# Additional Problems for Self Practice (APSP)

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

# PART - I : PRACTICE TEST-1 (IIT-JEE (MAIN Pattern))

## Max. Marks : 100

### Important Instructions :

- 1. The test is of 1 hour duration.
- 2. The Test Booklet consists of 25 guestions. The maximum marks are 100.
- Each question is allotted 4 (four) marks for correct response. 3.
- Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each 4 question.

1/4 (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.

#### Test Paper consists of Two (2) Sections. 5.

Section-1 contains 20 multiple choice questions. Each question has four choices (1), (2), (3) and (4) out of which one is correct. For each question in Section-1, you will be awarded 4 marks if you give the corresponding to the correct answer and zero mark if no given answers. In all other cases, minus one (-1) mark will be awarded.

Section-2 contains 5 questions. The answer to each of the question is a Numerical Value. For each question in Section-2, you will be awarded 4 marks if you give the corresponding to the correct answer and zero mark if no given answers. No negative marks will be answered for incorrect answer in this section. In this section answer to each question is **NUMERICAL VALUE** with two digit integer and decimal upto two digit. If the numerical value has more than two decimal places truncate/round-off the value to TWO decimal placed.

## **SECTION-1**

This section contains **20** multiple choice questions. Each questions has four choices (1), (2), (3) and (4) out of which Only ONE option is correct.

- 1. There is considerable increase in covalent radius from N to P. However, from Sb to Bi only small increase (of 7 pm) in covalent radius is observed. This is due to:
  - (1) poor shielding by completely filled d- and f-orbitals in Bi.
  - (2) similar eletronegativity of Sb and Bi.
  - (3) the Bi being last element of the group.
  - (4) similar densities of Sb and Bi.
- 2. Nitrogen gas is prepared :
  - (1) by heating ammonium nitrate.
  - (2) by reacting excess chlorine with liquor ammonia.
  - (3) by passing HNO<sub>3</sub> vapours on red hot copper.
  - (4) by heating lead nitrate.

(3) Bone ash, silica and coke

3. Phosphorus is manufactured by heating in an electric furnance a mixture of

(1) Bone ash and coke

- (2) Bone ash and silica (4) None of these
- Which of the following may ignite spontaneously in air? 4.
  - (1) White phosphorus (2) Red phosphorus (3) Black phosphorus (4) Nitrogen
  - Ozone is obtained from oxygen 5. (1) By oxidation at high temperature
    - (3) By silent electric discharge
- (4) By conversion at high pressure
  - Crown shape of S<sub>8</sub> molecule is present in : 6. (1) Rhombic sulphur (3) Both (1) & (2)
- (2) Monoclinic sulphur

(2) By oxidation using a catalyst

(4) None of these



Max. Time : 1 Hr.

