity of cation $=\frac{2(0.2) 30+0}{100}=0.12$

Molarity of $\mathrm{SO}_{4}^{2-}=\frac{30 \times 0.2}{100}=0.06$
(D) $24.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 ml solution
25.4

Molarity $=\frac{\overline{98}}{0.1}=2.5$
$\therefore \quad$ Concentration of cation $=2 \times 2.5 \mathrm{M}$
Concentration of $\mathrm{SO}_{4}{ }^{2-}=2.5 \mathrm{M}$.

EXERCISE \# 2

PART - I

1. $\quad \operatorname{InCa}\left(\mathrm{PO}_{4}\right)_{2}$
$\frac{\text { mole of } \mathrm{Ca} \text { atom }}{\text { mole of } \mathrm{O} \text { atom }}=\frac{3}{8}$
mole of 'O' atom $=\frac{8}{3}$ (mole of Ca atom)
Mole of Ca atom $=3$
2.

mass
moles
ratio
Simple integer ratio
3. Use reaction $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}$.

In 24 hr . moles of sucrose consumed $=\frac{34}{342} \times 24$.
$\therefore \quad \ln 24 \mathrm{hr}$. moles of O_{2} required $=\frac{34}{342} \times 24 \times 12$. (according to stoichiometry).
mass of O_{2} required $=\frac{34}{342} \times 24 \times 12 \times 32=916.2 \mathrm{~g}$.
4. (A) Explanation : $2 \mathrm{Ag}+\mathrm{S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}$
$2 \times 108 \mathrm{~g}$ of Ag reacts with 32 g of sulphur
10 g of Ag reacts with $\frac{32}{216} \times 10=\frac{320}{216}>1 \mathrm{~g}$
It means ' S ' is limiting reagent
32 g of S reacts to form $216+32=248 \mathrm{~g}$ of $\mathrm{Ag}_{2} \mathrm{~S}$
1 g of S reacts to form $=\frac{248}{32}=7.75 \mathrm{~g}$
Alternately
$n_{\text {eq }}$ of $\mathrm{Ag}=\frac{10}{108}=0.0925 \quad n_{\text {eq }}$ of $S=\frac{1}{16}=0.0625 \quad$ (n eq $=$ number of equivalents)
Since $n_{\text {eq }}$ of S is less than $n_{\text {eq }}$ of $A g$
$\Rightarrow 0.0625$ eq of Ag will react with 0.0625 eq of S to form 0.0625 eq of $\mathrm{Ag}_{2} S$
Hence , amount of $\mathrm{Ag}_{2} \mathrm{~S}=\mathrm{n}_{\text {eq }} \times$ Eq. wt. of $\mathrm{Ag}_{2} \mathrm{~S}=0.0626 \times 124=7.75 \mathrm{~g}$
5.

6. Let wt. of $\mathrm{Fe}=100 \mathrm{~g}$ so wt. of $\mathrm{O}_{2}=10 \mathrm{~g}$

$$
2 \mathrm{Fe}+\frac{3}{2} \mathrm{O}_{2} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

by the stoichiometry of the reaction $\frac{10}{32}$ mole of O_{2} will combine with $\frac{10}{24}$ mole of Fe

$$
\text { wt. of } \mathrm{Fe}=\frac{10}{24} \times 56=23.3 \mathrm{~g} \text { or } 23.3 \% \text {. }
$$

7. $\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}$
$\left.\mathrm{nC}_{2} \mathrm{H}_{4} \longrightarrow+\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{\mathrm{n}}$
From equation (1)
mole of $\mathrm{CaC}_{2}=$ mole of $\mathrm{C}_{2} \mathrm{H}_{4}$

$$
\frac{64 \times 10^{3}}{64}=\text { mole of } \mathrm{C}_{2} \mathrm{H}_{4}
$$

```
From equation (2)
    \(\frac{\text { mole of } \mathrm{C}_{2} \mathrm{H}_{4}}{\mathrm{n}}=\frac{\text { mole of polymer }}{1}\)
    \(\frac{10^{3}}{\mathrm{n}}=\frac{\mathrm{wt} \text {. of polymer }}{\mathrm{n}(28)}\)
```

wt of polymer $=28 \times 10^{3} \mathrm{~g}=28 \mathrm{Kg}$
8. Let of mol of Fe undergoing formation of $\mathrm{FeO}=x$

Let mol of Fe undergoing formation of $\mathrm{Fe}_{2} \mathrm{O}_{3}=1-\mathrm{x}$

As given, $\quad \frac{x}{24}+\frac{3}{4}(1-x)=0.65=$ Total moles of oxygen $x=0.4=$ moles of FeO
$\frac{1-x}{2}=0.3=$ moles of of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
$\Rightarrow \quad \frac{\text { Mole of } \mathrm{FeO}}{\text { Mole of } \mathrm{Fe}_{2} \mathrm{O}_{3}}=\frac{4}{3}$
9.
$\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CO}$
$\frac{x}{12} \quad \frac{y}{32}$
0 32

Initial mole
final mole $\quad 0 \quad \frac{y}{32}-\left(\frac{x}{12}\right) \frac{1}{2}$
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
For no solid residue C should be zero in eq. (1)
For that $\frac{y}{32}-\frac{x}{12} \times \frac{1}{2}>0$

$$
\begin{aligned}
& \frac{y}{32}>\frac{x}{24} \\
& \frac{y}{x}>\frac{32}{24} \\
& \frac{y}{x}>1.33
\end{aligned}
$$

