Exercise-1 > Marked guestions are recommended for Revision. 🖎 चिन्हित प्रश्न दोहराने योग्य प्रश्न है। **OBJECTIVE QUESTIONS (SINGLE CHOICE CORRECT)** वस्तूनिष्ठ प्रश्न (OBJECTIVE QUESTIONS) (SINGLE CHOICE CORRECT) Section (A) : Statements, Truth table, compound statement, Tautology, Fallacy, Algebra of statements खण्ड (A) : कथन, सत्य सारणी, संयुक्त कथन, पुनरूक्ति, विरोधोक्ति, कथनों का बीजगणित A-1. Which of the following is a logical statement? (1) Open the door. (2) What an intelligent student ! (3) Are you going to Delhi? (4*) All prime numbers are odd numbers. निम्न में से कौनसे तार्किक कथन है ? (1) दरवाजा खोलो। (2) कितनी सुन्दर लड़की है! (4*) सभी अभाज्य संख्याएं विषम होती है। (3) क्या आप दिल्ली जा रहे हो ? By definition of 'statement'. 'कथन' की परिभाषा अनुसार। Sol. A-2. Which of the following is not a logical statement? (1) Two plus two equals four. (2) The sum of two positive numbers is positive. (3*) Tomorrow is Friday. (4) Every equilateral triangle is an isosceles triangle. निम्न में से कौनसा तार्किक कथन नहीं है -(2) दो धनात्मक संख्याओं का योग भी धनात्मक होता है। (1) दो धन दो बराबर चार। (4) प्रत्येक समबाह त्रिभुज, समद्धिबाह त्रिभुज होता है। (3*) कल शुक्रवार है। By definition of 'statement'. 'कथन' की परिभाषा अनुसार। Sol. Consider the statement p : "New Delhi is a city". Which of the following is not negation of p? A-3. [Revision Plannar] (1) New Delhi is not a city. (2) It is false that New Delhi is a city. (3*) It is not the case that New Delhi is not a city. (4) It is not the case that New Delhi is a city कथन पर विचार कीजिए p: "नई दिल्ली एक शहर है ". निम्न में से कौनसा p का नकारात्मक कथन नहीं है– (1) नई दिल्ली एक शहर नही है। (2) यह असत्य है कि नई दिल्ली शहर है। (3*) यह सम्भावना नहीं है कि नई दिल्ली शहर नही है। (4) यह सम्भावना नहीं है कि नई दिल्ली शहर है। Obvious Sol. Hindi. स्पष्टतया The negation of the statement $\sqrt{2}$ " is not a complex number" is A-4. (1) $\sqrt{2}$ is a rational number. (2) $\sqrt{2}$ is an irrational number. (3) $\sqrt{2}$ is a real number. (4*) $\sqrt{2}$ is a complex number. कथन √2 " सम्मिश्र संख्या नहीं है" का नकारात्मक कथन है– (2) √2 एक अपरिमेय संख्या है। (1) √2 एक परिमेय संख्या है। (3) $\sqrt{2}$ एक वास्तविक संख्या है। (4*) √2 एक सम्मिश्र संख्या है। Hindi. Negation of A means "not A" A की नकारात्मक से तात्पर्य "A नहीं" Sol.

A-5. Which of the following is not a component statement of the statement '100 is divisible by 5, 10 and 11'?
(1) 100 is divisible by 5
(2) 100 is divisible by 10(3*) 100 is not divisible by 11
(4)100 is divisible by 11

कथन "100 विभाजित है 5, 10 एवं 11 से" के घटक कथन निम्न में से कौन नहीं है ? (1) 100, 5 से विभजित है (2) 100, 10 से विभजित है (3*) 100, 11 से विभजित नहीं है (4)100, 11 से विभजित Sol. Componant statements are (i) 100 is divisible by 5 (ii) 100 is divisible by 10 (iii) 100 is divisible by 11 HIndi. घटक कथन हैं – (i) 100, 5 से विभाजित हैं (ii) 100, 10 से विभाजित है (iii) 100, 11 से विभाजित हैं। A-6. Which of the following statements is using an "inclusive Or"? **RFT-8** [Revision Plannar] (1) A number is either rational or irrational. (2) All integers are positive or negative. (3*) The office is closed if it is a holiday or a Sunday. (4) Sum of two integers is odd or even. निम्न में "संयोजन या" का प्रयोग कर कौनसा कथन बनता है ? (1) एक संख्या या तो परिमेय है या अपरिमेय है। (2) सभी पूर्णांक या तो धनात्मक है 'या ऋणात्मक है। (3*) दफ्तर बंद है यदि छुट्टी है या रविवार है। (4) दो पूर्णांको का योग सम या विषम है। If it is a holiday as well as sunday than also the office can be closed. Sol. Hindi. यदि छुट्टी एवं रविवार दोनों हैं तब भी दफ्तर बंद हो सकता है। A-7. For the compound statement "All prime numbers are either even or odd". Which of the following is true? [Revision Plannar] (1*) Both component statements are false (2) Exactly one of the component statements is true (3) At least one of the component statements is true (4) Both the component statements are true दिये गये संयुक्त कथन "सभी अभाज्य संख्याएं या तो सम है या विषम है" के लिए निम्न में कौन सही है (1*) दोनों घटक कथन असत्य है। (2) सिर्फ एक कथन सत्य है। (3) कम से कम एक घटक कथन सत्य है। (4) दोनों घटक कथन सत्य है। Sol. Statement (1) All prime numbers are even. Statement (2) All prime numbers are odd. Both false Hindi. कथन (1) सभी अभाज्य संख्याएें सम संख्याएें होती है। कथन (2) सभी अभाज्य संख्याऐं विषम संख्याऐं होती है। दोनों असत्य A-8. Statement p : "Kota is in Rajasthan" RFT-8 Statement q : "Bhopal is capital of Madhya Pradesh" then $p \Rightarrow q$ is written as (1) If Kota is in Rajasthan then Bhopal is not capital of Madhya Pradesh. (2) Kota is in Rajasthan and Bhopal is capital of Madhya Pradesh. (3) Kota is in Rajasthan or Bhopal is capital of Madhya Pradesh. (4*) If Kota is in Rajasthan then Bhopal is capital of Madhya Pradesh. कथन p : "कोटा, राजस्थान मे है ' कथन q: " मध्यप्रदेश की राजधानी भोपाल है।" तब p ⇒ q को लिखा जा सकता है। (1) यदि कोटा, राजस्थान में है तब मध्यप्रदेश की राजधानी भोपाल नहीं है। (2) कोटा, राजस्थान में है और मध्यप्रदेश की राजधानी भोपाल है। (3) कोटा, राजस्थान में है या मध्यप्रदेश की राजधानी भोपाल है। (4*) यदि कोटा, राजस्थान में है तब मध्यप्रदेश की राजधानी भोपाल है।

Sol. Obviously (स्पष्टतया) A-9_. Statement p : "Ashok is honest" Statement q : "Ashok is hardworker" then statement "Ashok is honest if and only if he is hardworker" can be written mathematically as कथन p: "अशोक ईमानदार है" कथन q: "अशोक कठिन परिश्रमी है" तब कथन "अशोक ईमानदार है यदि और केवल यदि वह कठिन परिश्रमी है" को गणितीय रूप में लिखा जा सकता है। (1) p∧q (2) p∨q (3) $q \Rightarrow p$ (4*) p⇔q Sol. Obviously स्पष्टतयाः A-10. Which one statement gives the same meaning of statement [Revision Plannar] "The Banana trees will bloom if it stays warm for a month." (1) It stays warm for a month and the banana trees will bloom. (2*) If it stays warm for a month, then the Banana trees will bloom. (3) It stays warm for a month or the banana trees will bloom. (4) It stays warm for a month or the banana trees will not bloom. निम्नलिखित में से कौनसा कथन दिये गये कथन "केले के वृक्ष तेजी से वृद्धि करेगें यदि इन्हें एक महीने गर्म वातावरण में रखा जाये" के समकक्ष अर्थ वाला है– (1) एक माह गर्म वातावरण रहता है और केले का वृक्ष तेजी से वृद्धि करेगा। (2*) यदि एक माह गर्म वातावरण रहता है, तो केले का वृक्ष तेजी से वृद्धि करेगा। (3) एक माह गर्म वातावरण रहता है या केले के वृक्ष तेजी से वृद्धि करेगें। (4) एक माह गर्म वातावरण रहता है या केले के वृक्ष तेजी से वृद्धि नहीं करेगें। The given statement can be written as : Sol. "If it stays warm for a month, then the Banana trees will bloom" दिया गया कथन को निम्न रूप में लिख सकते है। Hindi. "यदि एक माह गर्म वातारण रहता है, तो केले का वृक्ष तेजी से वृद्धि करेगें।" A-11. The statement "x is an even number implies that x is divisible by 4" means the same as (1*) x is divisible by 4 is necessary condition for x to be an even number. [Revision Plannar] (2) x is an even number is a necessary condition for x to divisible by 4. (3) x is divisible by 4 is a sufficient condition for x to be an even number. (4) x is divisible by 4 implies that x is not always an even number. कथन "x एक सम संख्या है इंगित करता है कि x चार से विभाजित है" इसका निम्न में से क्या मतलब है– (1*) x चार से विभाजित है यह x के सम होने के लिए आवश्यक प्रतिबन्ध है। (2) x एक सम संख्या है यह x के चार से विभाजित होने के लिए आवश्यक प्रतिबन्ध है। (3) x चार से विभाजित है यह x के सम होने के लिए पर्याप्त प्रतिबन्ध है। (4) x चार से विभाजित है" इंगित करता है x हमेशा सम संख्या नहीं है। Sol. $p \Rightarrow q$ means p is sufficient for q and q is necessary for p. Hindi. $p \Rightarrow q$ on set \hat{e} by p, q or \hat{e} (q, p or \hat{e}) and \hat{e} (q, p or \hat{e}) and \hat{e} (\hat{e}) and $\hat{$ **A-12.** If p and q are any two statements then $p \Rightarrow q$ is not equivalent to **RFT-8** (1) p is sufficient for q (2) q is necessary for p (3) p only if q (4^{*}) q only if p यदि p तथा q कोई दो कथन हो, तो p ⇒ q निम्न के तुल्य नहीं है – (1) p है q के लिए पर्याप्त (2) q है p के लिए आवश्यक (3) p होगा केवल यदि q होगा (4*) q होगा केवल यदि p होगा Sol. Obvious A-13._ Consider statement "If you drive over 100 km/hr, then you will get a fine". Now choose the correct option related with this statement [MR-ST] [303] [AR-2010-11] (1*) 'Getting fine' is necessary condition. (2) 'Driving over 100 km/hr' is necessary condition. (3) 'Getting fine' is sufficient condition.

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

(4) If you donot drive over 100 km/hr then you will not get a fine "यदि तुम 100 कि.मी. प्रति घंटा से अधिक गति से वाहन चलाओगे तो तुम्हें दण्डित किया जाएगा" कथन से सम्बन्धित विकल्प है– (1*) 'दण्डित होना' आवश्यक प्रतिबन्ध है। (2) '100 किमी प्रति घंटा से अधिक गति से वाहन चलाना' आवश्यक प्रतिबन्ध है। (3) 'दण्डित होना' पर्याप्त प्रतिबन्ध है। (4) यदि आप 100 km/hr से अधिक गति से वाहन नहीं चलाते है तब आपको दण्डित नहीं किया जावेगा। Sol. If p, then q q is necessary for p and p is sufficient for q. \Rightarrow Hindi यदि p, तो q q, p के लिए आवयक एवं p, q के लिए पर्याप्त है। \Rightarrow If p is true and q is false, then which of the following statement is not true? RFT-8 A-14. यदि p सत्य हो व q असत्य हो तो निम्न में से कौनसा कथन सत्य नहीं है? (1) $p \lor q$ $(2^*) p \Rightarrow q$ (3) p∧ (~q) (4) $q \Rightarrow p$ Sol. $T \Rightarrow F \text{ is } F$ A-15 Converse of statement $p \Rightarrow q$ is RFT-8 कथन $p \Rightarrow q$ का प्रतिलोम होगा – $(3^*) q \Rightarrow p$ (1) p∧ q (2) p ∨ q (4) p ⇒~q Sol. Obviously (स्पष्टतयाः) A-16._ If p, q, r and s are true propositions, then the truth values of (i) $(p \land q) \rightarrow s$ (ii) $(q \land r) \rightarrow \sim s$ (iii) $(p \land \sim q) \land (q \rightarrow s)$ are respectively (1) T, T and F (2) F, T and F (3) T, F and T (4*) T, F and F यदि p, q, r और s सत्य कथन है, तब (iii) $(p \land \sim q) \land (q \rightarrow s)$ के क्रमशः सत्यता मान है। (i) $(p \land q) \rightarrow s$ (ii) $(q \land r) \rightarrow \sim s$ (3) T, F और T (4*) T, F और F (1) T, T और F (2) F, T और F Sol. (1) $p \wedge q = T \wedge T = T$ $(p \land q) \rightarrow S = T \rightarrow T = T$ $(q \lor r) = T \lor T = T, \sim s = F$ (2) $(q \lor r) \rightarrow \sim s = T \rightarrow F = F$ (3) $(p \land \neg q) = T \land F = F$ $q \rightarrow s = T \rightarrow T = T$ $(p \land \sim q) \land (q \rightarrow s) = F \land T = F$ A-17. Converse of statement "If Ram works hard then he is rich" is (1) If Ram does not work hard then he is rich. (2) Ram works hard and he is rich. (3) Ram works hard or he is rich. (4*) If Ram is rich then he works hard. कथन "यदि राम कठिन मेहनत करता है तब वह धनवान है" का विलोम है। (1) यदि राम कठिन मेहनत नहीं करता है तब वह धनवान है। (2) राम कठिन मेहनत करता है और वह धनवान है। (3) राम कठिन मेहनत करता है या वह धनवान है। (4*) यदि राम धनवान है तब वह कठिन मेहनत करता है। Sol. Converse of statement $p \Rightarrow q$ is $q \Rightarrow p$. $p \Rightarrow q$ का विलोम $q \Rightarrow p$ है

A-18. If p, q, r are simple propositions, then the truth value of (~ $p \lor q$) $\land ~ r \Rightarrow p$ is **RFT-8** (1*) true if truth values of p, q, r are T, F, T respectively

A Resonance®	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha	lawar Road, Kota (Raj.)-324005
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MAINMR- 4
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	WAINWIK- 4

(2) false if truth values of p, q, r are T, F, T respectively (3) true if truth values of p, q, r are T, F, F respectively (4) true if truth values of p, q, r are T, T, T respectively यदि p, q, r सरल कथन है तब (~ p $\,{\scriptstyle\lor}\,q$) $\,{\scriptstyle\wedge}\,$ ~ r $\,{\Rightarrow}\,p$ का सत्यता मान होगा -(1) सत्य यदि p, q, r के सत्यता मान क्रमशः T, F, T है। (2) असत्य यदि p, q, r के सत्यता मान क्रमशः T, F, T है। (3) सत्य यदि p, q, r के सत्यता मान क्रमशः T, F, F है। (4) सत्य यदि p, q, r के सत्यता मान क्रमशः T, T, T है। Sol. $(\sim T \lor F) \land \sim T$ \Rightarrow T $(\mathsf{F} \, \lor \, \mathsf{F}) \ \land \ \mathsf{F} \quad \Rightarrow \mathsf{T}$ *.*... F ^ F ⇒T *.*. $F \Rightarrow T$ ÷. A-19. If p and q are simple propositions, then $p \Leftrightarrow \sim q$ is true when (1) p is true and q is true (2*) p is false and q is true (3) both p and q are false (4) p and q both are not true यदि p तथा q साधारण कथन है तब p ⇔ ~ q सत्य है यदि (1) p सत्य हैं और q सत्य हैं। (2*) p असत्य हैं और q सत्य हैं। (3) दोनों p तथा q असत्य हैं। (4) p तथा q दोनों सत्य नहीं है। ~q p ↔ ~q р q F F т F т т F Т F Т F F т Sol. F A-20. Consider the following statements : p: f is a continuous function q: f is an odd function r: f is an even function The proposition " f is a continuous function only if it is either even or odd" is represented is माना कि निम्न कथन है p:f एक सतत फलन है। q:fएक विषम फलन है। r : f एक सम फलन है। कथन "f एक सतत फलन है केवल यदि यह सम या विषम है "को व्यक्त करता है -(2) $(q \lor r) \rightarrow p$ (1*) $p \rightarrow (q \lor r)$ (4) $p \rightarrow (q \rightarrow r)$ (3) $p \land q \rightarrow r$ Sol. "p only if q" is equivalent to "if p then q" "p केवल यदि q" के तुल्य " यदि p तब q" A-21. Which of the following is logically equivalent to $\sim (p \leftrightarrow q)$ निम्न में से कौनसा कथन तार्किक रूप से ~ (p ↔ q) के तुल्य है (2) $(\sim p) \leftrightarrow (\sim q)$ (3) $p \rightarrow (\sim q)$ $(1^*) (\sim p) \leftrightarrow q$ (4) $p \rightarrow q$ Sol. ~p p↔q ~(p↔q) ~p↔q q т F F F т т т т F A-22. Let q : you have to start early to get success p: success comes with luck The statement " If success does not come with luck then you have to start early to get success" is represented by मानाकि q: आप सफलता प्राप्त करने के लिए जल्दी शुरूआत करते हो। p: सफलता भाग्य से आती है।