| p-blo | ock elements (1                                                                                                                                | N & O Fam                                                                               | ily)                                                                                    |                                        |                                                                                              |                                              |                                                  |                             | 人        |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-----------------------------|----------|
| 7.    | Presence of or<br>(1) H <sub>2</sub> O <sub>2</sub>                                                                                            | zone in a gas<br>(2)                                                                    | s sample may l<br>SO <sub>2</sub>                                                       | be dete                                | ected by :<br>(3) Hg                                                                         |                                              | (4) KI                                           |                             |          |
| 8.    | Amongst H <sub>2</sub> O,<br>(1) H <sub>2</sub> O becau<br>(3) H <sub>2</sub> S becau                                                          | , H2S, H2Se a<br>ise of hydrog<br>se of hydrog                                          | and H₂Te the o<br>en bonding<br>en bonding                                              | one with                               | the highest b<br>(2) H₂Te bec<br>(4) H₂Se bec                                                | ooiling point<br>ause of higl<br>ause of low | is<br>her moleo<br>ver molec                     | cular weight<br>ular weight |          |
| 9.    | When ammor<br>shows that am<br>(1) A dehydrat<br>(3) A reducing                                                                                | nia is passed<br>nmonia is<br>ting agent<br>agent                                       | l over heated                                                                           | coppe                                  | r oxide, the r<br>(2) An oxidisi<br>(4) A nitrating                                          | metallic cop<br>ing agent<br>g agent         | oper is ol                                       | btained. The i              | reaction |
| 10.   | Phosphine is (<br>(1) By heating<br>(2) By heating<br>(3) By decomp<br>(4) By heating                                                          | generally pre<br>phosphorus<br>white phosp<br>position of P <sub>2</sub><br>red phospho | pared in the lal<br>in a current of<br>horus with aqu<br>H₄ at 110⁰C<br>brus with an aq | borator<br>hydrog<br>ieous s<br>jueous | y<br>jen<br>olution of cau<br>solution of ca                                                 | stic potash<br>ustic soda.                   |                                                  |                             |          |
| 11.   | Ammonium nit<br>(1) Ammonia a<br>(3) Nitrogen, h                                                                                               | trate decomp<br>and nitric acio<br>hydrogen and                                         | oses on warm<br>I<br>ozone                                                              | ing into                               | )<br>(2) Nitrous ox<br>(4) Nitric oxic                                                       | xide and wa<br>de, nitrogen                  | ater<br>dioxide a                                | and hydrogen                |          |
| 12.   | Which one of t<br>(1) N <sub>2</sub> O                                                                                                         | the following<br>(2)                                                                    | combines with<br>NO                                                                     | Fe(II)                                 | ions to form a<br>(3) CO                                                                     | a brown com                                  | nplex ?<br>(4) SO <sub>2</sub>                   |                             |          |
| 13.   | Formula for te (1) COCl <sub>2</sub>                                                                                                           | ar gas is :<br>(2)                                                                      | CCI <sub>3</sub> NO <sub>2</sub>                                                        |                                        | (3) N <sub>2</sub> O                                                                         |                                              | (4) None                                         | of these                    |          |
| 14.   | In the reaction (1) PH <sub>3</sub>                                                                                                            | i, conc. H <sub>2</sub> SC<br>(2)                                                       | 04 + P <sub>2</sub> O <sub>5</sub> <u>Λ</u><br>H <sub>3</sub> PO <sub>4</sub>           | → (X)                                  | + SO <sub>3</sub> ; the r<br>(3) HPO <sub>3</sub>                                            | major produ                                  | ct (X) is :<br>(4) H <sub>4</sub> P <sub>2</sub> | O <sub>7</sub>              |          |
| 15.   | Ortho phospho<br>(1) hypophosp<br>(3) metaphosp                                                                                                | oric acid on h<br>phorus acid<br>phoric acid                                            | eating above \$                                                                         | 300ºC (                                | gives :<br>(2) hypophos<br>(4) phosphor                                                      | sphoric acid<br>ous acid                     |                                                  |                             |          |
| 16.   | Which of the fermion $(1)$ It can be provided in the formula $(2)$ It is unstable $(3)$ N <sub>2</sub> O <sub>3</sub> is an $(4)$ All of these | ollowing state<br>repared by a<br>le weak acid<br>anhydride of                          | ements is true<br>cidifying an aq<br>which is know<br>HNO <sub>2</sub> .                | for HN(<br>ueous :<br>n only           | O <sub>2</sub> ?<br>solution of nitr<br>in aqueous sc                                        | rite.<br>Dution.                             |                                                  |                             |          |
| 17.   | Which of the for (1) SO <sub>2</sub>                                                                                                           | ollowing diss<br>(2)                                                                    | olves in water<br>OF <sub>2</sub>                                                       | but doe                                | es not give an<br>(3) SCl₄                                                                   | y oxyacid so                                 | olution ?<br>(4) SO <sub>3</sub>                 |                             |          |
| 18.   | Hypo is used i<br>(1) Reduce Ag<br>(2) Convert the<br>(3) Remove un<br>(4) Remove re                                                           | n photograph<br>Br grains to<br>e metallic silv<br>ndecompose<br>educed silver          | ny to:<br>metallic silver<br>rer to silver sal<br>d silver bromid                       | lt<br>le as a                          | soluble comp                                                                                 | lex                                          |                                                  |                             |          |
| 19.   | Sulphur on bo<br>(1) Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> +<br>(3) Na <sub>2</sub> SO <sub>3</sub> + I                                | iling with Na0<br>NaHSO₃<br>H₂S                                                         | OH solution giv                                                                         | /es                                    | (2) Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> +<br>(4) Na <sub>2</sub> SO <sub>3</sub> + | + Na₂S<br>- SO₂                              |                                                  |                             |          |
| 20.   | Sodium thiosu<br>(1) reducing N<br>(3) Neutralisin                                                                                             | llphate is pre<br>la₂ SO₃ soluti<br>g H₂S₂O₃ sol                                        | oared by<br>on with H₂S<br>ution with NaC                                               | ЭН                                     | (2) Boiling Na<br>(4) Boiling Na                                                             | a2SO3 with<br>a2SO3 with                     | S in alkal<br>S in an ac                         | ine medium.<br>cidic medium |          |
|       |                                                                                                                                                |                                                                                         |                                                                                         | SECT                                   | ION-2                                                                                        |                                              |                                                  |                             |          |

This section contains 5 questions. Each question, when worked out will result in Numerical Value.