10. $(\mathrm{C}+\mathrm{S}) \longrightarrow \mathrm{CO}_{2}+\mathrm{SO}_{2}$

$$
\mathrm{n}_{\mathrm{SO}_{2}}=\frac{\mathrm{n}_{\mathrm{CO}_{2}}}{2}
$$

Let wt. of $C=x$
So, wt. of $S=12-x$
$\frac{12-x}{32}=\frac{1}{2}\left(\frac{x}{12}\right)$
$x=5.14 \mathrm{~g}$.
11. $\underset{(+2)(-2)}{\mathrm{ZnS}}+\underset{(+5)}{\mathrm{HNO}_{3}} \longrightarrow \underset{(+2)}{\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}}+\underset{(+6)}{\mathrm{H}_{2} \mathrm{SO}_{4}}+\underset{(+4)}{\mathrm{NO}_{2}}$
13. On balacing Na atoms on both sides of reaction, we get :
$y=6 x$.
$\therefore \quad x: y=1: 6 \quad$ (only A option matches).
14. Balance reaction is
$2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{MnSO}_{4}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}$
$\therefore \quad$ Sum of stoichiometric coefficients $=2+5+3+2+5+8+1=26$
15. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$\left(\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}\right) \times 3$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+8 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2}$
The reaction practically occurs with this stoichiometry.
16. Molar fraction \& molality is independent of temperature.
17. $M=\frac{\% \text { by weight } \times 10 \times d}{M w_{2}}=\frac{36.5 \times 10 \times 1.2}{36.5}=12 \mathrm{M}$
$\mathrm{m}=\frac{36.5 \times 1000}{36.5 \times(100-36.5)}=\frac{1000}{63.5}=15.7 \mathrm{~m}$
18. 1000 mL solution contain 2 mole of ethanol or $1000 \times 1.025 \mathrm{~g}$ solution contain 2 mole of ethanol $w t$. of solvent $=1000 \times 1.025-2 \times 46$
$m=\frac{2}{1000 \times 1.025-2 \times 46} \times 1000$
$m=\frac{2}{933} \times 1000=2.143$
19. Mole fraction of $\mathrm{H}_{2} \mathrm{O}=1-0.25=0.75$
$\frac{\mathrm{x}_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}}{\mathrm{X}_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}+\mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}}=\frac{\mathrm{n}_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}}{\mathrm{n}_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}} \quad$ or $\quad w t . \%=\frac{0.25 \times 46}{0.25 \times 46+0.75 \times 18} \times 100=46 \%$.
20. Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ formed by $4 \mathrm{~g} \mathrm{SO}_{3}=4.9 \mathrm{~g}$

Mass $\%$ of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{100 \times 1.96 \times 0.8+4.9}{100 \times 1.96+4}=80.8 \%$
21. Mass of ethyl alcohol $=1.5 \times 0.792 \mathrm{~g}$

Mass of water $=15 \times 1$
Total mass of solution $=15+0.792 \times 15=26.88$
Volume of solution $=\frac{\text { mass }}{\text { density }}=\frac{26.88}{0.924}=29.09$
$\%$ decrease in volume $=\left(\frac{30-29.09}{30}\right) \times 100 \approx 3 \%$.

PART - II

1. Mole of $\mathrm{SO}_{4}{ }^{2-} 4 \times 1.25=5 \mathrm{~g}$ ion.
2. $\mathrm{C}: \mathrm{O}: \mathrm{S}=3: 2: 4$

Hydrogen is $=7.7 \%$
$\therefore 100-7.7=92.3 \%$ contains C,O \& S

$$
\% \mathrm{C}=\left(\frac{3}{3+2+4}\right) \times 92.3 \quad ; \quad \% \mathrm{O}=\frac{2}{9} \times 92.3 ; \quad \% \mathrm{~S}=\frac{4}{9} \times 92.3
$$

Elements	$\%$	$\% /$ Atomic mass	Simple ratio	Simplest whole no.
H	7.7	7.7	6	6
C	30.76	$30.76 / 12=2.56$	2	2
O	20.51	$20.15 / 16=1.28$	1	1
S	41.02	$41.02 / 32=1.28$	1	1

\therefore empirical formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
minimum molar mass $=24+6+16+32=78$
3. Balanced chemical equation is

$$
\begin{aligned}
& \left.\left.4 \mathrm{nXeF}_{6}++\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{n} \longrightarrow+\mathrm{CF}_{2}-\mathrm{CF}_{2}\right)_{\mathrm{n}}+4 \mathrm{nHF}+4 \mathrm{nXeF}_{4} \\
& n_{\text {teflon }}=\frac{100}{100 \mathrm{n}}=\frac{1}{\mathrm{n}} \\
\therefore \quad & n_{\text {XeF }}^{6} \\
\text { required } & =\frac{1}{n} \times 4 n=4 \text { moles }
\end{aligned}
$$

4. (Atomic weight of Al and $\mathrm{Cr}=27$ and 52 , M.wt. of $\mathrm{Cr}_{2} \mathrm{O}_{3}=152$)

Moles of $\mathrm{Al}=\frac{49.8 \mathrm{~g}}{27 \mathrm{~g} \mathrm{Al}}=18.4 \mathrm{~mol}$

$$
=\frac{18.4}{2}=9.2 \mathrm{~mol} \text { of } \mathrm{Cr}_{2} \mathrm{O}_{3}
$$

Moles of $\mathrm{Cr}_{2} \mathrm{O}_{3}=\frac{200 \mathrm{~g}}{152 \mathrm{~g} \mathrm{Cr}_{2} \mathrm{O}_{3}}=1.31 \mathrm{~mol}$
Since 2 mol Al is required for 1 mol of $\mathrm{Cr}_{2} \mathrm{O}_{3}$.
So, Al is the limiting reagent and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is in excess. Moles of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is excess

$$
=(1.31-.92)=0.4 \mathrm{~mol}
$$

Weight of excess $\mathrm{Cr}_{2} \mathrm{O}_{3}=0.4 \times 152=60 \mathrm{~g} \mathrm{Cr}_{2} \mathrm{O}_{3}$
5. From one mole of initial mixture, some FeO must have reacted with oxygen and got converted into $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

	$4 \mathrm{FeO}+\mathrm{O}_{2} \longrightarrow$	$2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
Initial moles	$\frac{3}{5}$	$\frac{2}{5}$
Final moles	$\frac{3}{5}-x$	$\frac{2}{5}+\frac{x}{2}$

But, final moles ratio is $2: 3$.

$$
\begin{array}{ll}
\therefore & \frac{\left(\frac{3}{5}-x\right)}{\left(\frac{2}{5}+\frac{x}{2}\right)}=\frac{2}{3} \\
\therefore & x=\frac{1}{4}
\end{array}
$$

$$
\begin{array}{ll}
\therefore & \text { Moles of } \mathrm{FeO} \text { reacted }=\mathrm{x}=\frac{1}{4} \\
\therefore & \text { Moles of } \mathrm{O}_{2} \text { required }=\frac{1}{4}(\mathrm{x})=\frac{1}{16}=0.0625 \\
\therefore & \text { Mass of } \mathrm{O}_{2} \text { required }=0.0625 \times 32=2 \mathrm{~g}
\end{array}
$$

6. $\mathrm{F}_{2}+2 \mathrm{NaOH} \longrightarrow \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{NaF}+\mathrm{H}_{2} \mathrm{O}$