कथन ''यदि सफलता भाग्य के साथ नही आती है तब आप सफलता प्राप्त करने के लिए जल्दी शुरूआत करते हो" से व्यक्ति कथन है . (1) $(p \rightarrow q) \land (q \rightarrow p)$ (2*) (~p \rightarrow q) \land (~q \rightarrow p) (3) $(p \lor q) \land (\sim (p \land q))$ (4) $\sim p \leftrightarrow \sim q$ Sol. $\sim p \rightarrow q$ $(\sim (\sim p) \lor q) \land ((\sim p) \lor \sim q)$ $(p \lor q) \land (\sim p \lor \sim q)$ $(\sim p \rightarrow q) \land (\sim q \rightarrow p)$ A-23. The statement $[p \land (p \rightarrow q)] \rightarrow q$, is : (1) a fallacy (2^{*}) a tautology (4) not a compound statement (3) neither a fallacy nor a tautology कथन $[p \land (p \rightarrow q)] \rightarrow q, :$ (2) एक पुनरूक्ति (tautology) है। (1) एक हेत्वाभास (fallacy) है। (3) न तो हेत्वाभास है और न ही पुनरूक्ति है। (4) एक संयुक्त (compound) कथन नहीं है। Ans (2) Sol. $p \mid q \mid p \rightarrow q \mid p \land (p \rightarrow q) \mid (p \land (p \rightarrow q)) \rightarrow q$ Т Т Т Т Т ΤF F F Т F T Т F Т FF Т F Т Hence tautology अतः पुनरूक्ति **A-24.** The proposition $(p \rightarrow \neg p) \land (\neg p \rightarrow p)$ is (1) a tautology (2*) a contradiction (3) equivalent to $p \rightarrow p$ (4) equivalent to $\sim p \rightarrow \sim p$ (1) पुनुरूक्ति (2*) विरोधाभास (3) $p \rightarrow p a \bar{q}$ (4) ~p→ ~p के तुल्य Sol. $(p \rightarrow q) \land (q \rightarrow p) \equiv (p \leftrightarrow q)$ $(p \rightarrow \neg p) \land (\neg p \rightarrow p) \equiv (p \leftrightarrow \neg p) \equiv \text{Fallacy/contradiction}$ A-25. Which of the following statements is a fallacy ? RFT-8 निम्न में से कौनसा कथन विरोधिक्ति है -(1) $(p \rightarrow q) \leftrightarrow (q \lor \sim p)$ (2) $(\sim(\sim p \land q) \land (p \lor q)) \leftrightarrow p$ (3) $(\sim p \leftrightarrow q) \leftrightarrow (p \leftrightarrow \sim q)$ $(4^*) \sim (\sim p \leftrightarrow \sim q) \leftrightarrow \sim (\sim p \leftrightarrow q)$ Sol. By using truth table सत्यता सारणी से A-26. If p is any logical statement, then : (1) $p \wedge p = p$ (2) $p \lor (\sim p) = p$ (3) $p \land (\sim p)$ is a tautology (4) $p \lor (\sim p)$ is a fallacy यदि p एक तर्क संगत कथन है, तो (2) $p \lor (\sim p) = p$ (1) $p \wedge p = p$ (3) p ∧ (~p) पुनरूक्ति है। (4) p ∨ (~p) एक विरोधोक्ति है। Sol. (1) $p \wedge p = p$ $p \lor (\sim p) = t$ $p \wedge (\sim p) = f$ $p \lor (\sim p) = t$

Section (B) : Negation of compound statements, Contrapositive of conditional statements, Quantifiers

खण्ड (B) : संयुक्त कथनों का नकारात्मक, प्रतिबन्धित कथनों का प्रतिपरिवर्तित, Quantifiers

B-1.	The negation of the statement "Ramesh is cruel or he is strict" is(1*) Ramesh is neither cruel nor strict.(2) Ramesh is cruel or he is not strict.(3) Ramesh is not cruel or he is strict.(4) Ramesh is not cruel and he is strict.कथन "रमेश निर्देयी है या वह सख्त व्यवहार वाला है" का नकारात्मक है–
	(1*) रमेश न तो निर्देयी है न ही सख्त व्यवहार का हैं। (2) रमेश निर्देयी है या वह सख्त व्यवहार वाला नहीं है।
	(3) रमेश निर्देयी नहीं है या वह सख्त व्यवहार का है। (4) रमेश निर्देयी नहीं है और वह सख्त व्यवहार वाला है।
Sol.	Let P : Ramesh is cruel
	q : He is strict
	\therefore p \vee q : Ramesh is cruel or he is strict
	\sim (p \vee q) = \sim p $\wedge \sim$ q
Hindi.	∴ So negation is Ramesh is neither cruel nor strict. माना P : रमेश निर्देयी है ।
	q : वह सख्त व्यवहार वाला है
	∴ p ∨ q : रमेश निर्देयी है या वह सख्त व्यवहार वाला है।
	$\sim (p \lor q) = \sim p \land \sim q$
	अतः नकारात्मक होगा, रमेश न तो निर्देयी है और न हीं सख्त व्यवहार वाला ।
B-2.	The negation of the statement "The sand heats up quickly in the sun and does not cool down fast at
	night" is [Revision Plannar] (1) The sand does not heat up quickly in the sun and it does not cool down fast at night.
	(2*) Either the sand does not heat up quickly in the sun or it cools down fast at night.
	(3) The sand heats up quickly in the sun and it cools down fast at night.
	(4) The sand heats up quickly in the sun or it cools down fast at night.
	कथन "सूर्य के प्रकाश में रेत, तेजी से गर्म होती है और रात्रि को तेजी से ठण्डी नहीं होती है" का नकारात्मक कथन है—
	(1) सूर्य के प्रकाश में रेत तेजी से गर्म नहीं होती हैं और यह रात्रि में तेजी से ठण्डी नहीं होती।
	(2*) या तो सूर्य के प्रकाश में रेत तेजी से गर्म नहीं होती या यह रात्रि को तेजी से ठण्डी होती है।
	(3) रेत सूर्य के प्रकाश में तेजी से गर्म होती है और यह रात्रि में तेजी से ठण्डी होती।
Sel	(4) रेत सूर्य के प्रकाश में तेजी से गर्म होती है या यह रात्रि को तेजी से ठण्डी होती है। The component statements of the given statement are :
Sol.	The component statements of the given statement are : p : The sand heats up quickly in the sun.
	q : The sand does not cool down fast at night.
	The given statement is (p and q). So its negation is
المعا:	~p or ~q = Either the sand does not heat up quickly in the sun or it cools down fast at night. दिये गये कथन के घटक कथन है :
Hinai.	ादय गय कथन के घटक कथन है: p:रेत सूर्य के प्रकाश में तेजी से गर्म होती है।
	p. रत सूथ के प्रकाश में तेजा से गम होता है। q : रेत रात्रि में तेजी से ठण्डी नहीं होती है।
	प. रत रात्रि में तजा से ठण्डा महा होता है। दिया गया कथन (p और q). अतः इसका नकारात्मक होगा।
	नकारात्मक ~p या नकारात्मक ~q = या तो सूर्य के प्रकाश में रेत, तेजी से गर्म नहीं होती या यह रात्रि में तेजी से ठण्डी
	रोगोरात्मक ~p यो नकारात्मक ~q = यो तो सूर्य के प्रकाश न रत, तेजा स नन नहां होता यो यह सात्र न तेजा स उच्छा होती है।
B-3 ≫	The negation of the statement "If a quadrilateral is a square then it is a rhombus". [Revision Plannar]
	(1) If a quadrilateral is not a square then it is a rhombus.
	(2) If a quadrilateral is a square then it is not a rhombus.
	 (3*) A quadrilateral is a square and it is not a rhombus. (4) A quadrilateral is not a square and it is a rhombus.

(4) A quadrilateral is not a square and it is a rhombus. कथन "चतुर्भुज यदि वर्ग है, तो यह समचतुर्भुज है" का नकारात्मक है–

- (1) यदि चतुर्भुज वर्ग नहीं है, तो यह समचतुर्भुज है।
- (2) यदि चतुर्भुज वर्ग है, तो यह समचतुर्भुज नहीं है।

(3*) एक चतूर्भूज वर्ग है और यह समचतूर्भूज नहीं है। (4) एक चतुर्भूज वर्ग नहीं है और यह समचतुर्भूज है। Let p and g be the statements as given below Sol. p : a quadrilateral is a square q : a quadrilateral is a rhombus the given statement is $p \rightarrow q$ $\therefore \sim (p \rightarrow q) \equiv p \land \sim q$ Therefore the negation of the given statement is a guadrilateral is a square and it is not a rhombus. Hindi. नीचे दिये गये कथन माना p और q p:a एक चतुर्भुज वर्ग है q : एक चतुर्भुज सम चतुर्भुज है दिया गया कथन $p \rightarrow q$ है $\therefore \sim (p \rightarrow q) \equiv p \land \sim q$ दिये गये कथन में एक चतुर्भुज एक वर्ग है और यह समचतुर्भुज नहीं है अतः यह नकारात्मक होगा। "If India beats Australia, then India qualifies for the world cup" Negation of the above is: B-4. (1) If India doesn't beat Australia, then India does not qualify for the world cup. (2*) India beats Australia and India does not qualify for the world cup. (3) Neither India beasts Australia, not India qualifies for the world cup. (4) India does not beat Australia and India qualifies for the world cup. "यदि भारत आस्ट्रेलिया को हराता है, तब भारत विश्वकप के लिए प्रवेश कर पाता है" कथन का नकारात्मक कथन है– (1) यदि भारत आस्ट्रेलिया को नहीं हराता है, तब भारत विश्वकप के लिए प्रवेश नहीं कर पाता है। (2*) यदि भारत आस्ट्रेलिया को हराता है और भारत विश्वकप के लिए प्रवेश नहीं कर पाता है। (3) न तो भारत आस्ट्रेलिया को हराता है और न ही भारत विश्वकप के लिए प्रवेश करता है। (4) भारत आस्ट्रेलिया को नहीं हरा पाता है और भारत विश्वकप के लिए प्रवेश करता है। Sol. Negation of $(p \rightarrow q)$ is $(p \land \sim q)$ $(p \rightarrow q)$ का नकारात्मक $(p \land \sim q)$ है। B-5. The negation of the statement "Two lines are parallel if and only if they have the same slope" is (1) Two lines are not parallel and they have the same slope. [Revision Plannar] (2) Two lines are parallel and they do not have the same slope. (3) Two lines are not parallel and they do not have the same slope. (4*) Either two lines are parallel and they have different slopes or two lines are not parallel and they have the same slope. कथन "दो सरल रेखाएँ समान्तर है यदि और केवल यदि वे समान प्रवणता की है" का नकारात्मक है। (1) दो रेखाएँ समान्तर नहीं है और वे समान प्रवणता रखती है। (2) दो रेखाएँ समान्तर है और वे समान प्रवणता नहीं रखती है। (3) दो रेखाएँ समान्तर नहीं है और वे समान प्रवणता नहीं रखती है। (4*) या तो दो रेखाएँ समान्तर है और वे अलग–अलग प्रवणता रखती है या दो रेखाएँ समान्तर नहीं है और वे समान प्रवणता रखती है। Let "p : Two lines are parallel" and "g : they have the same slope". Sol. Then, the given statement in symbolic form is $p \leftrightarrow q$.

Now, $\sim (p \leftrightarrow q) \cong (p \land \sim q) \land (\sim p \land q)$

 \Rightarrow ~(p \leftrightarrow q) : Either two lines are parallel and they have different slopes or two lines are not parallel and they have the same slope.

Hindi. माना "p : दो समान्तर रेखाएँ है और q : समान प्रवणता रखती है, तो दिए गए कथन का प्रतिक p ↔ q है।

अब , ~(p ↔ q) ≅ (p ^ ~q) ^ (~p ^ q) ⇒ ~(p ↔ q) : या तो दो रेखाएँ समान्तर है और वे अलग–अलग प्रवणता रखती है या दो रेखाएँ समान्तर नहीं है और वे समान प्रवणता रखती है।

B-6. Negation of the following is

"Demonetisation is a successful step, if and only if Modi Ji is the prime minister"

(1)Demonetisation is a not successful step, if Modi Ji is not the prime minister. (2) Demonetisation is a successful step and Modi Ji is the prime minister and demonetisation is not a successful step. (3) Demonetisation is not a successful step and Modi Ji is not the prime minister or demonetisation is a successful step and modi ji is the prime minister. (4*) Demonetisation is a successful step if and only if modi ji is not the prime minister. निम्न कथन "नोटबन्दी सफलता पूर्ण कदम है, यदि और केवल यदि मोदी जी प्रधानमंत्री है" का नकारात्मक कथन है-नोटबन्दी सफलता पूर्ण कदम नहीं है, यदि मोदी जी प्रधानमंत्री नहीं है। (1) नोटबन्दी सफलता पूर्ण कदम है और यदि मोदी जी प्रधानमंत्री है और नोटबन्दी सफलता पूर्ण कदम नहीं है। (2)(3) नोटबन्दी सफलता पूर्ण कदम नहीं है और यदि मोदी जी प्रधानमंत्री नहीं है या नोटबन्दी सफलता पूर्ण कदम है और मोदी जी प्रधानमंत्री है। (4*) नोटबन्दी सफलता पूर्ण कदम है और यदि और केवल यदि मोदी जी प्रधानमंत्री नहीं है" Negation of $p \leftrightarrow q$ is $p \leftrightarrow \neg q$ Sol. Negation of the statement $p \rightarrow (q \land r)$ is B-7. कथन $p \rightarrow (q \land r)$ का नकारात्मक है। (1) $\sim p \rightarrow \sim (q \land r)$ (2) $\sim p \lor (q \land r)$ (3) $(q \land r) \rightarrow p$ (4*) p ∧ (~q ∨ ~r) Sol. \sim (p \rightarrow (q \wedge r)) \equiv p \wedge \sim (q \wedge r) $(\therefore \sim (p \rightarrow q) \equiv p \land \sim q)$ $\equiv p \land (\sim q \lor \sim r)$ B-8. Consider the following statements : S₁: Negation of $(\sim p \rightarrow q)$ is $[\sim (p \lor q)] \land [p \lor (\sim p)]$. S₂: Negation of $(p \leftrightarrow q)$ is $(p \land \neg q) \lor (\neg p \land q)$. S₃: Negation of (p v q) is $\sim p \wedge \sim q$. S_{4} : p \leftrightarrow q is equivalent to (~p v q) \land (p v ~q). State, in order, whether S_1 , S_2 , S_3 , S_4 are true or false माना कि निम्न कथन है : S_1 : (~p → q) का नकारात्मक [~(p v q)] \land [p v (~p)]. है। S_2 : (p \leftrightarrow q) का नकारात्मक (p $\wedge \sim$ q) v (\sim p \wedge q) है । S₂: (p v q) का नकारात्मक ~p ∧ ~q. है। S_4 : p ↔ q, (~p v q) ∧ (p v ~q) के तुल्य है। क्रम में बताइये कि S1, S2, S3, S4 सत्य या असत्य है। (1*) TTTT (2)TFTF (3)FFTT (4)FTFT $p \quad q \quad \sim (\sim p \rightarrow q) \quad (p \leftrightarrow q) \quad \sim (p \lor q) \quad p \lor \sim p \quad \sim p \lor q \quad p \lor \sim q \quad (\sim p \lor q) \land (p \lor \sim q) \quad (p \land \sim q) \lor (\sim p \land q)$ TF F F F Т F т F т FT F F F Т т F F т Т F т F Т т т Т F FF Т т т Т т т т F Sol. B-9. The negation of A \rightarrow (A \vee ~ B) is (1*) a fallacy (2) a tautology (3) equivalent to $(A \lor B) \rightarrow A$ (4) equivalent to A \rightarrow (A $\wedge \sim$ B) A → (A ∨ ~ B)का निषेद्य है :

(2) एक पुनरूक्ति है।

है ।

((3) (A \vee B) \rightarrow A के समतुल्य है।						(4) A –	→ (A ∧-	-B) के समतुल्य	1
	Α	В	~ B	A ∨ ~B	$A \rightarrow (A \lor \ \sim B)$	\sim (A \rightarrow (A \vee \sim B))	$(A \lor B) \to A$	A∧ ~ B	$A \to (A \land \sim B)$	
	Т	Т	F	Т	Т	F	Т	F	F	
	Т	F	Т	Т	Т	F	Т	Т	Т	
	F	Т	F	F	Т	F	Т	F	Т	
	F	F	Т	Т	Т	F	Т	F	Т	

Sol.