**21.** When I<sub>2</sub> react with ozone formed a oxy compound. Then find the oxidation state of iodine in that oxy compound

|                               | Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005 |             |  |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| <b>A</b> Resonance            | Website : www.resonance.ac.in   E-mail : contact@resonance.ac.in                                     |             |  |  |  |  |
| Educating for better tomorrow | Toll Free : 1800 258 5555   CIN: U80302RJ2007PLC024029                                               | ADV FNO- 39 |  |  |  |  |

**22.** How many moles of H<sup>+</sup> ions are released when  $Cu^{2+}$  ion react with PH<sub>3</sub> in presence of H<sub>2</sub>O?

| 23. | How many o                          | f the following cor                                | npounds have M                                      | -O-M type bond                      | ds (where M represent any elemer                 | nt)? |
|-----|-------------------------------------|----------------------------------------------------|-----------------------------------------------------|-------------------------------------|--------------------------------------------------|------|
|     | (i) P <sub>2</sub> O <sub>5</sub>   | (ii) P <sub>4</sub> O <sub>10</sub>                | (iii) N <sub>2</sub> O <sub>5</sub>                 | (iv) N <sub>2</sub> O <sub>3</sub>  | (v) As <sub>4</sub> O <sub>6</sub>               |      |
|     | (vi) Bi <sub>2</sub> O <sub>3</sub> | (vii) H <sub>2</sub> S <sub>2</sub> O <sub>8</sub> | (viii) H <sub>2</sub> S <sub>2</sub> O <sub>7</sub> | (ix) H <sub>2</sub> SO <sub>5</sub> | (x) H <sub>2</sub> S <sub>2</sub> O <sub>3</sub> |      |

- 24. How many S-O-S bonds are present in the trimer of SO<sub>3</sub>?
- **25.** When one mole of SO<sub>3</sub> react with one mole of PCI<sub>5</sub> then how many moles of gaseous products are formed?

## Practice Test-1 (IIT-JEE (Main Pattern)) OBJECTIVE RESPONSE SHEET (ORS)

| Que. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|------|----|----|----|----|----|----|----|----|----|----|
| Ans. |    |    |    |    |    |    |    |    |    |    |
| Que. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Ans. |    |    |    |    |    |    |    |    |    |    |
| Que. | 21 | 22 | 23 | 24 | 25 |    |    |    |    |    |
| Ans. |    |    |    |    |    |    |    |    |    |    |