Mole $50 \times 10^{3} \quad 2\left[50 \times 10^{3}\right]$ $2 \mathrm{NaF}+\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaF}_{2}+2 \mathrm{NaOH}$
$2 \times\left[50 \times 10^{3}\right] \quad 50 \times 10^{3}$ Mole
Weight of lime $(\mathrm{CaO})=50 \times 10^{3} \times 56$

$$
=2800 \mathrm{~kg} .
$$

Feed amount of lime $=10,000$
$\%$ Utilisation $=\frac{2800}{10,000} \times 100=28 \%$
7. $\mathrm{n}_{\mathrm{Cl}_{2}}=\frac{112}{22.4}=5$
$n_{\text {KOH }}=1 \times 10=10$

8. $\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{CO}$

POAC on ' C ' atom, $1($ mole of C$)=1\left(\right.$ mole of $\left.\mathrm{CO}_{2}\right)+1($ mole of CO$)$
$\frac{240}{12}=$ mole of $\mathrm{CO}_{2}+\frac{280}{28}$
Mole of $\mathrm{CO}_{2}=20-10=10$
Mole $\%$ of $\mathrm{CO}_{2}=\frac{10}{20} \times 100=50 \%$.
9. $A+\frac{1}{2} B_{2} \longrightarrow A B, 100 \mathrm{Kcal}$
$x \quad x / 2 \quad x$
$\mathrm{A}+2 \mathrm{~B}_{2} \longrightarrow \mathrm{AB}_{4}, 200 \mathrm{Kcal}$
(1-x) 2(1-x) (1-x)
$100 x+200(1-x)=140$
$200-100 x=140$
$x=\frac{60}{100}=0.6$
$\mathrm{n}_{\mathrm{B}_{2}}$ used $=\frac{\mathrm{x}}{2}+2(1-\mathrm{x})=\frac{1}{2} \times 0.6+2(1-0.6)=0.3+2 \times 0.4=1.1 \mathrm{~mol}$
Ans $=1.1 \times 10=11$
10. Let x be the mass of CaCO_{3} hence mass of $\mathrm{MgCO}_{3}=92-\mathrm{x}$

CaCO_{3}	MgCO_{3}
x	92-x
$100 \downarrow$	84
$\mathrm{CaO}+\mathrm{CO}_{2}$	$\mathrm{MgO}+\mathrm{CO}_{2}$
x	$92-\mathrm{x}$
100	84
mass of resid	$=48 \mathrm{~g}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{x}{100} \times 56+\frac{92-x}{84} \times 40=48 \\
& \Rightarrow \quad \frac{x}{100}+\frac{92-x}{84}=\frac{6}{7} \quad \Rightarrow \quad x=50 \\
& \therefore \quad \text { mass of } \mathrm{MgCO}_{3}=92-50=42 \mathrm{~g} .
\end{aligned}
$$

11. $\mathrm{C}:+4 ; \mathrm{Mn}:+6$ The sum of the oxidation states of all the underlined elements is

$$
4+6=10
$$

12. $\mathrm{H}_{2} \mathrm{SO}_{5}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(+6)
(+2)
13. $2 \mathrm{Cl}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+10 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{Cl}^{-}+5 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \text { is L.R. so } 2 \text { moles of } \mathrm{OH}^{-} \text {will remain. }
$$

14. Balance the equation by any method

$$
\begin{aligned}
& 4 \mathrm{Zn}+10 \mathrm{HNO}_{3} \longrightarrow 4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \therefore a+b+c=4+3+1=8
\end{aligned}
$$

15. Let $w g$ water in added to $16 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}$

$$
\text { molality }=\frac{16 \times 1000}{W \times 32}=\frac{500}{W}
$$

$$
\frac{500}{W}=\frac{x_{A} \times 1000}{\left(1-x_{A}\right) m_{B}}=\frac{0.25 \times 1000}{0.75 \times 18} \quad W=27 \mathrm{~g} .
$$

16. Molarity $=\frac{10 \times 1.8 \times 98}{98}=18 \mathrm{M}$
17. Use $\mathrm{M}=\frac{\text { \% by weight } \times 10 \times \mathrm{d}}{\mathrm{Mw}_{2}}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$\frac{90 \times 10 \times 0.8}{46} \times V=\frac{10 \times 10 \times 0.9}{46} \times 80$
$\mathrm{V}=10 \mathrm{~mL}$
18. Molarity of $\mathrm{HCl}=\frac{\text { Total moles of } \mathrm{HCl}}{\text { Total volume }}=\frac{5 \times 2}{2+3}=2 \mathrm{M}$
19. $\mathrm{MCl}_{x}+\mathrm{x} \mathrm{AgNO}_{3} \longrightarrow \mathrm{xAgCl}+\mathrm{M}\left(\mathrm{NO}_{3}\right)_{x}$
$\frac{\text { Mole of } \mathrm{MCl}_{\mathrm{x}}}{1}=\frac{\text { Mole of } \mathrm{AgNO}_{3}}{x}$
$0.1=\frac{1}{x}(0.5 \times 0.8)$
$\mathrm{x}=\frac{0.4}{0.1}=4$

PART - III

1. Mole of $\mathrm{NH}_{3}=1.7=0.1 \quad$ Mole H atom $=0.3$

Total atoms $=0.4 \times 6.02 \times 10^{23}=2.408 \times 10^{23}$
$\% \mathrm{H}=\frac{3 \times 1}{17} \times 100=17.65 \%$
2.
(A) and (B) Explanation :
M. Wt. $=0.001293 \times 22400=28.96$
M.Wt. $=d \times$ volume of 1 mole of gas at STP
V. D. $=\frac{28.96}{2}=14.48$

So (A) and (B) are correct answer.
3. $0.5 \times \mathrm{n}=\frac{216}{108}=\mathrm{mol}$ of Ag
$\mathrm{n}=4$
M.wt $=58+[165] \mathrm{n} \mathrm{g} / \mathrm{mol}=718 \mathrm{~g} / \mathrm{mol}$
4.
mass
moles

C is limiting reagent
Moles of CO_{2} produced $=$ moles of $\mathrm{C}=\frac{27}{12}=2.25$
\therefore Volume of CO_{2} at $\mathrm{STP}=2.25 \times 22.4=50.4 \mathrm{~L}$
Ratio of C and O in $\mathrm{CO}_{2}=12: 32=3: 8$
Moles of unreacted $\mathrm{O}_{2}=2.75-2.25=0.5$
\therefore Volume of unreacted O_{2} at $\mathrm{STP}=0.5 \times 22.4=11.2 \mathrm{~L}$
5. $\left(\mathrm{Mw}\right.$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106, \mathrm{Mw}$ of $\mathrm{HCl}=36.5, \mathrm{Mw}$ of $\left.\mathrm{NaCl}=58.5\right)$

Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{106}{106}=1.0 \mathrm{~mol}$
Moles of $\mathrm{HCl}=\frac{109.5}{36.5}=3.0 \mathrm{~mol}$
(A) Since for 1 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}, 2 \mathrm{~mol}$ of HCl is required.