(1) एक कुत्तर्क (विरोधक्ति) है।

esonance Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.	.)-324005	
website: www.resonance.ac.in E-mail: contact@resonance.ac.in	MAINMR- 9	
Toll Free : 1800 258 5555 <u>CIN: U80302RJ2007PLC024029</u>	9	

B-10. Let p: you got a seat in IIT q : you got selected in BITS The statement " you got a seat in both IIT and BITS " is represented by p : आपका IIT में चयन होता है। माना a : आपका BITS में चयन होता है। कथन ''आपका IIT और BITS दोनों में चयन होता है'' से व्यक्त कथन है . (1) $p \rightarrow \sim q$ (2) ~p ∨ ~q $(3^*) \sim (p \rightarrow \sim q)$ (4) ~(~p∧~q) We know हम जानते है कि \sim (p \rightarrow q) = p $\wedge \sim$ q Sol. Given statement is दिया गया कथन $p \land q$ $= p \land \sim (\sim q) \equiv \sim (p \rightarrow \sim q)$ **B-11.** Negation of the statement $(p \land r) \rightarrow (r \lor q)$ is (2) $(\sim p \lor \sim r) \land (r \lor q)$ (3) a tautology (4*) a fallacy (1) $(p \land r) \land (r \lor q)$ कथन (p ∧ r) → (r ∨ q) का नकारात्मक कथन है -(3) पुनुरूकित (4*) विरोधिक्ति (1) $(p \land r) \land (r \lor q)$ (2) $(\sim p \lor \sim r) \land (r \lor q)$ Sol. $(p \land r) \land (\sim r \land \sim q) = p \land (r \land \sim r) \land \sim q = p \land f \land \sim q = f$ B-12. Which one statement gives the same meaning of statement [Revision Plannar] "If you watch television, then your mind is free and if your mind is free then you watch television" (1*) You watch television if and only if your mind is free. (2) You watch television and your mind is free. (3) You watch television or your mind is free. (4) None of these . कौनसा कथन दिये गये कथन के समान अर्थ का है ''यदि आप टेलीविजन देखते है, तो अपका दिमाग तरो ताजा रहता है तथा आपका दिमाग तरोताजा रहता है, तो आप टेलीविजन देखते है। (1*) यदि आप टेलीविजन देखते है, यदि और केवल यदि आपका दिमाग तरो ताजा रहता है। (2) आप टेलीविजन देखते है और आपका दिमाग तरो ताजा रहता है। (3) आप टेलीविजन देखते है या आपका दिमाग तरो ताजा रहता है। (4) इनमें से कोई नहीं Sol. You watch television if and only if your mind is free. आप टेलीविजन देखते है, यदि और केवल यदि आपका दिमाग तरो ताजा रहता है" Hindi B-13. The contrapositive of statement "Something is cold implies that it has low temperature" is (1*) If something does not have low temperature, then it is not cold. [Revision Plannar] (2) If something does not have low temprerature then it is cold. (3) Something is not cold implies that it has low temperature. (4) If something have low temperature, then it is not cold. कथन का प्रतिपरिवर्तित कीजिए " कहीं सर्दी है, इसका अर्थ है, कि वहाँ कम तापमान है।" (1*) यदि कहीं पर कम तापमान नहीं है, तो वहाँ सर्दी नहीं है। (2) यदि कहीं पर कम तापमान नहीं है, तो वहाँ सर्दी है। (3) यदि कहीं सर्दी नहीं है इसका अर्थ यह है कि वहाँ पर कम तापमान नहीं है। (4) यदि कहीं पर कम तापमान नहीं है, तो वहाँ सदी नहीं है। Sol. If something does not have low temperature, then it is not cold. यदि कहीं पर कम तापमान नहीं है, तो वहाँ सर्दी नहीं है। B-14. If x = 5 and y = -2 then x - 2y = 9. The contrapositive of this statement is **[Revision Plannar]** RFT-8 (2) If $x - 2y \neq 9$ then $x \neq 5$ and $y \neq -2$ (1) If x - 2y = 9 then x = 5 and y = -2(3*) If $x - 2y \neq 9$ then $x \neq 5$ or $y \neq -2$ (4) If $x - 2y \neq 9$ then either $x \neq 5$ or y = -2यदि x = 5 तथा y = -2 है, तो x - 2y = 9 इस कथन का प्रतिपरिवर्तित है-(1) यदि x – 2y = 9 तथा x = 5 तथा y = –2 (2) यदि x – 2y ≠ 9 तब x ≠ 5 तथा y ≠ –2 (3*) यदि x – 2y ≠ 9 तब x ≠ 5 या y ≠ –2 (4) यदि x – 2y ≠ 9 तब या तो x ≠ 5 या y = –2 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 kesonance Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in Educating for better tomorrow MAINMR-10

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Sol. Let p, q, r be the three statements such that p: x = 5, q: y = -2 and r: x - 2y = 9Here given statement is $(p \land q) \rightarrow r$ and its contrapositive is $\sim r \rightarrow \sim (p \land q)$ i.e. $\sim r \rightarrow (\sim p \lor \sim q)$ i.e. if $x - 2y \neq 9$ then $x \neq 5$ or $y \neq -2$ Hindi. माना p, q, r तीन कथन इस प्रकार है कि p: x = 5, q: y = -2 and r: x - 2y = 9यहाँ दिया गया कथन (p \land q) \rightarrow r है और इसका प्रतिपरिवर्तित \sim r \rightarrow \sim (p \land q)है अर्थात् ~r → (~p ∨ ~q) अर्थात् यदि x – 2y ≠ 9 तब x ≠ 5 या y ≠ –2 **B-15.** The contrapositive of the following statement, " If the side of a square doubles, then its area increases four times", is (1) If the area of a square does not increase four times, then its side is not doubled. (2) If the area of a square increases four times, then its side is not doubled. (3) If the area of a square increases four times, then its side is doubled. (4) If the side of a square is not doubled, then its area does not increase four times. निम्न कथन का प्रतिपरिवर्तित रूप लिखिए – " यदि वर्ग की भूजाओं को दुगूना किया जाता है तब इसका क्षेत्रफल चार गूना बढ़ जाता है" (1) यदि वर्ग का क्षेत्रफल चार गूना नहीं बढ़ता है तब इसकी भूजा दूगूनी नहीं होती है। (2) यदि वर्ग का क्षेत्रफल चार गुना बढ़ता है तब इसकी भुजा दुगुनी नहीं होती है। (3) यदि वर्ग का क्षेत्रफल चार गूना बढता है तब इसकी भूजा दुगूनी होती है। (4) यदि वर्ग की भूजा दुगूनी नहीं होती है तब इसका क्षेत्रफल चार गूना नहीं बढता है। Ans. (1) $p \equiv$ The side of a square doubles Sol. q = Area of square increases four time so the contrapositive of $p \rightarrow q$ is ~ $q \rightarrow ~ P$ p = वर्ग की भूजा दुगूनी होती है। Hindi q = वर्ग का क्षेत्रफल चार गूना बढता है। इसलिए $p \rightarrow q$ का प्रतिपरिवर्तित $\sim q \rightarrow \sim P$ है। B-16._ The contrapositive of the statement "If it is raining, then I will not come", is : (2) If I will not come, then it is not raining If I will come, then it is raining (3) If I will not come, then it is raining (4*) If I will come, then it is not raining कथन का प्रतिपरिवर्तित लिखिए "यदि बारिश हो रही है, तब वह नहीं आयेगा" (1) यदि मैं आऊंगा तब बारिश हो रही है। (2) यदि मैं नहीं आऊंगा तब बारिश नहीं हो रही है। (3) यदि मैं नहीं आऊंगा तब बारिश हो रही है। (4*) यदि मैं आऊंगा तब बारिश हो नहीं रही है। (4) Ans. Sol. Let p : It is raining q: I will not come contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$ \Rightarrow If I will come then if is not raining Hindi माना p : बारिश हो रही है। a: मैं नहीं आऊंगा $p \rightarrow q$ का प्रतिपरिवर्तित ~ $q \rightarrow ~ p$ ⇒ यदि मैं आऊंगा तब बारिश हो नहीं रही है। B-17. Consider the following statements : p: I have the raincoat q: I cannot walk in the rain The proposition " If I walk in the rain then I do not have the raincoat " is represented by Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 <u>kespnance</u>® Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in Educating for better tomorrow MAINMR-11 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

八

माना कि निम्न कथन है p : मेरे पास रेनकोट है। q: मैं बरसात में नही चल सकता। कथन "यदि मैं बरसात में चलता हूँ तब मैं रेनकोट नही लेता हूँ " से व्यक्त होता है . (2) $q \rightarrow \sim p$ $(3^*) p \rightarrow q$ (1) $p \rightarrow \sim q$ (4) ~q →p ~q → ~ p (Given statement दिया कथन) \Rightarrow then तब p → q Sol. B-18. The contrapositive of the statement "p implies q" is RFT-8 (2) q implies p (1) $\sim p$ implies $\sim q$ (3*) ~q implies ~p (4) p only if q कथन "p इंगित करता है q" का प्रतिपरिवर्तित है (1) $\sim p \Rightarrow \sim q$ (2) $q \Rightarrow p$ (3*) ~q ⇒ ~p (4) p केवल यदि q Sol. Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$ **Hindi.** $p \rightarrow q$ an y draw y draw $q \rightarrow -p$ B-19 The contrapositive of $(p \land q) \Rightarrow r$ is **RFT-8** $(p \land q) \Rightarrow r$ का प्रतिपरिवर्तित है (1) ~ r \Rightarrow (p \lor q) (2) $\mathbf{r} \Rightarrow (\mathbf{p} \lor \mathbf{q})$ (3) ~ r \Rightarrow (~ p \lor ~ q) (4) $p \Rightarrow (q \lor r)$ Sol. Contrapositive of $(p \land q) \Rightarrow r$ is $\sim r \Rightarrow \sim (p \land q) = \sim p \lor \sim q$ [De Morgan's law] **Hindi.** $(p \land q)$ का प्रतिपरिवर्तित है \Rightarrow r is $\sim r \Rightarrow \sim (p \land q) = \sim p \lor \sim q$ **B-20.** The contrapositive of $p \rightarrow (\sim q \rightarrow \sim r)$ is $p \rightarrow (~q \rightarrow ~r)$ का प्रतिपरिवर्तित है - $(1^*) (\sim q \land r) \rightarrow \sim p$ (3) $p \rightarrow (\sim r \lor q)$ (4) $p \land (q \lor r)$ (2) $(q \land \sim r) \rightarrow \sim p$ Sol. \sim (\sim q \rightarrow \sim r) \rightarrow \sim p \equiv (\sim q \land q) \rightarrow \sim p B-21. Negation of the following statement "Every natural number is greater than 0" is [Revision Plannar] (1) Every natural number is less than 0. (2) Every natural number is less than or equal to 0. (3*) There exists a natural number which is not greater than 0. (4) Atleast one natural numbers is greater than 0. कथन ''प्रत्येक प्राकृत संख्या 0 से बड़ी है '' का नकारात्मक कथन है– (1) प्रत्येक प्राकृत संख्या 0 से छोटी है। (2) प्रत्येक प्राकृत संख्या 0 से छोटी या समान है। (3*) एक प्राकृत संख्या ऐसी है जो 0 से बड़ी नहीं है। (4) कम से कम एक प्राकृत संख्या 0 से बड़ी है। Sol. At least one natural number is not greater than 0. Hindi. कम से कम एक प्राकृत संख्या 0 से बड़ी नहीं हैं B-22. Consider the statement p : "Everyone in Germany speaks German" which of the following is not negation of p (1) Not everyone in Germany speaks German. [Revision Plannar] (2*) No one in Germany speaks German. (3) There are persons in Germany who do not speak German. (4) There is atleast one person in Germany who does not speak German. कथन पर विचार कीजिए p: "जर्मनी में प्रत्येक व्यक्ति जर्मन बोलता है". निम्न में से कौनसा p का नकारात्मक कथन नहीं है_ (1) जर्मनी में प्रत्येक व्यक्ति जर्मन नहीं बोलता है। (2*) जर्मनी में कोई भी व्यक्ति जर्मन नहीं बोलता है। (3) जर्मनी में कुछ व्यक्ति जर्मन नहीं बोलते है। (4) जर्मनी में कम से कम एक व्यक्ति है जो जर्मन नहीं बोलता है।

- **Sol.** The negation of "Everyone in Germany speaks German" is there is at least one person in Germany who does not speak German.
- Hindi. कथन ''जर्मनी में प्रत्येक व्यक्ति जर्मन बोलता है'' का नकारात्मक कथन जर्मनी में कम से कम एक व्यक्ति है जो जर्मन नहीं बोलता है।

Exercise-2

> Marked questions are recommended for Revision.

🖎 चिन्हित प्रश्न दोहराने योग्य प्रश्न है।

PART - I : OBJECTIVE QUESTIONS (SINGLE CHOICE CORRECT) भाग - I : वस्तुनिष्ठ प्रश्न (OBJECTIVE QUESTIONS) (SINGLE CHOICE CORRECT)

4._`& If p, q, r are three statements then converse of $p \Rightarrow (q \sim r)$ is $(1^*) \sim (r \lor \sim q) \rightarrow p$ (2) $(r \lor \sim q) \rightarrow p$ (3) $(r \lor q) \rightarrow p$ (4) ~ (r \land ~q) \rightarrow p यदि p, q, r तीन कथन है, तब $p \Rightarrow (q \sim r)$ का विलोम है। $(1^*) \sim (r \lor \sim q) \rightarrow p$ (2) $(r \lor \sim q) \rightarrow p$ (3) $(r \lor q) \rightarrow p$ (4) ~ (r \wedge ~q) \rightarrow p converse of $p \Rightarrow (q \land \sim r)$ is $(q \land \sim r) \Rightarrow p$ Sol. $\equiv \sim (\sim q \lor r) \Rightarrow p$ $\equiv \sim (r \lor \sim q) \Longrightarrow p$ Hindi p ⇒ (q ∧ ~ r) का विलोम (q ∧ ~r) ⇒ p है। $\equiv \sim (\sim q \lor r) \Longrightarrow p$ $\equiv \sim (r \lor \sim q) \Longrightarrow p$

- 5. Consider statement "If you are born in India then you are a citizen of India". Which of the following is logical equivalent to the given statement ?
 - (1) If you are not born in India then you are not a citizen of India.
 - (2) If you are a citizen of India then you are not born in India.
 - (3*) You are born in India only if you are a citizen of India.
 - (4) Taking birth in India is not sufficient condition to be a citizen of India.