So, HCl is in excess $(3-2)=1.0 \mathrm{~mol}$
Therefore, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is the limiting quantity.
(B) Weight of NaCl formed $=\left(1.0 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}\right)\left(\frac{2 \mathrm{~mol} \mathrm{NaCl}}{\mathrm{mol} \mathrm{Na} \mathrm{CO}_{3}}\right)\left(\frac{58.5 \mathrm{~g} \mathrm{NaCl}}{\mathrm{mol} \mathrm{NaCl}}\right)$

$$
=1 \times 58.5=117.0 \mathrm{~g} \mathrm{NaCl}
$$

(C) 1 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}=1 \mathrm{~mol}$ of $\mathrm{CO}_{2}=22.4 \mathrm{~L}$ at NTP
6.

(i) $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$	$3 \mathrm{H}_{2} \mathrm{SO}_{4}$	$2 \mathrm{~K}_{2} \mathrm{SO}$	$+\mathrm{FeSO}$	$+6 \mathrm{HCN}$
1 mole	5 mole			
1/1	5/3			
(1-1)	(5-3 $\times 1$)	2×1	1×1	6×1
0 mole	2 mole	2 mole	1 mole	6 mole

Limiting reagent in step (i) is $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(ii) $6 \mathrm{HCN}+12 \mathrm{H}_{2} \mathrm{O} \longrightarrow 6 \mathrm{HCOOH}+6 \mathrm{NH}_{3}$ 6 mole (excess) 0 6 6 mole

$6 \mathrm{NH}_{3}$	$+3 \mathrm{H}_{2} \mathrm{SO}$	$3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
6 mole	2 mole	0
6/6	2/3	

Limiting 6/6 2/3 reagent

$\left(6-\frac{2}{3} \times 6\right)$	$\left(2-\frac{2}{3} \times 3\right)$	$\left(3 \times \frac{2}{3}\right)$
2 mole	0 mole	2 mole

(b) $\underset{6 \text { mole }}{6 \mathrm{HCOOH}} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \underset{0 \text { mole }}{6 \mathrm{CO}}+\underset{0 \text { mole }}{6 \mathrm{H}_{2} \mathrm{O}}$ 0 mole 6 mole 6 mole
Limiting reagent in step (i) is $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=2 \mathrm{~mol}$
CO gas $=6 \mathrm{~mol}$
7.

	3A	+	2B	\longrightarrow	$\mathrm{A}_{3} \mathrm{~B}_{2}$
initial mole	3		3		0
final mole	0		3-2		1
	$\mathrm{A}_{3} \mathrm{~B}_{2}$	+	2 C		$\mathrm{A}_{3} \mathrm{~B}_{2} \mathrm{C}_{2}$
initial mole	1		1		0
final mole	$1-\frac{1}{2}$		0		$\frac{1}{2}$
$\mathrm{CaCl}_{2} \rightarrow \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}$				$\frac{1.12}{56}=0.02$ mole CaO	
\therefore Moles of $\mathrm{CaCl}_{2}=0.02$ Mole					
Mass of $\mathrm{CaCl}_{2}=0.02 \times 111=2.22 \mathrm{~g}$					
$\therefore \%$ of CaCl	$\frac{2.22}{4.44}$		\%		

9. (A) Weight of $\mathrm{CaCO}_{3}=\left(0.22 \mathrm{~g} \mathrm{CO}_{2}\right)$
$\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44 \mathrm{~g} \mathrm{CO}_{2}}\right)\left(\frac{100 \mathrm{~g} \mathrm{CaCO}_{3}}{\mathrm{~mol} \mathrm{CaCO}_{3}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{\mathrm{~mol} \mathrm{CO}_{2}}\right)=\frac{0.22 \times 100}{44}=0.5 \mathrm{~g} \mathrm{CaCO}_{3}$
(B) Moles of $\mathrm{CaCO}_{3}=$ moles of $\mathrm{Ca}=\left(\frac{0.22}{44}\right)=0.005 \mathrm{~mol}$

Weight of $\mathrm{Ca}=0.005 \times 40=0.2 \mathrm{~g} \mathrm{Ca}$
(D) $\%$ of $\mathrm{Ca}=\frac{0.2}{1.0} \times 100=20 \% \mathrm{Ca}$

Hence (C) is wrong.
10. Mw of $\mathrm{CaCO}_{3}=100, \mathrm{Mw}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106$

Mw of $\mathrm{HNO}_{3}=63 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl}$
(a) moles of $\mathrm{CaCO}_{3}=\frac{10}{100}=0.1 \mathrm{~mol}$
moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ moles of $\mathrm{CaCO}_{3} \equiv 2 \times$ moles of NaCl
Weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.1 \times 106=10.6 \mathrm{~g}$
$\%$ purity $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{10.6}{21.2}=100=50 \%$
(b) wrong
(c) correct
(d) moles of $\mathrm{NaCl}=2 \times 0.1=0.2 \mathrm{~mol}$
11.

Silica $\mathrm{H}_{2} \mathrm{O}$ Impurities
$\%$ in original clay $\Rightarrow \quad 40 \quad 19 \quad 100-(40+19)=41$
$\%$ after partial drying $\Rightarrow \mathrm{a} \quad 10 \quad 100-(a+10)=90-\mathrm{a}$
On heating, only water evaporates from clay, whereas silica and impurities are left as it is. Therefore, \% ratio of silica and impurities remains unchanged, i.e.
$\frac{40}{a}=\frac{41}{90-a}, \therefore a=44.4 \%$
$\%$ of mipurities after partial drying $=(90-\mathrm{a})=(90-44.4)=45.6 \%$
12. (A) Oxidation state of K is +1 in both reactant and product.

In (B), oxidation state of $\mathrm{Cr}(+6)$ does not change.
In (C), oxidation states of Ca and C and O do not change.
In (D), the $\mathrm{H}_{2} \mathrm{O}_{2}$ which disproportionates is both oxidising and a reducing agent.
13. S undergoes increase in oxidation number from +2 to +2.5 , while I undergoes decrease in oxidation number from 0 to -1 .
14. In (C) option, Cl goes from +5 to +7 and -1 , while in (D) option, Cl goes from 0 to +1 and -1 .
15. Cr oxidises from +3 to +6 while I reduces from +5 to -1 . One I atom gain 6 electron.
16. $\left.4 \mathrm{H}_{2} \mathrm{O}+{ }_{\mathrm{C}}^{\mathrm{Cu}} \mathrm{Cu}_{3} \mathrm{P} \longrightarrow 3 \mathrm{Cu}^{2+}+\mathrm{H}_{3} \mathrm{PO}_{4}+11 \mathrm{e}^{-}+5 \mathrm{H}^{+}\right] \times 6$
$\left.6 \mathrm{e}^{-}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\right] \times 11$
$6 \mathrm{Cu}_{3} \mathrm{P}+124 \mathrm{H}^{+}+11 \mathrm{Cr}_{2} \mathrm{O}^{2}{ }^{2-} \longrightarrow 18 \mathrm{Cu}^{2+}+6 \mathrm{H}_{3} \mathrm{PO}_{4}+22 \mathrm{Cr}^{3+}+53 \mathrm{H}_{2} \mathrm{O}$
18. $\left[\mathrm{Mw}\right.$ of $\mathrm{KI},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, \mathrm{CuSO}_{4}, \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ and Al^{3+}, respectively, are, 166, 132, 160, 250 and 27 g mol^{-1}]
(A) $\mathrm{M}=\frac{166 \times 1000}{166 \times 1000}=1.0 \mathrm{M}$
(B) $\mathrm{M}=\frac{33 \times 1000}{132 \times 200}=1.25 \mathrm{M}$
(C) $\mathrm{M}=\frac{25 \times 1000}{250 \times 100}=1.0 \mathrm{M}$
(D) $\mathrm{M}=\frac{27 \times 10^{-3} \times 1000}{27 \times 1}=1.0 \mathrm{M}$
20. (A) Molarity of second solution is $=\frac{10 \times d \times x}{M}=1 \mathrm{M} \quad$ (B) Volume $=100+100=200 \mathrm{ml}$
(D) Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{200 \times 1}{1000} \times 98=19.6 \mathrm{~g}$.
21. $\quad V m l 0.1 \mathrm{M} \mathrm{NaCl}$

Vml $0.1 \mathrm{M} \mathrm{FeCl}_{2}$
$\left[\mathrm{Na}^{+}\right]=\frac{\mathrm{V} \times 0.1}{\mathrm{~V}+\mathrm{V}}=0.05 \mathrm{M}$
$\left[\mathrm{Fe}^{2+}\right]=\frac{\mathrm{V} \times 0.1}{\mathrm{~V}+\mathrm{V}}=0.05 \mathrm{M}$
$\left[\mathrm{Cl}^{-}\right]=\frac{\mathrm{V} \times 0.1+\mathrm{V} \times 0.1 \times 2}{\mathrm{~V}+\mathrm{V}}=0.15 \mathrm{M}$

PART - IV

4. $\quad 11.2 \mathrm{~g}$ of $\mathrm{N}_{2} \Rightarrow \frac{11.2}{28}=0.4$ mole
\therefore air $=0.5$ mole $\quad \Rightarrow \quad 0.5 \times 22.4=11.2 \mathrm{Ltr}$ air
5. 1 mole of air $\Rightarrow 0.8$ mole of $\mathrm{N}_{2}=0.8 \times 28 \mathrm{~g} \mathrm{~N}_{2}$

$$
\Rightarrow 0.2 \text { mole of } \mathrm{O}_{2}=0.2 \times 32 \mathrm{~g} \mathrm{O}_{2}
$$

$\therefore \quad \% \mathrm{w} / \mathrm{w} \mathrm{O}_{2}=\frac{\mathrm{w}_{\mathrm{O}_{2}} \times 100}{\mathrm{w}_{\mathrm{O}_{2}}+\mathrm{w}_{\mathrm{N}_{2}}}=\frac{0.2 \times 32 \times 100}{0.2 \times 32+0.8 \times 28}=22.2 \%$
6. Density of air at NTP

1 mole of air $=0.8$ mole $\mathrm{N}_{2}+0.2{\text { mole } \mathrm{O}_{2}}^{2}$

$$
=0.8 \times 28+0.2 \times 32=28.8 \mathrm{~g}=22.4 \mathrm{Ltr} \text { volume } .
$$

$D=\frac{m}{V}=\frac{22.8}{22.4}=1.2857 \mathrm{~g} / \mathrm{L}$
10. $\%$ of $(w / w)=\frac{\text { Total mass of solute }}{\text { Total mass of solution }}=\frac{60 \times 0.4+100 \times 0.15}{60+100} \times 100=24.4 \%$.
11. Mass of solute $=60 \times 0.4+100 \times 0.15=24+15=39 \mathrm{~g}$

Mass of solvent $=160-39=121 \mathrm{~g}$
Molality $=\frac{\left(\frac{39}{58.5}\right)}{121 \times 10^{-3}}=5.509=5.5 \mathrm{~m}$.
12. Mass of solute $=39 \mathrm{~g}$

Volume of solution $=\frac{160}{1.6}=100 \mathrm{ml}$
\therefore Molarity $=\frac{\left(\frac{39}{58.5}\right)}{100 \times 10^{-3}}=6.67 \mathrm{M}$
15. (i) Mass of pure $\mathrm{CsOH}=\frac{37.5 \times 80}{100}=30 \mathrm{~g}$

Base in L.R., $\left[\mathrm{H}^{+}\right]=0.2 \mathrm{M} \quad\left[\mathrm{Cs}^{+}\right]=0.2 \mathrm{M} \quad\left[\mathrm{l}^{-}\right]=0.4 \mathrm{M}$
(ii) RbOH pure $=\frac{51.25 \times 80}{100}=41 \mathrm{~g}$

RbOH $\frac{41}{102.5}$	$\mathrm{HNO}_{3} \longrightarrow$	$\mathrm{RbNO}_{3}+\mathrm{H}_{2} \mathrm{O}$	
0.4 mole	$\frac{0.2 \times 500}{1000}$	-	-
0.3 mole	0.1 mole		
0	0	0.1 mole	