कथन ''यदि आप भारत में जन्में है, तो आप भारतीय नागरिक है।'' पर विचार कीजिये, निम्न में से कौन सा कथन दिये गए कथन के तार्किक तुल्य है।

- (1) यदि आप भारत में नहीं जन्में हैं ,तो आप भारतीय नागरिक नहीं है।
- (2) यदि आप भारतीय नागरिक है, तो आप भारत में नहीं जन्में हैं।
- (3*) आप भारत में तभी जन्में हैं यदि आप केवल भारतीय नागरिक हैं।
- (4) भारत में जन्म लेना, भारतीय नागरिक होने के लिए पर्याप्त प्रतिबंध नहीं हैं।
- Sol. If p then q means p only if q यदि p एवं q से तात्पर्य है p केवल यदि q
- 6. Consider statement "If there are clouds in the sky then it will rain". Which of the following give same meaning?
 - (1*) Having clouds in the sky is sufficient to have rain.
 - (2) It is not necessary to have rain if there are clouds in the sky.
 - (3) If it is raining then there are clouds in the sky.
 - (4) There are clouds in the sky implies it will not rain

कथन ''यदि आसमान में बादल है, तो बारिश होगी'' पर विचार कीजिये। निम्न कथनों में से कौन सा कथन समान अर्थ देता है।

(1*) आसमान में बादल होना, बारिश होने के लिए पर्याप्त प्रतिबंध है।

(2) यदि आसमान में बादल है, तो बारिश होना आवश्यक नहीं है।

- (3) यदि बारिश हो रही है तो आसमान में बादल है।
- (4) आसमान में बादल है अर्थात बारिश नहीं होगी।

Sol. If p then q

⇒ p is sufficient for q
 यदि p तब q
 ⇒ पर्याप्त है q के लिए

7. A Statements "If the traders do not reduce the price then the government will take action against them" is equivalent to

 (1^{*}) It is not true that the trader do not reduce the prices and government does not take action against them.

(2) It is true that the trader do not reduce the prices and government does not take action against them.

(3) It is not true that the trader do not reduce the prices and government take action against them.

(4) It is not true that the trader do not reduce the prices or government take action against them.

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
 MAINMR-14

कथन – "यदि विक्रेता कीमत कम नहीं करता है, तो सरकार उनके खिलाफ कार्यवाही करेगी" तुल्य है

(1*) यह सत्य नहीं है कि विक्रेता कीमते नहीं घटाता है और सरकार उनके खिलाफ कार्यवाही नही करेगी।

(2) यह सत्य है कि विक्रेता कीमते नहीं घटाता है और सरकार उनके खिलाफ कार्यवाही नही करेगी।

(3) यह सत्य नहीं है कि विक्रेता कीमते नहीं घटाता है और सरकार उनके खिलाफ कार्यवाही करेगी।

(4) यह सत्य नहीं है कि विक्रेता कीमते नहीं घटाता है या सरकार उनके खिलाफ कार्यवाही करेगी।

Sol. Let p be the statement "Traders do not reduce the prices" and q be the statement "Government takes action against them"

The first statement in symbolic form is $p \rightarrow q$ and the second statement is ~(p \wedge ~q).

In order to check the equivalence of the above statements let us prepare the following truth table.

р	q	~ q	p∧ ~ q	~ (p∧ ~ q)	$p \rightarrow q$
Т	Т	F	F	Т	Т
T	F	Т	Т	F	F
F	т	F	F	Т	т
F	F	Т	F	Т	Т

Clearly, ~ q \rightarrow ~p and ~(p \land ~q) have same truth values for all the values of p and q. Hence, the two statements are equivalent.

Aliter : We have,

 $\textbf{\sim}(p \land \textbf{\sim}q) \equiv (\textbf{\sim}p \lor q) \equiv (p \to q)$

Hence the two statements are equivalent.

Hindi. माना कथन p है "विक्रेता कीमतें नहीं घटाते है" एवं कथन q है सरकार उनके खिलाफ कार्यवाही करती है"

संकेत रूप में प्रथम कथन p → q तथा दूसरा कथन ~(p ∧ ~q) होगा।

उपरोक्त कथनों की तुलना की जाँच करने के लिये हम निम्न लिखित सत्य सरणी तैयार करते है-

 $p \quad q \quad \neg q \quad p \land \neg q \quad \neg (p \land \neg q) \quad p \to q$ т т F F т т т F Т т F F F Т F т F Т F F Т F т Т

स्पष्टतः, ~ q → ~p तथा ~(p ^ ~q), p एवं q के सभी मानों के लिये समान सत्य मान रखते है, अतः दोनों कथन परस्पर तुल्य है।

Aliter : दिया है,

~(p ^ ~q) ≡ (~p ∨ q) ≡ (p → q) अतः दोनों कथन तुल्य है।

8	Statement p∧ (~ p∨q) is equiv कथन p∧ (~ p∨q) का तुल्य है।	alent to		
Sol.	(1) $p \lor q$ $p \land (\sim p \lor q) = (p \land \sim p) \lor (p \land q)$ $f \lor (p \land q) = p \land q$	(2*) p∧q	(3) ~p∧q	(4) ~p∨q
9	Statement (p ∧ q)∨ ~ p is equiva कथन (p ∧ q)∨ ~ p का तुल्य है।	alent to RFT-8		
Sol.	(1) $p \land q$ $(p \land q) \lor \neg p = (p \lor \neg q) \land (q \lor \neg$ $= t \land (q \lor \neg p) = q \lor \neg p = \neg p \lor q$		(3*) ~ p ∨ q	(4) ~ p ∨ ~q
10	Statement ((~ q) ∧ p) ∨ (p ∨ ~ p) (1*) Tautology कथन ((~ q) ∧ p) ∨ (p ∨ ~ p) है –) is a (2) Fallacy	(3) ~p ~q	(4) p q
	(1*) पुनरूक्ति	(2) विरोधोक्ति	(3) ~p ~q	(4) p q

Sol.

р	q	~p	~q	~q ^ p	pv~p	(~q ∧ p)v(pv~p)
Т	Т	F	F	F	Т	Т
Т	F	F	Т	Т	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

11	Statement [(p ↔ q) ∧ ((q – (1) Fallacy कथन [(p ↔ q) ∧ ((q → r) ∧	(2*) Tautology (3) ~p ∧ ~q r)] → r है −	(4) p∨q
	(1) विरोधोक्ति p q r p↔q q	(2*) पुनरूक्ति (3) ~p ∧ ~q →r (q→r)∧r [(p↔q)∧((q→r)∧r)] [(p↔q)∧((q→r)∧r)]-	(4) p∨q →r
	T T T T	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>}</u>
	T F T F	Г <u>Т</u> F Т F T Г F F T	
	F T T F	T T F T F F F T	
Sol.		T T T T T F F T	
	The proposition - (p.y., g)		
12	ne proposition ~(p∨~q) ∨ कथन ~(p∨~q) ∨~(p∨q) के	~(p ∨ q) is logically equivalent to : तार्किक तुल्य है।	
	$\begin{array}{c c} (1) p \\ \hline p & q \\ \hline \end{array} (2) \\ \hline \hline (2) \\ \hline (2) \hline \hline (2) \\ \hline (2) \\ \hline (2) \hline \hline (2) \\ \hline (2) \hline \hline (2) \\ \hline (2) \hline \hline ($		1
	F F F F F T F T F F F T F T F F F F		
Sol.	FTFFTFFTTF	T F T F T T	
		statements than the legically equivalant of the state	\rightarrow (γ , r) in
13		statements then the logically equivalent of the state कथन $p \Rightarrow (q \lor r)$ का तार्किक तुल्य कथन है –	ement p \Rightarrow (q \vee r) is
		(2) $(p \Rightarrow q) \land (p \Rightarrow ~r)$ (4) $(p \Rightarrow ~q) \land (p \Rightarrow r)$	
Sol.	$\begin{array}{l} (3) \ (p \lor q) \Rightarrow r \\ p \ \Rightarrow (q \lor r) \equiv (p \Rightarrow q) \lor \ (p \end{array}$	$\Rightarrow \mathbf{r})^{(4)} (\mathbf{p} \Rightarrow \mathbf{\neg q}) \land (\mathbf{p} \Rightarrow \mathbf{r})$	
14	Negation of the compound		
	(1) Tautology संयुक्त कथन p v (~ p v q) का	(2*) Fallacy (3) ~p ∧ q नकारात्मक कथन होगा–	(4) ~p∨q
	(1) पुनरूक्ति	(2*) विरोधोक्ति (3) ~p ∧ q	(4) ~p∨q
Sol.	~ [p v (~ p v q)] = (~p) ^ [~(~	$(-p \lor q) = (-p) \land (p \land -q) = (-p \land p) \land (-q) = f \land (-q) = f \land (-q)$	= f
15	-	ABC is right angled at B, then $AB^2 + BC^2 = AC^2$ " is	
	(1*) $\triangle ABC$ is right angled at (2) $\triangle ABC$ is right angled at	B then $AB^2 + BC^2 \neq AC^2$.	
	(3) $\triangle ABC$ is right angled at (4) $\triangle ABC$ is right angled at		
	कथन "यदि ∆ABC, B पर समक	ोण है तब AB² + BC² = AC² " का नकारात्मक है–	
	(1*) ∆ABC, B पर समकोण है अ (2) ∆ABC, B पर समकोण है तं		
	(2) ∆ABC, B पर समकोण है य		
• •	(4) ∆ABC, B पर समकोण है अ	$\overrightarrow{AB^2} + BC^2 = AC^2.$	
Sol.	Given Statement is $(\triangle ABC \text{ is right angled at B})$	$\Rightarrow (AB^2 + BC^2 = AC^2)$	
	Its negation is	$\Rightarrow \Delta ABC$ is not right angled at B.	
	दिया गया कथन है		
	(∆ABC में B पर समकोण है) = इसका नकारात्मक कथन होगा।	$\Rightarrow (AB^2 + BC^2 = AC^2)$	
		Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha	alawar Road, Kota (Raj.)-324005
Z	Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
	Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	MAINMR-16

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

八

 $(\Delta ABC, में AB² + BC² = AC²) ⇒ \Delta ABC, में B पर समकोण नहीं है।$ 16.__ p: you want to succeed q : you will find a way then the negation of \sim (p \vee q) is (1) If you want to succeed then you can't find way (2*) If you don't want to succeed then you will find a way (3) you wan't to succeed and you find a way (4) you wan't to succeed and you don't find a way p: आप सफल होना चाहते हो। q : आपको एक तरीका पता करना होगा। तब ~(p ∨ q) का नकारात्मक है– (1) यदि आप सफल होना चाहते हो, तब आपको एक तरीका पता नहीं करना होगा। (2*) यदि आप सफल नहीं होना चाहते हो, तब आप एक तरीका पता करोगें। (3) यदि आप सफल नहीं होना चाहते हो और आप एक तरीका पता करोगें। (4) यदि आप सफल नहीं होना चाहते हो और आप एक तरीका पता नहीं करोगें। Sol. \sim (p \vee q) \equiv \sim p \rightarrow q 17._ Negation of (~ $p \rightarrow q$) is $(\sim p \rightarrow q)$ का नकारात्मक है– (1) ~ $p \lor ~ q$ (2) ~ (p \lor q) \lor (p \lor (~p)) $(3^*) \sim (p \lor q) \land (p \lor (\sim p))$ (4) (~ p \lor q) \land (p \lor ~ q) $\sim (\sim p \rightarrow q) \equiv \sim (\sim (\sim p) \lor q)$ Sol. $\equiv \sim (p \lor q)$ clearly option (3) is correct स्पष्टतया विकल्प (3) सहीं है। ~ $(p \lor q) \land (p \lor (~p))$ $\equiv \sim (p \lor q) \land T$ $\equiv \sim (p \lor q)$ 18. A Contrapositive of statement "If you watch television, then your mind is free" is (1) If your mind is free then you are not watching television (2*) If your mind is not free then you are not watching television (3) If your mind is not free then you are watching television (4) If your mind is free then you are watching television कथन '' यदि आप टेलीविजन देखते है तो आपका दिमाग तरोताजा हो जाता है'' का प्रतिपरिवर्तित होगा– (1) यदि आपका दिमाग तरोताजा है तो आप टेलीविजन नहीं देख रहे हैं। (2*) यदि आपका दिमाग तरोताजा नहीं है तो आप टेलीविजन नहीं देख रहे हैं। (3) यदि आपका दिमाग तरोताजा नहीं है तो आप टेलीविजन देख रहे हैं। (4) यदि आपका दिमाग तरोताजा है तो आप टेलीविजन देख रहे हैं। Statement $p \rightarrow q$ and its contrapositive $\neg q \rightarrow \neg p$ are logically equivalent and give same meaning. Sol. Hindi. कथन $p \rightarrow q$ एवं इसका प्रतिलोम $\sim q \rightarrow \sim p$ तार्किक तुल्य है एवं समान अर्थ रखते हैं। 19._ Consider the following two statements : P: If 7 is an odd number, then 7 is divisible by 2. **Q** : If 7 is a prime number, then 7 is an odd number. If V_1 is the truth value of contrapositive of P and V_2 is the truth value of contrapositive of Q, then the ordered pair (V_1, V_2) equals : (1*) (F, T) (3) (F, F) (2) (T, F) (4) (T, T) माना कि निम्न दो कथन है-

P: यदि 7 एक विषम संख्या है, तब 7, 2 से विभाजित है।

Q: यदि 7 एक अभाज्य संख्या है, तब 7 एक विषम संख्या है।

यदि V1, P का प्रतिपरिवर्तित का सत्यता मान है और Q का प्रतिपरिवर्तित का सत्यता मान V2 है, तब (V1, V2) क्रमित युग्म है– (1*) (F, T) (2) (T, F) (3) (F, F) (4) (T, T) Sol. Statement P is False कथन P असत्य है। Statement Q is True. कथन Q सत्य है। $V_{1} \equiv F$ $V_2 \equiv T$ The contrapositive of the statments " If I am not feeling well , then I will go to the doctor" is 20._ (1) If I will go to the doctor then I am not feeling well. (2*) If I will not go to the doctor then I am feeling well. (3) If I am feeling well then I will not go to the doctor. (4) If I will go to the doctor then I am feeling well. कथन का प्रतिपरिवर्तित है " यदि मैं अच्छा महसूस नहीं कर रहा हूँ तब मैं चिकित्सक के पास जाऊंगा'' (1) यदि मैं चिकित्सक के पास जाऊंगा तब मैं अच्छा महसूस नहीं कर रहा हूँ। (2*) यदि मैं चिकित्सक के पास नहीं जाऊंगा तब मैं अच्छा महसूस कर रहा हूँ। (3) यदि मैं अच्छा महसूस नहीं कर रहा हूँ तब मैं चिकित्सक के पास नहीं जाऊंगा। (4) यदि मैं चिकित्सक के पास जाऊंगा तब मैं अच्छा महसूस कर रहा हँ। Contrapositive of statement $p \Rightarrow q$ is $\neg q \Rightarrow \neg p$ Sol. कथन $p \Rightarrow q$ का प्रतिपरिवर्तित $\sim q \Rightarrow \sim p$ है। 21._ Let p: Team India plays well; q: Virat Kohli is the captain, then the contrapositive of the implication p \rightarrow q in the verbal form is-(1) If team India does not play well then Virat Kohli is not the captain. (2) If Team India plays well then Virat Kohli is not the captain (3) If Virat Kohli is not the captain, then team India plays well. (4*) If Virat Kohli is not the captain, then team India does not play well. माना p : टीम इंडिया अच्छा खेलती है ; q : विराट कोहली कप्तान है, तब $p \rightarrow q$ का प्रतिपरिवर्तित रूप है– (1) यदि टीम इंडिया अच्छा नहीं खेलती है तब विराट कोहली कप्तान नहीं है। (2) यदि टीम इंडिया अच्छा खेलती है तब विराट कोहली कप्तान नहीं है। (3) यदि विराट कोहली कप्तान नहीं है, तब टीम इंडिया अच्छा खेलती है। (4*) यदि विराट कोहली कप्तान नहीं है, तब टीम इंडिया अच्छा नहीं खेलती है। Contrapositive of $(p \rightarrow q)$ is $(\neg q \rightarrow \neg p)$ Sol. 22.2 The negation of the statement "There exists a number which is equal to its square" is (1) There exists a number which is not equal to its square. [Revision Plannar] (2) There exists no number which is not equal to its square. (3*) There does not exists a number which is equal to its square. (4) The square of a number is greater than the number. कथन "एक ऐसी संख्या अस्तित्व में हैं, जो स्वयं के वर्ग के बराबर है" का नकारात्मक कथन है– (1) एक ऐसी संख्या अस्तित्व में है, जो स्वयं के वर्ग के बराबर नहीं है। (2) कोई भी ऐसी संख्या अस्तित्व में नहीं है, जो स्वयं के वर्ग के बराबर नहीं है। (3*) कोई भी ऐसी संख्या अस्तित्व में नहीं है, जो स्वयं के वर्ग के बराबर है। (4) किसी संख्या का वर्ग उस संख्या से बडा होता है। By using concept of quantifiers Sol.