Acid in L.R., $\left[\mathrm{OH}^{-}\right]=0.3 \mathrm{M} \quad\left[\mathrm{Rb}^{+}\right]=0.4 \mathrm{M} \quad\left[\mathrm{NO}_{3}^{-}\right]=0.1 \mathrm{M}$
(iii) $\mathrm{Sr}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{SrSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \quad\left[\right.$ Pure $\left.\mathrm{Sr}(\mathrm{OH})_{2}=61 \times 0.8=48.8 \mathrm{gm}\right]$

$\frac{48.8}{121.62}$	$\frac{0.8 \times 500}{1000}$	-
0.4 mole	0.4 mole	

$\left[\mathrm{Sr}^{-}{ }^{2+}\right]=\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.4 \mathrm{M}$ \qquad
0.4 mole

```
(iv) \(\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HBr} \longrightarrow \mathrm{BaBr}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad\left[\right.\) Pure \(\left.\mathrm{Ba}(\mathrm{OH})_{2}=342 \times 0.8=273.6 \mathrm{gm}\right]\)
\(\frac{273.6}{171}\)
1.6 mole
\(\left[\mathrm{Ba}^{-}+\right]=1.6 \mathrm{M}\)
\(\left[\mathrm{Ba}^{-}+\right]=1.6 \mathrm{M}\)
\(\frac{6.4 \times 500}{1000}\)
3.2 mole
    - 1.6 mole
\(\left[\mathrm{Br}^{-}\right]=3.2 \mathrm{M}\)
```


EXERCISE \# 3

PART - I

1. $\mathrm{MnO}_{4}^{-} ; x+4(-2)=-1$
$\mathrm{CrO}_{2} \mathrm{Cl}_{2} ; \mathrm{x}+2(-2)+2(-1)=0$
or $\quad x=+7$;
or $\quad x=+6$.
2. (i) $4.0 \mathrm{M}, 500 \mathrm{ml} \mathrm{NaCl}$
no. of m moles of $\mathrm{NaCl}=500 \times 4=2000 \mathrm{~m}$ moles $=2$ moles $=2$ moles Cl^{-}ions
as $\quad 2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
so $\quad 1 \mathrm{~mole}$ of Cl_{2} is generated.
(ii) no. of moles of $\mathrm{Na}^{+}=2$ moles
so max. wt of Na amalgam (assuming equimolar $\mathrm{Na} \& \mathrm{Hg}$)

$$
=46+400=446 \mathrm{~g} .
$$

(iii) Two moles of e^{-}are required $=2 \times 96500 \mathrm{C}=193000 \mathrm{C}$.
3. Average titre value $=\frac{25.2+25.25+25.0}{3}=\frac{75.45}{3}=25.15=25.2 \mathrm{~mL}$ number of significant figures will be 3 .
4.

So, the difference in oxidation state of sulphur is $5-0=5$
5. The balance chemical equation is
$3 \mathrm{Br}_{2}+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 5 \mathrm{NaBr}+\mathrm{NaBrO}_{3}+3 \mathrm{CO}_{2}$
6. Mole $=\frac{120}{60}=2$
mass of solution $=1120 \mathrm{~g}$
$V=\frac{1120}{1.15 \times 1000}=\frac{112}{115} L$
$\mathrm{M}=\frac{2 \times 115}{112}=2.05 \mathrm{~mol} / \mathrm{litre}$
7. $29.2 \%(\mathrm{w} / \mathrm{w}) \mathrm{HCl}$ has density $=1.25 \mathrm{~g} / \mathrm{ml}$

Now, mole of HCl required in $0.4 \mathrm{M} \mathrm{HCl}=0.4 \times 0.2$ mole $=0.08$ mole
if v mol of orginal HCl solution is taken
then volume of solution $=1.25 \mathrm{v}$
mass of $\mathrm{HCl}=(1.25 \mathrm{v} \times 0.292)$
mole of $\mathrm{HCl}=\frac{1.25 \mathrm{v} \times 0.292}{36.5}=0.08$
so, $v=\frac{36.5 \times 0.08}{0.29 \times 1.25} \mathrm{~mol}=8 \mathrm{~mL}$
8. $\quad 6 \mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+6 \mathrm{HSO}_{4}^{-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Hence, I^{-}is oxidised to I_{2}
Coefficient of $\mathrm{HSO}_{4}^{-}=6$
and $\mathrm{H}_{2} \mathrm{O}$ is one of the product.
Hence (A), (B), (D)
9. Given 3.2 M solution
\therefore moles of solute $=3.2 \mathrm{~mol}$
Consider 1 L Solution.
\therefore volume of solvent $=1 \mathrm{~L}$
$P_{\text {solvent }}=0.4 \mathrm{~g} . \mathrm{mL}^{-1} \quad \therefore \mathrm{~m}_{\text {solvent }}=\mathrm{P} \times \mathrm{V}=400 \mathrm{~g}$
\therefore molality $=\frac{3.2 \mathrm{~mol}}{0.4 \mathrm{~kg}}=8 \mathrm{molal}$
10. Molality $(\mathrm{m})=\frac{\mathrm{X}_{\text {solute }} \times 1000}{\mathrm{X}_{\text {solvent }} \times \mathrm{M}_{\text {solvent }}}=\frac{0.1 \times 1000}{0.9 \times \mathrm{M}_{\text {solvent }}}$

Molarity $(M)=\frac{0.1 \times 2 \times 1000}{0.1 \mathrm{M}_{\text {solute }}+0.9 \mathrm{M}_{\text {solvent }}}$
As Molality = Molarity
So $\quad \frac{0.1 \times 1000}{0.9 \times \mathrm{M}_{\text {solvent }}}=\frac{0.1 \times 2 \times 1000}{0.1 \mathrm{M}_{\text {solute }}+0.9 \mathrm{M}_{\text {solvent }}}$
So $\quad 0.1 \mathrm{M}_{\text {solute }}+0.9 \mathrm{M}_{\text {solvent }}=1.8 \mathrm{M}_{\text {solvent }}$
So $\quad \frac{M_{\text {solute }}}{M_{\text {solvent }}}=9$
So \quad Ans is $=9$
11. Correct order: $\underset{(+5)}{\mathrm{H}_{3} \mathrm{PO}_{4}}>\underset{(+4)}{\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}}>\underset{(+3)}{\mathrm{H}_{3} \mathrm{PO}_{3}}>\underset{(+1)}{\mathrm{H}_{3} \mathrm{PO}_{2}}$
12. Mole fraction of urea in aqueous solution $=0.05$

Let number of moles of solution is $=1 \mathrm{~mole}$

	Mole	Mass	Volume
Solute	0.05	3 g	
Solvent	0.95	17.1 g	
Solution	1	20.1 g	$20.1 / 1.2 \mathrm{~cm}^{3}$

Molarity $=\frac{\mathrm{n}_{\text {solute }}}{\mathrm{V}_{\text {solution (inmL) }}} \times 1000=\frac{0.05 \times 1.2}{20.1} \times 1000=\frac{60}{20.1}=2.985$
Answer after rounding off $=2.98$
Answer after truncation $=2.98$

PART - II

8. $\mathrm{BaCl}_{2} \cdot \mathrm{xH}_{2} \mathrm{O} \longrightarrow \mathrm{BaCl}_{2}+\mathrm{xH}_{2} \mathrm{O}$.

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{H}_{2} \mathrm{O}}=61-52=9 \mathrm{~g} \\
\Rightarrow \quad & \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{9}{18}=\frac{1}{2} \\
& \mathrm{~m}_{\mathrm{BaCl}_{2}}=52 \quad \Rightarrow \quad \mathrm{n}_{\mathrm{BaCl}_{2}}=\frac{52}{208}=\frac{1}{4} \\
\Rightarrow \quad & \text { simplest formula }=\frac{1}{4}: \frac{1}{2}=1: 2 \Rightarrow \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

9. $n_{A}=0.1, n_{B}=1, n_{C}=0.036$

Limiting reagent $=\mathrm{C}$
$\Rightarrow \mathrm{n}_{\text {AB2C3 }}$ formed $=\frac{0.036}{3}=0.012$
$\Rightarrow M_{(A B C 23)} \frac{4.8}{0.012}=400$
$\Rightarrow 60+2 x+80 \times 3=400$

$$
x=50
$$

10. Fluorine is the most electronegative element in periodic table hence it shows -1 oxidation state in all its compounds.
11. $\mathrm{C}_{n} \mathrm{H}_{2 n+2}+\left(\frac{3 n+1}{2}\right) \mathrm{O}_{2} \longrightarrow \mathrm{nCO}_{2}+(\mathrm{n}+1) \mathrm{H}_{2} \mathrm{O}$
$5 \mathrm{~L} \quad 25 \mathrm{~L}$
Since volumes are measured at constant T \& P
So, \quad Volume \propto mole

$$
n_{\text {akkane }}=\left(\frac{3 n+1}{2}\right) \times n_{\mathrm{O}_{2}}
$$

$$
5=\frac{3 n+1}{2} \times 25
$$

$$
n=3
$$

Alkane is propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$.
12. 8 g sulphur present in $=100 \mathrm{~g}$ of organic compound.
$\therefore \quad 32 \mathrm{~g}$ sulphur present in $=\frac{100}{8} \times 32=400 \mathrm{~g}$ of organic compound.
Hence, minimum molecular weight of compound $=400 \mathrm{~g} / \mathrm{mol}$
13. $\mathrm{H}_{3} \mathrm{AsO}_{4} \xrightarrow{\mathrm{H}_{2} / \mathrm{HCl}} \mathrm{As}_{2} \mathrm{~S}_{5}$

Assuming 100% conversion of As, apply POAC rule for 'As' atom
$1 \times \mathrm{n}_{\mathrm{H}_{3} \mathrm{ASO}}^{4}{ }=2 \times \mathrm{n}_{\mathrm{As}_{2} \mathrm{O}_{5}}$
$\frac{35.5}{142}=2 \times \mathrm{n}_{\mathrm{As}_{2} \mathrm{O}_{5}} \quad \therefore \quad \mathrm{n}_{\mathrm{As}_{2} \mathrm{O}_{5}}=0.125 \mathrm{~mol}$
14. $\quad \mathrm{n}_{\mathrm{FeCl}_{3}}=\mathrm{n}_{\mathrm{Fe}(\mathrm{OH})_{3}}$
$n_{\mathrm{FeCl}_{3}}=\frac{2.14}{107}=0.2$; $\quad \mathrm{M}=\frac{0.2}{100} \times 1000=0.2 \mathrm{M}$
15. In $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-} \mathrm{Fe} \& \mathrm{Cu}$ are in their highest stable oxidation state.
16. $2 \mathrm{NaClO}_{3} \xrightarrow{\Delta} 2 \mathrm{NaCl}+3 \mathrm{O}_{2}$
0.16 g
$\frac{n_{\mathrm{NaCl}}}{2}=\frac{\mathrm{n}_{\mathrm{O}_{2}}}{3}$
$\mathrm{n}_{\mathrm{NaCl}}=\frac{0.16}{32} \times \frac{2}{3}=\frac{1}{200} \times \frac{2}{3}=\frac{1}{300}$
$\mathrm{NaCl} \longrightarrow \mathrm{AgCl}$
POAC of Cl
$1 \times n_{\mathrm{NaCl}}=1 \times \mathrm{n}_{\mathrm{AgCl}}$
$\frac{1}{300}=n_{\text {AgCl }}$
Weight of $\mathrm{AgCl}=\frac{1}{300} \times[108+35.5]=\frac{1}{300} \times 143.5=0.48 \mathrm{~g}$
17. $\mathrm{C}_{x} \mathrm{Hy}_{y} \mathrm{Cl}$
$\% \mathrm{Cl}=3.55$
Weight of $\mathrm{Cl}=1 \times \frac{3.55}{100}$
$\mathrm{n}_{\mathrm{Cl}^{-}}=\frac{1 \times 3.55}{100 \times 35.5}$
No of Cl^{-}ion $=\frac{1 \times 3.55}{100 \times 35.5} \times 6.023 \times 10^{23}=6.023 \times 10^{20}$
18. $m=\frac{92}{23}=4$
19. $2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})+163 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 114 \mathrm{CO}_{2}(\mathrm{~g})+110 \mathrm{H}_{2} \mathrm{O}(\ell)$
$445 \mathrm{~g}=\frac{1}{2}$ mole
$\frac{110}{2} \times \frac{1}{2}$ mole $=\frac{110 \times 18}{4} \mathrm{~g}=495 \mathrm{~g}$.
20. Moles of sucrose required $=2 \times 0.1=0.2$
$\mathrm{wt} .=0.2 \times 342 \mathrm{~g}=68.4 \mathrm{~g}$
21.

on applying POAC
we get the formula $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
22. $\quad 2 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Let mass of NaHCO_{3} be $\times \mathrm{mg}$
$\mathrm{n}=\frac{0.25}{25000}=10^{-5}$
$\mathrm{w}=84 \times 10^{-5} \mathrm{~g}$
$\%=\frac{84 \times 10^{-5}}{10^{-2}} \times 100=8.4 \%$
23.
m. mol