PART - II : MISCELLANEOUS QUESTIONS

भाग-॥ : विविध प्रकार के प्रश्न (MISCELLANEOUS QUESTIONS)

Section (A) : ASSERTION/REASONING खण्ड (A) : কথন⁄ কাरण (ASSERTION/REASONING)

Resonance ®	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005			
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MAINMR- 18		
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	MAINWR- 18		

DIRECTIONS :

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.

निर्देशः प्रत्येक प्रश्न के 4 विकल्प है। (1), (2), (3) तथा (4) है, जिनमें से सिर्फ एक सही है।

- (1) दोनो कथन सत्य है।
- (2) कथन-I सत्य है, परन्तु कथन-II असत्य है।
- (3) कथन-I असत्य है, परन्तु कथन-II सत्य है।
- (4) दोनो कथन असत्य है।
- A-1. Statement 1 : ~ (A ⇔~B) is equivalent to A ⇔ B .
 Statement 2 : A ∨ (~(A ∧ ~B)) a tautology.
 कथन-1 : ~ (A ⇔~B) के तुल्य A ⇔ B है
 कथन-2 : A ∨ (~(A ∧ ~B)) पुनरूक्ति है

Ans. (1)

Sol. Statement - 1 : कथन - 1

А	В	~B	A ↔B	$A \leftrightarrow \sim B$	$\sim (A \leftrightarrow B)$
Т	F	т	F	т	F
F	т	F	F	т	F
Т	т	F	т	F	т
F	F	т	т	F	т
				0	10 · · · ·

so statement - 1 is true इसलिए कथन 1 सत्य है

Statement -2 कथन 2

 $A \lor (\sim (A \land \sim B))$ $A \lor (\sim A \lor B)$ $= (A \lor \sim A) \lor B$ $= t \lor B$ = tStatement (2) is true. कथन 2 सत्य

A-2.Let p and q be any two propositions.
Statement 1: $(p \rightarrow q) \leftrightarrow q \lor \neg p$ is a tautology.
Statement 2: $\sim(\sim p \land q) \land (p \lor q) \leftrightarrow p$ is a fallacy.
HITI p तथा q कोई दो साध्य हैं।
 $avar-1: (p \rightarrow q) \leftrightarrow q \lor \neg p$ एक पुनरूकित है।
 $avar-2: \sim(\sim p \land q) \land (p \lor q) \leftrightarrow p$ एक हेत्वाभास विरोधिकित है।

Ans. (2)

Sol.S1 : $(p \rightarrow q) \leftrightarrow (p \lor \neg q) \equiv (\neg p \lor q) \leftrightarrow (\neg p \lor q) \equiv$ tautology so S1 is true
S2 : $\neg(\neg p \land q) \land (p \lor q) \leftrightarrow p$
 $\equiv (p \lor \neg q) \land p) \lor ((p \lor \neg q) \land q) \leftrightarrow p \equiv p \lor q \leftrightarrow p$
true when p is true & q is false
p सत्य और q गलत है
S2 is incorrect
S2 गलत है

A-3. Statement-1 : Consider the statements

p : Sachin Tendulakar is a good cricketer.

Resonance Educating for better tomorrow		rp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha	lawar Road, Kota (Raj.)-324005
	Website :	www.resonance.ac.in E-mail : contact@resonance.ac.in	MAINMR- 19
		1800 258 5555 <u>CIN: U80302RJ2007PLC024029</u>	MAINMR- 19

q : Mukesh Ambani is a rich person in india.

Then the negation of statement $p \lor q$, is 'Sachin Tendulakar is not a good cricketer and Mukesh Ambani is not a rich person in india".

Statement - 2 : For any two statements p and q

 $(p \lor q) = -p \lor -q$

कथन-1: निम्नलिखित कथनों पर विचार कीजिए।

p : सचिन तेदुंलकर एक अच्छा क्रिकेटर है।

q : मुकेश अम्बानी भारत का एक अमीर व्यक्ति है।

तो कथन p v q का निषेध कथन है "p : सचिन तेदुंलकर एक अच्छा क्रिकेटर नहीं है तथा मुकेश अम्बानी भारत का एक अमीर व्यक्ति नहीं है।

कथन-2: किन्हीं दो कथनों p तथा q के लिए

$$\sim$$
(p \lor q) = \sim p \lor \sim q

Sol. ~ (pvq) = ~ p ^ ~ q = Sachin Tendulakar is not a good cricketer and Mukesh Ambani is not a rich person in india So statement-1 is correct and statement 2 is false.

Hindi. ~ (pvq) = ~ p ^ ~ q = सचिन तेदुंलकर एक अच्छा क्रिकेटर नहीं है तथा मुकेश अम्बानी भारत का एक अमीर व्यक्ति नहीं है | अतः कथन-1 सत्य है और कथन 2 असत्य है |

A-4._ Statement -1 : \sim (p $\leftrightarrow \sim$ q) is equivalent to p \leftrightarrow q

Statement -2 : \sim (p $\leftrightarrow \sim$ q) is a tautology

कथन -1 : ~(p ↔ ~q), p ↔ q के तुल्य है।

कथन -2 : ~(p ↔ ~q) पुनरावत्ति है।

Ans. (2)

Sol. Truth table for the logical statements in statement-1 कथन 1 में तूल्य कथनों के लिए सत्यता सारणी

р	q	~q	$p \leftrightarrow$	$\sim q \sim (p \leftrightarrow \sim q)$) $p \leftrightarrow q$
Т	Т	F	F	Т	
Т	F	Т	Т	F F	;
F	Т	F	Т	F F	•
F	F	Т	F	T F	•
	(n ()	a) and n	aara	identical	

 \therefore ~(p \leftrightarrow ~q) and p \leftrightarrow q are identical

∴ ~(p ↔ ~q) और p ↔ q तुल्य है।

Also ~ $(p \leftrightarrow \neg q)$ is not a tautology as all entries in its column are not T.

तथा ~ (p ↔ ~q) पुनुरूक्ति नही है इसके स्तम्भों में सभी अवयव T नही है।

- :. statement-1 in true but statement-2 is false
- ∴ कथन-1 सत्य है परन्तु कथन-2 गलत है।
- A-5._ Statement-1 : The type of "OR" used in the statement "You may have a voter card or a PAN card for your identity proof" is inclusive OR.

Statement-2: Inclusive OR is said to be used in a statement if its component statements both may happen together.

कथन–1 : "आपके पास पहचान प्रमाणित करने के लिए मतदाता पहचान पत्र या पेनकार्ड हो सकता है'' में प्रयोग किया गया "या" एक ''सम्मिलित या'' है

कथन-2: सम्मिलितया का प्रयोग कथन में किया जाता है यदि उपकथनों का एक साथ होना संभव हो।

Ans.

Sol. Statement-2 is correct definition of inclusive OR and also the correct reason of statement-1 कथन-2 "सम्मिलित या" की उचित परिभाग है या और सही कथन-1 है।

Section (B) : MATCH THE COLUMN खण्ड (B) : कॉलम को सुमेलित कीजिए (MATCH THE COLUMN)

B-1_. Column - I

(1)

Column - II (p)

(A) \sim (~ p \land q) is equivalent to

 $p \lor (p \land q)$

(B) $p \wedge (p \vee q)$ is equivalent to (q) t (C) $(p \land q) \lor [\sim p \lor (p \land \sim q)]$ is equivalent to (r) p ∨ ~ q (D) $(p \land q) \rightarrow p$ is equivalent to (s) $(\sim p \land q) \lor t$ कॉलम - ॥ कॉलम - । (A) ~ (~ p ^ q) के तुल्य है (p) $p \lor (p \land q)$ p∧ (p∨q) के तुल्य है (B) (q) t (C) (p∧q) ∨ [~p∨ (p∧~q)] के तुल्य है (r) $p \lor \sim q$ $(p q) \rightarrow p a b q e r d$ (D) (s) $(\sim p \land q) \lor t$ $(\mathsf{B}) \to (\mathsf{p}),$ $(D) \rightarrow (q)$ Ans. $(A) \rightarrow (r),$ $(C) \rightarrow (s),$ (A) ~(~p ∧ q) = ~(~p) ∨ ~ q = p ∨ ~q (using Demorgan law डी मार्गन नियम) Sol. (B) $p \land (p \lor q) = (p \land p) \lor (p \land q) = p \lor (p \land q)$ (C) $(p \land q) \lor [\sim p \lor (p \land \sim q)]$ $= (p \land q) \lor [(\sim p \lor p) \land (\sim p \lor \sim q)]$ $= (p \land q) \lor [t \land (\sim p \lor \sim q)]$ $= (p \land q) \lor (\sim p \lor \sim q)$ $= (p \land q) \lor [\sim (p \land q)] = t$ also तथा (~p ∧ q) ∨t = t $p q p \land q (p \land q) \rightarrow p$ Т Т Т Т TF F Т F Т F т (D) F F Т F

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT खण्ड (C) : एक या एक से अधिक सही विकल्प प्रकार (ONE OR MORE THAN ONE OPTIONS CORRECT)

C-1.>> Which type of sentences are not logical statements.

- (1*) Imperative sentence (Expresses a request or command)
- (2*) Exclaimatory sentence (Expresses some strong feeling)

(3*) Interrogative sentence (Asks some question)

(4*) Optative sentence (Blessing & wishes)

[Revision Plannar]

निम्नलिखित में से किस प्रकार के कथन तार्किक कथन नहीं होते –

- (1*) प्रार्थना या निर्देश व्यक्त करने वाले (प्रार्थना या निर्देश व्यक्त करने वाले)
- (2*) विस्मयादिबोधक कथन (मजबूत भावनाओं को व्यक्त करने वाले)

(3*) प्रश्नवाचक कथन (जिनमें प्रश्न पूछा गया हो)

(4*) आर्शीवाद कथन (आर्शीवाद एवं शुकामनाएँ व्यक्त करने वाले)

- Sol. By definition of 'statement'. 'कथन' की परिभाषा अनुसार।
- C-2. Which of the following statements is using an "exclusive Or" ?
 - (1*) A polygon is concave or convex.

(2) To apply for a driving license, you should have a ration card or a passport.

- (3) The office is closed if it is a holiday or a Sunday.
- (4*) I will take leave and stay in home or I will go to office.
- निम्न में कौनसा कथन "वियोजन या" का सही प्रयोग है ?
- (1*) एक बहुभुज उत्तल या अवतल है।
- (2) चालक प्रमाण पत्र प्राप्त करने के लिए आपके पास राशन कार्ड या पासपोर्ट होना चाहिए।
- (3) दफ्तर बंद है यदि छुट्टी है या रविवार है।
- (4*) मैं छुट्टी लेकर घर पर रहूँगा या मैं ऑफिस जाऊँगा।
- Sol. Polygon cannot be both concave and convex
- Hindi. बहुभुज उत्तल एवं अवतल दोनों नहीं हो सकता।

C-3. In which of the following compound statements, the connective "or" is exclusive?

- (1*) If x is a real number then x is either rational or irrational.
- (2) If x is an integer, then either $x \ge 0$ or $x \le 0$.
- (3) If x is any real number, then either $x \ge 0$ or $x \le 0$.
- (4*) Lines are said to be parallel If they are non intersecting or coincident.
- निम्न में कौनसा कथन "वियोजन या" का सही प्रयोग है ?
- (1*) यदि x वास्तविक है तब यह या तो परिमेय या अपरिमेय होगा।
- (2) यदि x पूर्णांक है तब $x \ge 0$ या $x \le 0$
- (3) यदि x एक वास्तविक संख्या है तब $x \ge 0$ or या $x \le 0$
- (4*) रेखाएं समान्तर कहलाती है यदि वे अप्रतिच्छेदक या सम्पाती हो।
- x cannot be both rational and irrational Sol.
- Hindi. x परिमेय तथा अपरिमेय दोनों नहीं हो सकता।
- C-4 Which of the following is a fallacy

निम्न में से कौनसा विरोधिक्ति है–
(1) ~(p
$$\Rightarrow$$
 q) \Leftrightarrow (~p ~q) (2*) (p \land ~ q) \land
(3*) p \land ~ p (4*) (p \land ~ q) \land

Sol.

(1)							
р	q	$p \Rightarrow q$	~(p ⇒ q)	~p	~q	~p v ~q	~(p ⇒ q) ⇔ (~pv~q)
Т	Т	Т	F	F	F	F	Т
Т	F	F	Т	F	Т	Т	Т
F	Т	Т	F	Т	F	Т	F
F	F	Т	F	Т	Т	T	F

so statement is not a fallacy इसलिए कथन विरोधिक्ति नहीं है-

 $(2) (p \land \neg q) \land (\neg p \lor q) = ((p \land \neg q) \land \neg p) \lor ((p \land \neg q) \land q) = ((p \land \neg p) \lor \neg q) \lor (p \land (\neg q \land q))$ $= (f \land \neg q) \lor (p \land f) = f \lor f = f$

 $(\sim p \lor q)$ (~p∧q)

(3)
$$p \land \sim p = f$$

(4) $(p \land \neg q) \land (\neg p \land q) = (p \land \neg p) \land (\neg q \land q) = f \land f = f$

- C-5_ Statement p : "An equilateral triangle is equiangular" then negation of statement p is (1*) An equilaterial triangle is not equiangular
 - (2*) It is false that an equilateral triangle is equiangular
 - (3) It is not the case that an equilateral triangle is not equiangular
 - (4*) There exist at least one equilateral triangle which is not equiangular
- कथन p : "समबाह त्रिभुज में कोण बराबर होते है" तब कथन p का नकारात्मक कथन है– Hindi
 - (1*) समबाह त्रिभुज में कोण बराबर नहीं होते है-
 - (2*) यह गलत है कि समबाह त्रिभूज के कोण बराबर होते है-
 - (3) ऐसी कोई स्थिति नहीं की समबाह त्रिभुज के कोण बराबर नहीं है-
 - (4*) कम से कम एक समबाह त्रिभूज इस प्रकार है जिसके कोण मान नहीं है-
- Sol. Obviously

Exercise-3

> Marked guestions are recommended for Revision.

🖎 चिन्हित प्रश्न दोहराने योग्य प्रश्न है।

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS) भाग - I : JEE (MAIN) / AIEEE (पिछले वर्षो) के प्रश्न

1. Let p be the statement "x is an irrational number", q be the statement "y is a transcendental number" and r be the statement "x is a irrational number iff y is a transcendental number".

Statement-1: r is equivalent to either q or p. **Statement-2**: r is equivalent to $\sim (p \Leftrightarrow \sim q)$. (1*) Statement-1 is False, Statement-2 is True

[AIEEE - 2008, (4, -1), 120]

MAINMR-22

```
(2) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
(3) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-
1
(4) Statement-1 is True, Statement-2 is False
माना p एक कथन है कि "x एक अपरिमेय संख्या है तथा q एक कथन है कि "y एक विशेष अपरिमेय (transcendental)
संख्या है" तथा I एक कथन है कि "x एक अपरिमेय संख्या है यदि व केवल यदि v एक विशेष अपरिमेय
(transcendental) संख्या है।
कथन-1: कथन r, कथन q या p के समतूल्य है।
कथन-2 : कथन r, कथन ~ (p ⇔~ q) के समतुल्य है।
(1*) कथन–1 असत्य है, कथन–2 सत्य है।
(2) कथन–1 सत्य है, कथन–2 सत्य है ; कथन–2, कथन–1 का सही स्पष्टीकरण है।
(3) कथन–1 सत्य है, कथन–2 सत्य है ; कथन–2, कथन–1 का सही स्पष्टीकरण नहीं है।
(4) कथन–1 सत्य है, कथन–2 असत्य है।
Given statement r = p \Leftrightarrow q
Statement - 1 : r_1 = (pq) is not equilvalent to p \Leftrightarrow q
Statement - 2 :
दिया गया कथन r = p⇔ q
कथन - 1 : r, = (pq) के तुल्य p⇔q नहीं है
कथन - 2 :
                       ~(p↔~q)
  р
                 p↔~q
       q
             ~q
                                  p↔q
  т
       Т
             F
                   F
                           Т
                                   Т
  Т
       F
             Т
                   Т
                           F
                                   F
  F
       Т
             F
                   Т
                           F
                                   F
  F
       F
                   F
                           Т
                                   Т
```

Hence statement - 1 is false and statement -2 is true अतः कथन - 1 है और कथन -2 सत्य है–

2. The statement $p \rightarrow (q \rightarrow p)$ is equivalent to[AIEE] $avar p \rightarrow (q \rightarrow p)$ $fractrightarrow p \rightarrow (q \rightarrow p)$ $fractrightarrow p \rightarrow (q \rightarrow p)$ $(1) p \rightarrow (p \Leftrightarrow q)$ $(2) p \rightarrow (p \rightarrow q)$ $(3^*) p \rightarrow (p \lor q)$ $(4) p \rightarrow (p \land q)$

[AIEEE - 2008, (4, -1), 120]

р	q	p∨q	p∧q	p→q	p↔q	(q→p)	p→(q→p)	p→(p↔q)	p→(p→q)	p→(p∨q)	p→p∧q
Т	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	T
Т	F	Т	F	F	F	Т	Т	F	F	Т	E E
F	Т	T	E F	ं T	F	F	Т	Т	Т	Т	Т
F	F	F /	F	Т	Т	Т	Т	Т	Т	Т	Т
			100								122

Sol.

Sol.

3. **Statement -I** ~ ($p \leftrightarrow ~ q$) is equivalent to $p \leftrightarrow q$. [AIEEE - 2009, (4, -1), 120] **Statement -II** ~ $(p \leftrightarrow ~q)$ is a tautology. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3*) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True **कथन -l** ~ (p ↔ ~ q) तथा p ↔ q समतुल्य है **कथन-II** ~ (p ↔ ~ q) पुनरूक्ति (tautology) है (1) कथन–1 सत्य है, कथन–2 सत्य है ; कथन–2, कथन–1 का सही स्पष्टीकरण है। (2) कथन–1 सत्य है, कथन–2 सत्य है : कथन–2, कथन–1 का सही स्पष्टीकरण नहीं है। (3*) कथन–1 सत्य है, कथन–2 असत्य है। (4) कथन–1 असत्य है, कथन–2 सत्य है। Sol. Statement-1:

р	q	p↔~q	~(p↔~q)	p↔q		
Т	Т	F	Т	Т		
Т	F	Т	F	F		
F	Т	Т	F	F		
F F F T T						
Statement-2 : False.						

4. Let S be a non-empty subset of **R**. Consider the following statement : [Revision Plannar] P : There is a rational number $x \in S$ such that x > 0. Which of the following statements is the negation of the statement P? [AIEEE - 2010, (4, -1), 120] (1) There is no rational number $x \in S$ such that $x \le 0$. (2*) Every rational number $x \in S$ satisfies $x \le 0$. (3) $x \in S$ and $x \le 0 \implies x$ is not rational. (4) There is a rational number $x \in S$ such that $x \le 0$. माना S, R का एक अरिक्त उपसमूच्चय है। निम्नलिखित प्रकथन को लीजिए : P : एक परिमेय संख्या $x \in S$ ऐसी है कि x > 0. प्रकथन P का निम्नलिखित में से कौनसा प्रकथन निषेधन (negation) है ? (1) ऐसी कोई परिमेय संख्या $x \in S$ नहीं है जिसके लिए $x \le 0$. (2*) प्रत्येक परिमेय संख्या $x \in S$ के लिए $x \le 0$ है। (3) $x \in S$ तथा $x \le 0 \Rightarrow x$ परिमेय संख्या नहीं है। (4) एक परिमेय संख्या $x \in S$ ऐसी है कि $x \le 0$. Ans. (2) Sol. P : At least one rational number $x \in S$ such that x > 0Negation : all rational numbers $x \in S$ are $x \le 0$ P : कम से एक परिमेय संख्या $x \in S$ जो कि x > 0Hindi. निषेध : सभी परिमेय संख्याएं $x \in S, x \le 0$ है। अतः सही विकल्प (2) है। 5.2 Consider the following statements [AIEEE - 2011(I), (4, -1), 120] P: Suman is brilliant Q : Suman is rich R : Suman is honest. The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as : निम्न कथनों पर विचार कीजिए। P: सुमन प्रतिभाशाली है। Q:सुमन अमीर है। R : सुमन ईमानदार है। कथन " सुमन प्रतिभाशाली है तथा बेइमान है यदि और केवल यदि सुमन अमीर है " का निषेधन लिखा जा सकता है : $(2^*) \sim (Q \leftrightarrow (P^{\land} \sim R))$ (3) ~ Q $\leftrightarrow \sim P^{\land} R$ (4) ~ (P ^ ~ R) \leftrightarrow Q (1) ~ P ^ (Q \leftrightarrow ~ R) Sol. Negation of $(P \land \neg R) \leftrightarrow Q$ is $((P \land \neg R) \leftrightarrow Q) \sim ((P \land \neg R) \leftrightarrow Q)$ It may also be written as ~ $(Q \leftrightarrow (P \land \sim R))$ $(P \land \sim R) \leftrightarrow Q$ का निषेधन $((P \land \sim R) \leftrightarrow Q) \sim \bar{c}$ इसे ~ (Q ↔ (P \land ~ R)) तरह से भी लिख सकते हैं। 6. The only statement among the following that is a tautology is - [AIEEE - 2011(II), (4, -1), 120] निम्न में केवल वह कथन जो पुनरूक्ति (tautology) है, है : (1) $A \land (A \lor B)$ $A \lor (A \land B)$ $(3^*) [A \land (A \to B)] \to B (4) B \to [A \land (A \to B)]$ (2) Sol.

Resonance®	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005				
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MAINMR- 24			
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	MAINWR-24			

八

	$\begin{tabular}{ c c c c c } \hline A & B & A \lor B & A \land B & A \land (A \lor B) \end{tabular}$	$A \lor (A \land B) A \rightarrow B$	$A \land (A \to B)$	$A \land (A \rightarrow B) \rightarrow B$	$B \rightarrow [A \land (A \rightarrow B$	11
		T F	F	Т	T	<u>//</u>
	FTTFF	F T	F	т	F	
		ТТ	T	Т	Т	
	FFFFF	F T	F	Т	Т	
7.2	The negation of the statem	ent [l	Revision P	lannar] [A	IEEE - 2012,	(4, –1), 120]
	"If I become a teacher, the	n I will open a s	chool", is :			
	(1*) I will become a teache					
	(2) Either I will not become(3) Neither I will become a					
	(4)I will not become a teac		•			
	निम्न कथन का निषेधन है–	·				
	"यदि मैं अध्यापक बनता हूँ, तो	मैं एक विद्यालय स	खोलूंगा" :			
	(1*) मैं अध्यापक बनूंगा तथा मैं	विद्यालय नहीं खो	लूंगा ।			
	(2) या तो मैं अध्यापक नहीं बनृं	गा या न मैं विद्याल	लय खोलूंगा।			
	(3) न मैं अध्यापक बनूंगा और न	न ही मैं विद्यालय	खोलूंगा ।			
	(4) मैं अध्यापक नहीं बनूंगा या	मैं विद्यालय खोलूंग	ΠΙ			
Sol.	Let p : I become a teacher					
	q : I will open a school					
	Negation of $p \rightarrow q$ is ~ (p i.e. I will become a teacher		nen a scho			
Hindi.				51.		
	q : मैं एक विद्यालय खोलूंगा।	ĥ				
	q : 1 द्व पियालप Gitzeni p का नकारात्मक → q होगा ~ (p → q) = p ^ ~ q					
	अर्थात् मैं अध्यापक बनूंगा तथा		•			
			C.			
8.	Consider	D	Revision P	lannar] [A	IEEE - 2013,	(4, –1), 120]
	Statement-I: (p ^ ~ q)	\land (~ p \land q) is	a fallacy.			
	Statement-II : $(p \rightarrow q)$ (~					
	(1) Statement-I is true; St(2*) Statement-I is true; St					
	(3) Statement-I is true; St				concor expla	
	(4) Statement-I is false; S	tatement-II is tr	rue.			
	विचार कीजिए :			[AIEEE - 2	2013, (4, –1),	120]
	कथन -I: (p ^ ~ q) ^ (~					
	कथन -II : $(p \rightarrow q)$ (~ $q \rightarrow q$	• /				
	(1) कथन-I सत्य है; कथन-II र	,				
	(2) कथन-I सत्य है; कथन-II र		ज्थन-I की सह	ी व्याख्या नहीं है	1	
	(3) कथन-I सत्य है; कथन-II र					
<u>.</u>	(4) कथन-I असत्य है; कथन-II					
Sol.	Statement-II: $(p \rightarrow q) \leftrightarrow$	· · · /				
	$\equiv (p \rightarrow q) \leftrightarrow (p \rightarrow q)$ which is always true					
	so statement -II is true	,.				
	Statement-I: $(p \land \neg q) \land (p \land \neg q)$	• •				
	$= p \land \sim q \land$ $= p \land \sim p \land$	• •				
	= p∧ ~ p/ = f∧ f	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	= f					
	so statement -l is true					
	Alternate Statement-II : $(p \rightarrow q) \leftrightarrow$	(~ q → ~p)				
		,				vor Road Kata (Reil) 004005
	Resonance [®] Educating for better tomorrow	Website : www.res			-	war Road, Kota (Raj.)-324005
	False at the fact to state of			-mail contact@res		MAINMR- 25

Method-2 : logically equivalent of \sim (p $\leftrightarrow \sim$ q) का तार्किक संगत is p \leftrightarrow q है

10. The negation of ~ s v (~ r \land s) is equivalent to [Revision Plannar] [JEE(Main) 2015, (4, -1), 120] (1) s ∧ ~ r (2) $s \wedge (r \wedge \sim s)$ (3) $s \lor (r \lor ~ s)$ (4*) s∧r ~ sv (~ r ^ s) का निषेध समतुल्य है-[JEE(Main) 2015, (4, -1), 120] (1) s ∧ ~ r (2) $s \wedge (r \wedge \sim s)$ (3) $s \lor (r \lor ~ s)$ (4*) s ∧ r Sol. $\sim s \lor (\sim r \land s) = (\sim s \lor \sim r) \land (\sim s \lor s)$ $= \sim (s \wedge r) \wedge t$ $= \sim (s \wedge r)$ So negation is s r. इसलिए नकारात्मक है। s ^ r. 11. The Boolean Expression $(p \land \neg q) \lor q \lor (\neg p \land q)$ is equivalent to : [JEE(Main) 2016, (4, -1), 120] बूले के व्यंजक (Boolean Expression) (p ∧ ~ q) ∨q∨(~ p ∧ q) का समतुल्य है : (1) p ∧ q (2) p ∨ q (3) p v ~ q (4) ~ p ∧ q Ans. (2) Sol. [(p ~q) \lor q] \lor (~p \land q) $= (p \land q) \land (\neg q \lor q) \lor (\neg p \land q)$ $= (p \land q) \land [t \lor (\sim p \land q)]$ $= (p \land q) \land t$ $= p \land q$ 12. [JEE Main 2017] The following statement [MRCD] MOD XII JP* * $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$ is : (1) a tautology (2) equivalent to $\sim p \rightarrow q$ (3) equivalent to $p \rightarrow \sim q$ (4) a fallacy निम्न कथन [JEE Main 2017] $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$ is : (2) ~ $p \rightarrow q$ के समतुल्य है (1) एक पुनरूक्ति (tautology) है (4) एक हेत्वाभास (fallacy) है (3) $p \rightarrow \sim q$ के समतुल्य है Ans. (1) Sol. $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$ $(p \rightarrow q) \rightarrow ((p \lor q) \rightarrow q)$ $(p \rightarrow q) \rightarrow ((\sim p \land \sim q) \lor q)$ $(p \rightarrow q) \rightarrow ((\sim p \lor q) \land (\sim q \lor q))$ $(p \rightarrow q) \rightarrow (p \rightarrow q)$ which is tautology एक पुनरूक्ति (tautology) है [JEE(Main) 2019, Online (09-01-19), P-1 (4, -1), 120] 13. If the Boolean expression $(p \oplus q) \land (\sim p \odot q)$ is equivalent to $p \land q$, where \oplus , $\odot \in \{\lor, \land\}$, then the ordered pair (\oplus, \odot) is : यदि बूलीय व्यंजक (p ⊕ q) ∧ (~p \bigcirc q), p ∧ q के तुल्य है, जहाँ ⊕, $\bigcirc \in \{\lor, \land\}$ है, तो क्रमित युग्म (⊕, \bigcirc) है– (1) (^, ^) (2) (v, v) (3) (\(\times, \(\wedge\)) $(4) (\land, \lor)$ (4) Ans. सभी विकल्पों की जाँच करने पर Sol. Check all option repeatedly (i) $(A \land B) \land (\sim A \lor B) \equiv A \land (B \land (\sim A \lor B))$ $\equiv A \land (B) \equiv A \land B$ \Rightarrow (i) is correct ((i) सही है) (ii) $(A \land B) \land (\sim A \land B) \equiv (A \land \sim A) \land B$ $\equiv f \land B \equiv f$ (iii) $(A \lor B) \land (\sim A \lor B) \equiv B$ (iv) $(A \lor B) \land (\sim A \lor B)$ \equiv B \vee (A $\wedge \sim$ A) = B \vee f \equiv f (केवल विकल्प (4) सही है) \Rightarrow only (4) is correct

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

14. Consider the following three statements : 5 is a prime number Ρ : Q : 7 is a factor of 192 R L.C.M. of 5 and 7 is 35. Then the truth value of which one of the following statement is true ? निम्न तीन कथनों पर विचार कीजिए : Ρ : 5 एक अभाज्य संख्या है। Q सात 192 का एक गुणनखण्ड है। : 5 तथा 7 का L.C.M. 35 है। R : तो निम्न में से कौन से एक कथन का सत्यमान (truth value) सत्य (T) है ? [JEE(Main) 2019, Online (10-01-19), P-2 (4, -1), 120] (2) $(P \land Q) \lor (\sim R)$ (3) $P \lor (\sim Q \land R)$ (4) $(\sim P) \land (\sim Q \land R)$ (1) (~P) \vee (Q \wedge R) Ans. (3) Sol. P is true, सत्य है Q is False असत्य है R is True सत्य है (1) $P v (~Q \land R) = T v (T \land T) = T$ (2) $F^{(T^{T})} = F$ (3) $(T \vee F) \wedge F = T \wedge F = F$ (4) $F^{(T \vee T)} = F^{T} = F$ 15. The Boolean expression $((p \land q) \lor (p \lor \sim q)) \land (\sim p \land \sim q)$ is equivalent to : बूलीय व्यंजक (Boolean expression) $((p \land q) \lor (p \lor \sim q)) \land (\sim p \land \sim q)$ निम्न में जिसके तुल्य है, वह है– [JEE(Main) 2019, Online (12-01-19), P-1 (4, -1), 120] (1) $(~p) \wedge (~q)$ (2) p∧q (3) $p \lor (~q)$ (4) $p \land (\sim q)$ Ans. (1) $\left(\left\{(p \land q) \lor p\right\} \lor \left\{(p \land q) \lor \neg q\right\}\right) \land \neg (p \lor q) \Rightarrow \left(p \lor \left\{(p \lor \neg q) \land (q \lor \neg q)\right\}\right) \land \neg (p \lor q)$ Sol. $(p \lor \{p \lor \neg q\}) \land \neg (p \lor q) \Rightarrow (p \lor \neg q) \land \neg (p \lor q) \Rightarrow \neg (p \lor q) \Rightarrow \neg p \land \neg q$

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

भाग - I : अभ्यास प्रश्न पत्र (PRACTICE TEST PAPER)

JEE(Main) Pattern Practice paper (30 SCQ, 1 hr, 120 Marks).