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{NaOH}
$$ $\longrightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

$50 \times 0.5 \quad \mathrm{M} \times 25$
At end point $\quad \frac{\mathrm{n}_{\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}}{1}=\frac{\mathrm{n}_{\mathrm{NaOH}}}{2}$
$\mathrm{n}_{\mathrm{NaOH}}=2 \times \mathrm{n}_{\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}$
$\mathrm{M} \times 25=2 \times 50 \times 0.5=2 \mathrm{M}$
$[\mathrm{NaOH}]=2 \mathrm{M}$
Now $\quad n_{\mathrm{NaOH}}$ is $50 \mathrm{ml}=\mathrm{M} \times \mathrm{V}=2 \times \frac{50}{1000}=0.1 \mathrm{~mol}$ mass of NaOH is $50 \mathrm{ml}=4 \mathrm{~g}$
24. $\mathrm{n}_{1}=\frac{8}{40}=0.2$
$\mathrm{n}_{2}=\frac{18}{18}=1$
mole fraction of $\mathrm{NaOH}=\frac{0.2}{1.2}=0.167$
molality $=\frac{8}{40} \times \frac{1000}{18}=11.11$
25. CH_{4}
$\mathrm{n}_{\mathrm{C}}=1 \mathrm{~mole}$
$\mathrm{n}_{\mathrm{H}}=4$ mole
mole percentage of $C=\frac{n_{C}}{n_{C}+n_{H}} \times 100=\frac{1}{1+4} \times 100=20 \%$
26. In the mixture of 56 g of $\mathrm{N}_{2}+10 \mathrm{~g}$ of H_{2}, dihydrogen $\left(\mathrm{H}_{2}\right)$ acts as a limiting reagent.
27. 20 gm KI is present in 100 gm solution

Weight of solvent $=100-20=80 \mathrm{gm}$
moles of solute $=\frac{20}{166}$
molality $(\mathrm{m})=\frac{20}{166 \times 80} \times 1000 \approx 1.51$
28. $\mathrm{C}_{x} \mathrm{H}_{y}+\left(x+\frac{y}{4}\right) \mathrm{O}_{2} \longrightarrow \mathrm{CCO}_{2}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O}$
$10 \mathrm{ml} \quad 55 \mathrm{ml} \quad 40 \mathrm{ml}$
$\because \frac{10}{1}=\frac{40}{x} \quad \therefore x=4$
$\because \frac{10}{1}=\frac{55}{\left(x+\frac{y}{4}\right)} \Rightarrow \frac{10}{1}=\frac{55}{\left(4+\frac{y}{4}\right)} \quad \Rightarrow y=6$
Hydrocarbon is $\mathrm{C}_{4} \mathrm{H}_{6}$
29. (1) Per gram Fe, O_{2} required $=\frac{3}{224}$ mole
(2) Per gram $\mathrm{Mg}, \mathrm{O}_{2}$ required $=\frac{1}{48}$ mole
(3) Per gram $\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{O}_{2}$ required $=\frac{5}{44}$ mole

per gram $\mathrm{P}_{4}, \mathrm{O}_{2}$ required $=\frac{5}{124}$ mole
30. (1) $2 \mathrm{Cu}^{+} \longrightarrow \mathrm{Cu}^{+2}+\mathrm{Cu}^{\circ}$ is a disproportionation reaction
31. Mass of 1 mol of $\mathrm{AB}_{2}: \mathrm{M}_{\mathrm{A}}+2 \mathrm{M}_{\mathrm{B}}=25 \times 10^{-3} \mathrm{~kg}$

$$
\text { Mass of } 1 \mathrm{~mol} \text { of } \mathrm{A}_{2} \mathrm{~B}_{2}: 2 \mathrm{M}_{\mathrm{A}}+2 \mathrm{M}_{\mathrm{B}}=30 \times 10^{-3} \mathrm{~kg}
$$

$\therefore \quad \mathrm{M}_{\mathrm{A}}=5 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$

$$
\mathrm{M}_{\mathrm{B}}=10 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}
$$

32. $\quad X_{\text {solvent }}=0.8 ; \quad X_{\text {solute }}=0.2$
$m=\frac{X_{\text {solute }}}{X_{\text {solvent }}} \times \frac{1000}{18}=\frac{0.2}{0.8} \times \frac{1000}{18}=\frac{250}{18}=13.88 \mathrm{~mol} / \mathrm{kg}$
33. Mass of $\mathrm{CO}_{2}=88 \mathrm{~g}$
\therefore Mass of $C=\frac{12}{44} \times 88=24 \mathrm{~g}$
Mass of $\mathrm{H}_{2} \mathrm{O}=9 \mathrm{~g}$
\therefore Mass of $\mathrm{H}=\frac{2}{18} \times 9=1 \mathrm{~g}$
34. $2 \times$ mole of Urea \equiv mole of NH_{3}
mole of $\mathrm{NH}_{3}=$ mole of HCl
\therefore mole of $\mathrm{HCl}=0.02$ mole
35. $10=\frac{\text { Mass of Fe(ing) }}{100 \times 1000} \times 10^{6}$
or , mass $\mathrm{Fe}=1 \mathrm{~g}$
$\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=277.85)$
55.85 g in 1 mole
$1 \mathrm{~g}-\frac{1}{55.85}$ mole $\quad \frac{1}{55.55} \times 277.55 \mathrm{~g}=4.97 \mathrm{~g}$
36. mol of $\mathrm{NaClO}_{3}=\mathrm{mol}$ of O_{2}
mol of $\mathrm{O}_{2}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{1 \times 492}{0.082 \times 300}=20 \mathrm{~mol}$
mass of $\mathrm{NaClO}_{3}=20 \times 106.5=2130 \mathrm{~g}$
37. As in $\mathrm{H}_{3} \mathrm{PO}_{4}$ Phosphorous is present it's maximum oxidation number state hence it cannot act as reducing agent.
38. $63 \% \mathrm{w} / \mathrm{w} \longrightarrow \mathrm{HNO}_{3}$ solution
$M=\frac{63 \times 1.4}{63 \times 100} \times 1000 \mathrm{~mole} / \mathrm{L}=14 \mathrm{~mole} / \mathrm{L}$
39. $\mathrm{ppm}=\frac{10.3 \times 10^{-3}}{1030} \times 10^{6}=10$