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks: 120 Max. Time : 1 Hr.

Important Instructions :

- 1. The test is of **1 hour** duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- 3. Only one choice is correct 1 mark will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- There is only one correct response for each question. Filling up more than one response in any 4. question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.
- यह खण्ड कक्षा में विचार विमर्श के लिए नहीं है। यह केवल स्वयं अध्ययन और स्वयं की जाँच रेजोनेन्स विद्यार्थीयों से करने के लिए है।

Max. Marks : 120 Max. Time : 1 Hr.

महत्त्वपूर्ण निर्देश :

- परीक्षा की अवधि 1 घंटे है, तथा अधिकतम अंक 120 है। 1.
- इस परीक्षा पुस्तिका में 30 प्रश्न है। प्रत्येक 4 अंक का है। 2.
- केवल एक विकल्प सही है। प्रत्येक प्रश्न के गलत उत्तर के लिये 1 अंक लिया जायेगा। यदि उत्तर पुस्तिका में किसी प्रश्न 3. का उत्तर नहीं दिया गया हो तो कुल प्राप्तांक से कोई कटौती नहीं कि जायेगी।
- 4. प्रत्येक प्रश्न का केवल एक ही सही उत्तर है। एक से अधिक उत्तर देने पर उसे गलत उत्तर माना जायेगा और उपरोक्त निर्देश 3 के अनुसार अंक काट लिये जायेंगे।

1. Choose the incorrect alternative

- p = I study and I pass (1)
 - ~p =Either I don't study or I don't pass
- p = If she come then she will get bonus (2)
 - ~p = She come and she will not get bonus
- (3) p = He plays if and only if his father permits
- $\sim p$ = Either he play and his father does't permit or he does not play and his father permits.
- (4*) p = 4+3 > 2 and 4 + 3 < 9
 - $\sim p = 4 + 3 < 2$ or 4 + 3 > 9

गलत विकल्पों को चुनिए –

- p = मैं अध्ययन करता हूं और मैं उत्तीर्ण होता हूँ। (1)
 - ~p = या तो मैं अध्ययन नहीं करता या मैं उत्तीर्ण नहीं होता हूँ।
- p = यदि वह आती है तब वह बोनस प्राप्त करती है। (2)
 - ~p = वह आती है और बोनस प्राप्त नहीं करती है।

$\boldsymbol{\Sigma}$				ac.in E-mail : contact@resonance.ac.in MAINMR- 30	
			Reg. & Corp. Office : CG	Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005	
Sol.	(4) It IS	not necessary condi	୩୦୮୮ ଏହି ଆସିଂସଦ ସାମିବ	זימ יוטו טן	
Sol	. ,	श्री का धन विषम होन व not necessary condi			
		ग्रंभ नहां है। व्या का घन विषम होने व	के लिए राट आतण्मक नै	कि संख्या विषम है।	
		संख्या विषम है यदि औ वेषम नहीं है।	र कवल याद इसका धन	ा विषम है। (3) यदि संख्या का घन विषम नहीं है त	q
		संख्या विषम है तब इसक			न
	•	एक संख्या विषम है तब			
		से कौनसा कथन समान			
	(4*) Fo	r the cube of a numb	er to be odd, it is neo	cessary that the number is odd.	
	· ·	umber is odd only if i ibe of a number is no		ber is not odd.	
		umber is odd implies umber is odd only if i			
	p = if a	number is odd, then	its cube is also odd		
5.		\Rightarrow True of the following state	ment doesn't convey	same meaning as	
Sol.	$p \rightarrow q$	T			
	(3) ज्ञात	नहीं कर सकते है	(4) यह ⁻	गलत है क्योंकि 2+2=4	
	(1) असल	त्य क्योंकि सूर्य पूर्व में उ		a de la constante de	
		पश्चिम में उदय होता	है तब 2 + 2 = 6		
		।'t determine थन का सत्यता मान है :		(4) It is false because 2+2=4	
		se because Sun rises	s in the East	(2^*) True (4) It is false because $2 + 2 - 4$	
	lf sun r	ises in the west then			
4.	Find tru	uth of statement :			
				अमेरिका जा सकते हो।	
Sol.	() (oth passport and vote	er ID is present, you	can visit America.	
		रिका जान क लिए आप से कोई नहीं	का पासपाट या मतदान	पहचान पत्र की आवश्यकता होती है।	
		वर्ष में 365 दिन या 36			
	. ,	खाऐं एक बिन्दु पर प्रति		तर है।	
		या' का उपयोग निम्न	~		
	(4) NOP				
	(3*) To (4) Nor	visit America, you ne	eed a passport or vo	ter ID.	
	(2) An y	year has 365 days of	366 days		
э.		use of inclusive OR lines intersect at a p		iy .	
3.	Identify	use of inclusive OP	in one of the followin		
Sol.	(3)	\Rightarrow can be true or fa	se सत्य या असत्य हो	सकता है।	
	(3*) कल	ा मंगलवार है।		(4) एक वर्ष में 380 दिन होते है।	
		में दो जोड़ने पर छः आ		(2) तीन में दो जोड़ने पर पाँच आता है।	
		monow is luesuay से कौनसा कथन नहीं है	: —	(4) There are sou days in all year	
		ee plus two equals si morrow is tuesday	x	(2) Three plus two equals five(4) There are 380 days in an year	
2.		of the following is no			
Sol.	(4)	4 + 3 ≥ 2 or या 4 +	$\mathfrak{I} \geq \mathfrak{I}$		
Sel	(A)	~p=4+3<2 या4			
	(4*)	p = 4+3 > 2 और 4 +			
		देते है।			
	. /	1		आज्ञा नहीं देते या वह नहीं खेलता है और उसके पिताजी आज्ञ	ना
	(3)	p = वह खेलता है यदि	और केवल यदि उसके	पिता जी आज्ञा देते है।	

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Mathematical Reasoning

6. Identify the necessary and sufficient conditions for if you pass the exam then you will get good college. (1) Necessary is : " pass the exam" sufficient is: " getting good college"
(2*) Necessary is : " getting good college" sufficient is: " pass the exam"
(3) Necessary is : " not getting good college" sufficient is" pass the exam" (4) Necessary is : " not pass the exam" sufficient is: " getting good college" 'यदि आप परीक्षा में पास होते हो तब आप को अच्छा कॉलेंज मिलेंगा' के लिए आवश्यक और पर्याप्त प्रतिबन्ध को पहचानिए (1) आवश्यक प्रतिबन्ध " परीक्षा में पास होना" पर्याप्त प्रतिबन्ध "अच्छा कॉलेज मिलना" है। (2*) आवश्यक प्रतिबन्ध "अच्छा कॉलेज मिलना" पर्याप्त प्रतिबन्ध " परीक्षा में पास होना" है। (3) आवश्यक प्रतिबन्ध "अच्छा कॉलेज नहीं मिलना" पर्याप्त प्रतिबन्ध " परीक्षा में पास होना" है। (4) आवश्यक प्रतिबन्ध " परीक्षा में पास नहीं होना" पर्याप्त प्रतिबन्ध" अच्छा कॉलेज मिलना" है। Sol. $p \rightarrow q$: q is necessary for p p is sufficient for q $p \rightarrow q$: q, p के लिए आवश्यक है। Hindi p, q के लिए पर्याप्त है। 7. Negation of (~pvq) is (~pvq) का नकारात्मक है – (1) p v q (2) pv~q (3*) p ~q (4)~p~q De - Moivre's law (दः मायवर नियम) Sol. 8. $(\sim p \vee q) \wedge (\sim p \wedge \sim q)$ is equivalent to ab q equivalent(1) p ∧ q (2) ~(p ∧ q) (3*) (~p ∧ ~q) (4)~p q By Algebra बीजगणित $(\sim p \lor q) \land (\sim p \sim q) = \sim p \land \sim q$ Sol. Negation of "Every Indian Speaks Hindi" is 9. (1) Every indian doesn't speak Hindi (2) There exist a Indian who doesn't speaks Hindi (3) Not everyone in India speaks Hindi (4*) All of these "प्रत्येक भारतीय हिन्दी बोलता है" का नकारात्मक कथन है। (1) प्रत्येक भारतीय हिन्दी नहीं बोलता है। (2) एक भारतीय इस प्रकार विद्यमान है कि वह हिन्दी नहीं बोलता है। (3) भारत में प्रत्येक व्यक्ति हिन्दी नहीं बोलता है। (4*) उपरोक्त सभी Sol. "There exist" should be used for complete negation. "इस प्रकार विद्यमान हैं" का उपयोग सम्पूर्ण नकारात्मक के लिए होना चाहिए 10. Which of the following is not a component statement of '36 is divisible by 2, 3 and 6, '? (1) 36 is divisible by 2 (2) 36 is divisible by 3 (4*) 36 is divisible by 18 (3) 36 is divisible by 6 निम्न में से कौनसा घटक कथन नहीं है '36, संख्या 2, 3 और 6 ' से विभाजित है ? (1) 36, 2 से विभाजित है। (2) 36, 3 से विभाजित है। (3) 36. 6 से विभाजित है। (4*) 36, 18 से विभाजित है। "And" connect different component statement Sol. ''और'' विभिन्न घटक कथनों को जोडता है। 11. (~q∧ q) v (pv ~p) is है – (1*) tautology पुनरूक्ति (2) fallacy विरोधिक्ति (3) p (4) q Sol. $(\sim q \land p) \lor t = t$ 12. Negation of p v (~p v q) is -

Sol.	p v (~p v q) का नकारात्मक है (1) tautology पुनरूक्ति (~p) ^ ~(~p v q) (~p) ^ (p ^ q) (~p ^ p) ^ (~q) = f ^ (~q) :	(2*) fallacy विरो	धिक्ति (3) p	(4) q	
13. Sol.	Negation of ~p → q is ~p → q का नकारात्मक है – (1*) ~p ∧ ~q (2) ~ (~p → q) ≡ ~p ∧ ~ q) p ∧ ~ q	(3) p∧q	(4)	~p v q	
14.	Number of 'True' value in tr ~ p v q की सत्यता सारणी में र (1) 1 (2)	सत्यमानों की संख्या है –) 2	(3*) 3	(4) 4		
Sol.	p q ~r T F F F T T T T T F F T	p v q				
15.	Negation of "2+3 = 5 and 8 "2+3 = 5 और 8 < 10" का नक (1) 2 + 3 ≠ 5 and और 8 < 10 (3*) 2 + 3 ≠ 5 or या 8 ≥ 10	गरात्मक है	(2) 2 + 3 = 5 or 8 (4) None	< 10 of these इनमें से क	ोई नहीं	
Sol.	~(p ^ q) = ~p v ~ q					
16. Sol.	Negation of " A is in class X or B is in class XII" is (1) A is not in class X and B is in class XII (2*) A is not in class X and B is not in class XII (3) Either A is not in class X or B is not in class XII (4) None " A कक्षा X में है या B कक्षा XII में है" का नकारात्मक कथन है। (1) A कक्षा X में नहीं है या B कक्षा XII में है (2*) A कक्षा X में नहीं है या B कक्षा XII में नहीं है (3) या तो A कक्षा X में नहीं है या B कक्षा XII में नहीं है (4) इनमें से कोई नहीं					
	$\sim (q \lor q) = \sim p \land \sim q$					
17.	Truth value of the statemer (1) p ≡ true, q ≡ true (3) p ≡ false, q ≡ false कथन "यदि p तब q" का सत्यत		e when (2*) p = true; q = (2) p = false; q =			
	(1) p = सत्य, q = सत्य		(2*) p ≡ सत्य; q ≡			
Sol.	(3) p = असत्य, q ≡ असत्य Truth table सत्यता सारणी		(2) p ≡ असत्य; q	≡ सत्य		
18.	If p : Ram is in class X q : Ram is intelligent Then, the symbolic form Ram is in class X and intelligent is					
	यदि p : राम कक्षा X में है । q : राम मेघावी छात्र है । तब, राम कक्षा X में है और मेघावी है का प्रतिकात्मक रूप है ।					
八	Resonance®	Reg. & Corp. Office : CG Website : www.resonance.		-		
	Educating for better tomorrow Website : www.resonance.ac.in E-mail : contact@resonance.ac.in MAINMR- 32 Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029 MAINMR- 32					

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Sol.	(1*) p ∧ q And और =∧	(2) p v q	(3) p ^ ~q	(4) p v~q
19.	If p : A man is happy q : A man is rich Then, the statement, "	If a man is not happy, th	nen he is not rich" is writte	en as
	यदि p : एक व्यक्ति र q : एक व्यक्ति अ	0		
		गदमी खुश नहीं है तब वह ध (2) ~q → p	धनवान नहीं है'' को (3) ~q → ~p	(4) $q \rightarrow \sim q$
Sol.	। If यदि then तब	$\dots \Rightarrow \sim p \rightarrow \sim q$	、/ I I	
20.	संयुक्त कथन $p \rightarrow$ (~p v	q) असत्य है तब p और q व	के क्रमशः सत्यता मान है।	p and q are respectvely
Sol.	(1) T,T For p → q = F के लिए	(2) 1,F ⇒ p ≡ true सत्य ; q = 1	(3) F,T false असत्य	(4) F,F
21.	The contrapositive of $p \Rightarrow -q$ का प्रतिपरिवर्तित	.हे —		
Sol.	(1) $\sim p \Rightarrow q$ Contrapositive convey	(2) ~q ⇒ p same meaning प्रतिपरिव	(3*) q ⇒ ~p (4) N र्तित का समान अर्थ है	one इनमें से कोई नहीं
22.	Which of the following निम्न में से कौनसा पुनरूति	क्ते है।		
Sol.	(1) A ∧ (Av B) (3) A B			$ \begin{array}{l} B (4) \ B \to [A \land (A \to B)] \\ \to B) \\ \end{array} $
0011	(3) A B T T T F F T F F	T F T	$\begin{array}{ccc} A(A \rightarrow B) & [A (A \rightarrow B) \\ T & T \\ F & T \end{array}$	
23.	Consider the following P : Ritu is lazy Q : Ritu	statement i is rich R: Ritu is selfish		y if Ritu is rich" can be expresed
		गु अमीर है R: रीतु स्वार्थी है		ने व्यक्त किया जा सकता है –
Sol.	(1) $\sim P \land (Q \leftrightarrow R)$ (p $\land \sim q$) $\leftrightarrow Q = Q \leftrightarrow ($	$(2^*) \sim (Q \leftrightarrow (P \land \sim R))$ $p \land \sim q)$	$(3) \sim Q \leftrightarrow \sim P$	$(4) \sim ((P \land \neg R) \leftrightarrow Q)$
24.	The statement p \rightarrow (q कथन p \rightarrow (q \rightarrow p) के तु	ुल्य है –		
Sol.	$(1) P \rightarrow (p \leftrightarrow q)$ $p \qquad q \qquad q \rightarrow p$ $T \qquad T \qquad T$ $T \qquad F \qquad T$ $F \qquad T \qquad F$ $F \qquad F \qquad T$ $F \qquad T \qquad F$	$\begin{array}{ccc} (2) \ P \rightarrow (p \rightarrow q) \\ p \rightarrow q \rightarrow p & p \lor q \\ T & T \\ T & T \\ T & T \\ T & F \end{array}$	(3*) P→ (p vq) p → (p v q) T T T T T	(4) P→ (p q)
25.	~(p v q) v (~p ∧ q) is lo ~(p v q) v (~p ∧ q) का उ (1*) ~ p	gically equivalent to	(3) q	(4) ~q
八	Resonance	Website : www.resonan	G Tower, A-46 & 52, IPIA, Near C ce.ac.in E-mail : <u>contact@resona</u> r	ity Mall, Jhalawar Road, Kota (Raj.)-324005
	Educating for better tomorro	/w	55 <u>CIN: U80302RJ2007PLC02402</u>	MAINMR-33

八

Sol. (~p ∧ ~q) v (~p ∧ q) ≡ ~p (By Algebra बीजगणित से) 26. \sim (p ↔ \sim q) is equivalent to (का तुल्य है) $(1^*) p \leftrightarrow q$ (2) $p \leftrightarrow \sim q$ (3) $\sim p \leftrightarrow q$ (4) \sim (p \leftrightarrow q) Sol. р q ~q $p \leftrightarrow \sim q$ ~(p ↔~ q) Ť F т Т F Т F Т т F F F Т F Т F F Т F Т 27. If p, q, r are simple propositions, then $(p \land q)$ $(q \land r)$ is true then (1) p, q, r are all false (2*) p, q, r are all true (4) p is true and q and r are false (3) p, q are true and r is false यदि p,q, r सरल वाक्य है तब (p \land q) (q \land r) सत्य है, तब (1) p, q, r सभी असत्य है (2*) p, q, r सभी सत्य है (3) p, q सत्य और r असत्य है (4) p सत्य है तथा q और r असत्य है। Sol. $(p \land q) (q \land r)$ р q r р ^ q $(q \wedge r)$ F É F F F F Т T Т Т Т Т F Т T F Т F F F Т F F F 28. $(-p \land q) \lor q$ is equivalent to (के तुल्य कथन है) (1) p (4)~p (3) ~q (2*) q By truth table (सत्यता सारणी) Sol. 29. Negation of statement : "If I become PM, then I will open more IITs" (1) Neither I will become PM nor I will open more IITs (2) I will not become PM or I will not open more IITs. (3*) I will become PM and I will not open more IITs. (4) Either I will not become PM or I will not open more IITs. कथन का नकारात्मक है – "यदि मैं प्रधानमंत्री होता तो मैं और अधिक IIT खोलूगाँ" (1) ना तो में प्रधानमंत्री होऊगां और ना ही और अधिक IIT खोलूगाँ। (2) मैं प्रधानमंत्री नहीं होऊगां या मैं और अधिक IIT नहीं खोलूगाँ" (3*) मैं प्रधानमंत्री होऊगां और मैं और अधिक IIT नहीं खोलूगाँ'' (4) या तो में प्रधानमंत्री नहीं बनुगा या मैं और अधिक IIT नहीं खोलगाँ। Sol. Negation of "If p then q" is $p \land \neg q$ "यदि p तब q" का नकारात्मक कथन p∧~q है 30. Consider the following statement p: Rohan is smart q : Rohan is poor The statement "Rohan is not smart or he is not poor" is equivlent to (1*) ~p v ~q (2) p∧q (3) ~(p v q) (4) ~p ∧ ~q माना कि निम्न कथन है p : रोहन सुन्दर है। a: रोहन गरीब है। कथन "रोहन सुन्दर है" या वह रोहन गरीब नहीं है" के तुल्य है Sol. ~p : Rohan is not smart रोहन सुन्दर नहीं है। ~q : he is not poor वह गरीब नहीं है।

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Mathematical Reasoning

PART - II : PRACTICE QUESTIONS (SINGLE CHOICE CORRECT) भाग - II : अभ्यास प्रश्न (PRACTICE QUESTIONS) (SINGLE CHOICE CORRECT)

A Marked questions are recommended for Revision.

1.	Suppose that x and y are point Let p : x < y and q : $x^2 < y^2$, (1) p \Rightarrow q and q \Rightarrow p (2) यदि x तथा y धनात्मक वास्तविक	then $p \Rightarrow q$ and $q \Rightarrow p$		(4) $p \Rightarrow q$ and $\sim q \Rightarrow p$
Sol.	माना $p: x < y$ तथा $q: x^2 < y^2$ (1) $p \Rightarrow q$ तथा $q \Rightarrow p$ (2) Both statements p and q are so $p \Rightarrow q$ and $q \Rightarrow p$	p ≠⇒ q तथा q ⇒ p	(3*) p ⇔ q	(4) p ⇒ q तथा ~ q ⇒ p
Hindi.	∴ p⇔q			
2 Sol.	T F F F T T T T T		$(2^*) [A \land (A \to B)] \to B$ $(4) A \land (A \land B)$	
3	The statement p → (q → p) कथन p → (q → p) तुल्य है - (1) p → (p ∧ q) (3) p → (p → q) $ \frac{p q}{T T T} T T T T T T T $	is equivalent to $\begin{array}{c c} p \land q & p \rightarrow (p \land q) & p \leftrightarrow q \\ \hline T & T & T \\ F & T & T \\ F & F & F \\ F & T & F \\ \hline F & T & F \\ \end{array}$	$\begin{array}{cccc} (2) & p \rightarrow (p \leftrightarrow q) \\ (4^*) & p \rightarrow (p \land q) \\ \hline p \rightarrow (p \leftrightarrow q) & p \rightarrow q \\ \hline T & T & T \\ \hline T & T & T \\ \hline T & T & T \\ \hline F & F & F \\ \hline T & T & T \\ \hline T & T & T \\ \end{array}$	p→q)
Sol. 4	Consider statements : p : 767 is divisible by 37 and q : 767 is divisible by 13 The negation of the stateme (1*) Either 767 is not multipl (2) 767 is not divisible by an (3) 767 is divisible by 37 an (4) 767 is divisible by 13 bu मानाकि कथन p : 767, 37 और 17 से विभाजित q : 767, 13 से विभाजित है। कथन "या तो 767, 37 और 17 (1*) 767, 37 और 13 से विभाजि (2) संख्या 767, संख्या 37, 17,	1 17 ent "Either 767 is div e of 37 and 13 or it i y of 37, 17, 13 d 17 but not by 13 t not by 37 and 17 त है। से विभाजित है या यह 17 13 से विभाजित नही है	isible by 37 and 17 or it i is not multiple of 17 and 13 से विभाजित है " का नक और 13 का गुणज नही है ।	13
	Resonance®		ac in LE-mail : contact@resonanc	

- (4) 767, 13 से विभाजित है परन्तू 37 और 17 से नहीं
- **Sol.** $((A \cap B) \cup C)' = (A \cap B)' \cap C' = (A' \cap C') \cup (B' \cap C')$
- **5.** Consider statement p : If two integers a and b are such that a divides b then $b^3 a^2$ is a composite number. The converse of the statement p is
 - (1*) If two integers a and b are such that $b^3 a^2$ is a composite number then a divides b.
 - (2) If a divides b then a,b are integers and $b^3 a^2$ is a composite number.
 - (3) If $b^3 a^2$ is a composite number then a,b are integers and a divides b.

(4) If a, b are integers and a does not divide b then $b^3 - a^2$ is not a composite number.

मानाकि कथन p : यदि दो पूर्णांक a और b इसप्रकार है कि a, b को विभाजित करता है तब b³ – a² एक संयुक्त संख्या है कथन p का प्रतिलोम है -

- (1*) यदि दो पूर्णांक a और b इस प्रकार है कि b³ a² एक संयुक्त संख्या है तब a, b को विभाजित करता है
- (2) यदि a, b को विभाजित करता है तब a और b पूर्णाक है तथा b³ a² एक संयुक्त संख्या है
- (3) यदि b³ a² एक संयुक्त संख्या है तब a, b पूर्णांक है और a, b को विभाजित करता हैं।
- (4) यदि a, b पूर्णांक है और a, b को विभाजित नहीं करता है b³ a² तब एक संयुक्त संख्या नहीं है।
- **Sol.** converse of $p \rightarrow q$ is $q \rightarrow p$ $p \rightarrow q$ का प्रतिलोम $q \rightarrow p$
- 6._ Let S be a non-empty subset of R. Consider the following statement
 P : There exist two irrational numbers x∈S and y∈S such that x + y is a rational number. Negation of the statement P is
 - (1) There is no irrational number which when added to a particular irrational number results in a rational number.
 - (2*) Sum of two irrational numbers is always irrational
 - (3) There exist atleast one pair of irrational numbers whose sum is irrational.
 - (4) We do not always get a rational number when we add two irrational numbers.
 - माना S एक R का अरिक्त उपसमुच्चय है। मानाकि निम्न कथन है।

P : दो अपरिमेंय संख्याऐ इस प्रकार है कि x∈S और y∈S जबकि x + y परिमेय संख्या है। कथन P का नकारात्मक है।

- (1) इस प्रकार कि कोई अपरिमेय संख्या नही जिसको जब विोा परिमेय संख्या में जोडा जाता है तब परिमेय संख्या प्राप्त होती है।
- (2*) दो अपरिमेय संख्याओं का योगफल सदैव अपरिमेय होता है।
- (3) अपरिमेय संख्याओं का कम से कम एक युग्म इस प्रकार है कि योगफल अपरिमेय है।
- (4) हम सदैव एक परिमेय संख्या प्राप्त नही करते जब हम दो अपरिमेय संख्याओं को जोडते है।
- Sol. By using definition of negation
- 7. If the compound propositions $(q \leftrightarrow q) \land r$ is true and $p \rightarrow (\sim q)$ is false, then the truth values of p, q and r are respectively

(1) T, T and F	(2) T, F and T	(3*) T, T and T	(4) F, F and F
यदि संयुक्त कथन	(q \leftrightarrow q) \land r सत्य है तथा p \rightarrow (~q) असत्य है, तब p, q तथ	था r के क्रमाः सत्यता मान है।
(1) T, T और F	(2) T, F और T	(3*) T, T और T	(4) F, F और F

- Sol. Given that (p ↔ q) ∧ r is true दिया गया है कि (p ↔ q) ∧ r सत्य है। ⇒ (p ↔ q) is true and r is true ⇒ (p ↔ q) सत्य है तथा r सत्य है। ⇒ p and q are both true or both false ⇒ p और q दोनों सत्य है या दोनों असत्य है। Therefore, the truth values of p, q and r are respectively T, T or F, F and T. As p → ~q is given to be false, p is true and ~ q is false जैसे p → ~q दिया गया है कि यह असत्य है, p सत्य है तथा ~ q असत्य है।
 - \Rightarrow p is true and ~q is false \Rightarrow p is true and q is true.
 - \Rightarrow p सत्य है तथा ~q असत्य है \Rightarrow p सत्य है तथा q सत्य है।

8._ The incorrect statement of the following is (1) $p \land (\sim p)$ is a fallacy (2) $p \lor (\sim p)$ is tautology (3^*) $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a contradiction (4) ~ (~p) \leftrightarrow p is a tautology निम्न में से कौनसे कथन असत्य है-(1) p ^ (~ p) विरोधिक्ति है। (2) p v (~ p) पुनरूक्ति है। (3^*) (p → q) ↔ (~ q → ~ p) विरोधाभास है | (4) ~ (~p) ↔ p पुनरुक्ति है। $p \sim p \quad p \wedge \sim p \quad p \vee \sim p \quad \sim (\sim p) \leftrightarrow p$ Т F F т F Т F Т т Sol. $p | q | p \rightarrow q | \sim p \rightarrow \sim q | (p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ Т Т Т т т ΤF F F т F Т Т т т FF Т т 9._ S_1 : f(x) is not continuous in [a, b] S_2 : f(x) is differentiable in [a, b] $S_3: f'(x) = \frac{f(b) - f(a)}{b - a}$ for at least one $c \in (a, b)$ If a function f(x) is continuous and differentiable in [a, b] then $f'(c) = \frac{f(b) - f(a)}{b - a}$ for at least $c \in (a,b)$ which of the following is equivalent to the given statement $(3) (\mathsf{S}_2 \land \sim \mathsf{S}_2) \to \mathsf{S}_3 \qquad (4) (\mathsf{S}_1 \land \mathsf{S}_2) \to (\sim \mathsf{S}_3)$ $(2^*) (\sim S_1 \land S_2) \rightarrow S_3$ $(1) (S_1 \land S_2) \rightarrow S_3$ S1 : f(x) अन्तराल [a, b] में सतत् नहीं है। S2: f(x) अन्तराल [a, b] में अवकलनीय है। S₃: f'(x) = $\frac{f(b) - f(a)}{b - a}$ कम से कम एक c ∈ (a, b) के लिए यदि एक फलन f(x) अन्तराल [a, b] में सतत् और अवकलनीय है, तब $f'(c) = \frac{f(b) - f(a)}{b - a}$ कम से कम $c \in (a,b)$ के लिए निम्न में से कौनसा कथन तूल्य है- $(2^*) (\sim S_1 \land S_2) \to S_3 \qquad (3) (S_2 \land \sim S_1) \to S_3 \qquad (4) (S_1 \land S_2) \to (\sim S_2)$ (1) $(S_1 \land S_2) \rightarrow S_3$ Sol. S_1 : f(x) is not continuous in [a, b] S1 : f(x) अन्तराल [a, b] में सतत् है। \sim S₁ : f(x) is continuous in [a, b] ~ S1 : f(x) अन्तराल [a, b] में सतत् है। given statement दिया गया कथन (~ $S_1 \wedge S_2$) $\rightarrow S_3$ 10._ The statement $[(p \leftrightarrow \sim q) \land \sim p] \rightarrow q$ can be (1*) a tautology (2) a fallacy (3) can't say (4) equivalent to $p \rightarrow q$ कथन [(p ↔ ~ q) \land ~ p] → q हो सकता है– (1*) एक पुनरूक्ति (2) विरोधिक्ति (3) कुछ नहीं कहा जा सकता (4) $p \rightarrow q$ के तुल्य By using truth table Sol. सत्य तालिका से 11._ Let p and q be two statements, then ~ (~ $p \land q$) \land ($p \lor q$) ~ ($\sim p q$) ($p \lor q$) is logically equivalent to माना p और q दो कथन है तब \sim (\sim p \wedge q) \wedge (p \vee q) तार्किक तुल्य है -(4) p∨ ~ q (1) q (2) p ^ q (3*) p Sol. $\sim (\sim p \land q) \land (p \land q) \equiv [\sim (\sim p) \lor (-q)] \land (p \lor q)$ $\equiv \equiv [p \lor (\sim q) \land (p \lor q]$

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

八

 $\equiv \equiv p \lor [(\sim q) \land q]$ $\equiv p \lor f \equiv p$

12. Which of the following is False?

(1) negation of "There exists a capital for every state in India" is "there exists a state in india which does not have its capital"

(2) negation of "There is a tree in this campus all of whole leaves are green" is "For all tree in this campus, there is a leaf which is not green"

(3*) negation of "There is a tree in this campus with atleast one brown leaf" is "no tree in this campus has no brown leaf".

(4) negation of " or every real number x, either x > 1 or x < -1" is "there exists a real number x, such that $-1 \le x \le 1$ "

निम्नलिखित में से कौनसा गलत है–

(1) "भारत में प्रत्येक राज्य के लिए एक राजधानी विद्यमान है" का नकारात्मक " भारत में इस प्रकार के प्रान्त का अस्तित्व है जिसकी कोई राजधानी नहीं है" है।

(2) "इस परिसर में पेड. है जिनकी सभी की पत्तियाँ हरी है" का नकारात्मक " इस परिसर में पेड. है जिनकी सभी की पत्तियाँ हरी नहीं है" है।

(3) "इस परिसर में पेड़ है जिनके कम से कम एक पेड. के भूरी पत्तियाँ है" का नकारात्मक " इस परिसर में पेड़ नहीं है जिनके कम से कम एक पेड के भूरी पत्तियाँ नहीं है" है।

(4) "प्रत्येक वास्तविक संख्या x के लिए या तो x > 1 या x < -1" का नकारात्मक "एक वास्तविक संख्या x इस प्रकार है कि $-1 \le x \le 1$. " है ।

Sol. By using concept of quantifiers

 Res
 Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
 MAINMR-39

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
 MAINMR-39