# PART - II : JEE (MAIN) / AIEEE OFFLINE PROBLEMS (PREVIOUS YEARS)

| 1.  | The substance<br>(1) CaC <sub>2</sub> + Ca                                                        | e used in h<br>3P2                                                  | olmes singnal<br>(2) Ca <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub>               | s of the sh<br>+ Pb <sub>3</sub> O <sub>4</sub>                                    | hip is a mixture of<br>(3) H <sub>3</sub> PO <sub>4</sub> + CaC | :<br>Cl <sub>2</sub> (4) N                                    | [AIEEE-2003, 3/225]<br>IH <sub>3</sub> + HOCI |
|-----|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|
| 2.  | The number of                                                                                     | f hydrogen                                                          | atom (s) atta                                                                      | ched to ph                                                                         | osphorus atom ir                                                | n hypophospl                                                  | horus acid is :<br>[AIEEE 2005, 3/225]        |
|     | (1) zero                                                                                          |                                                                     | (2) two                                                                            |                                                                                    | (3) one                                                         | (4) tł                                                        | hree                                          |
| 3.  | Which of the fo                                                                                   | ollowing ch                                                         | nemical reaction                                                                   | ons depicts                                                                        | s the oxidizing be                                              | haviour of H                                                  | 2SO <sub>4</sub> ?<br>[AIEEE 2006, 3/165]     |
|     | (1) 2HI + H <sub>2</sub> SC<br>(3) NaCI + H <sub>2</sub> S                                        | $D_4 \rightarrow I_2 + SO_4 \rightarrow Nal$                        | 5O2 + 2H2O<br>HSO4 + HCI                                                           |                                                                                    | (2) $Ca(OH)_2 + H_2$<br>(4) $2PCI_5 + H_2SC$                    | $_{2}SO_{4} \rightarrow CaS$<br>$D_{4} \rightarrow 2POCI_{3}$ | O4 + 2H2O<br>+ 2HCI + SO2CI2                  |
| 4.  | Regular use of<br>(1) Superphos<br>(3) Potassium                                                  | which of phate of lin<br>nitrate                                    | the following f<br>me                                                              | ertilizers ir                                                                      | ncreases the acid<br>(2) Ammonium s<br>(4) Urea                 | ity of soil?<br>sulphate                                      | [AIEEE 2007, 3/120]                           |
| 5.* | Which of the for<br>(1) The stability<br>(2) Nitrogen ca<br>(3) Single N –<br>(4) $N_2O_4$ has tw | ollowing st<br>y of hydric<br>annot form<br>N bond is<br>wo resona  | atement is wro<br>les increase fr<br>dπ-pπ bond.<br>weaker than t<br>nce structure | ong?<br>om NH₃ tơ<br>he single I                                                   | 9 BiH₃ in group 15<br>P – P bond.                               | 5 of the period                                               | [AIEEE 2011, 4/120]<br>dic table :            |
| 6.  | Which of the for<br>(1) $S_2$ molecule<br>(2) The vapour<br>(3) At 600°C the<br>(4) The oxidation | bllowing st<br>e is param<br>r at 200°C<br>ne gas mai<br>on state o | atements rega<br>agnetic.<br>consists most<br>inly consists o<br>f sulphur is ne   | arding sulp<br>tly of S <sub>8</sub> rir<br>f S <sub>2</sub> molect<br>ver less th | hur is <b>incorrect</b><br>ngs.<br>sules.<br>nan +4 in its comp | ?<br>pounds.                                                  | [AIEEE 2011, 4/120]                           |
| 7.  | Which of the fo<br>(1) ONCI and (<br>(3) Ozone is vi                                              | ollowing is<br>ONO <sup>−</sup> are<br>olet-black                   | the wrong sta<br>not isoelectron<br>in solid state                                 | tement ?<br>nic.                                                                   | (2) O <sub>3</sub> molecule (4) Ozone is diar                   | is bent<br>magnetic gas                                       | [JEE(Main) 2013, 4/120]                       |



| p-ble | ock elements (1                                                                                                                      | V & O Family)                                                                                                                     |                                                                                                                                    |                                                                                                    |                                                                                | ———八—                                                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 8.    | Which of the fo<br>(1) It is dimagr<br>(3) It combines                                                                               | bllowing properti<br>netic in gaseous<br>s with oxygen to                                                                         | es is not shown b<br>state<br>form nitrogen dio                                                                                    | y NO ?<br>xide                                                                                     | <b>[JEI</b><br>(2) It is a<br>(4) It's bc                                      | E(Main) 2014, 4/120]<br>neutral oxide<br>nd order is 2.5                                      |
| 9.    | From the follow                                                                                                                      | ving statements                                                                                                                   | regarding H <sub>2</sub> O <sub>2</sub> , o                                                                                        | choose the <b>incorre</b>                                                                          | ct statement :                                                                 | -(Main) 2015   4/1201                                                                         |
|       | <ul><li>(1) It can act o</li><li>(2) It decompo</li><li>(3) It has to be</li><li>(4) It has to be</li></ul>                          | nly as an oxidizi<br>sed on exposure<br>stored in plastic<br>kept away from                                                       | ng agent<br>e to light<br>c or wax lined glas<br>dust                                                                              | ss bottles in dark                                                                                 | [02.                                                                           | _(mani) 2010, 4/120j                                                                          |
| 10.   | Assertion : Ni<br>form oxides of<br>Reason : The<br>(1) Both assert<br>(2) Both assert<br>(3) The assert<br>(4) Both are as          | trogen and Oxy<br>nitrogen.<br>reaction betwee<br>tion and reason<br>tion and reason<br>on is incorrect, t<br>ssertion and reason | gen are the main<br>en nitrogen and ox<br>are correct, and the<br>are correct, but the<br>put the reason is o<br>son are incorrect | components in the<br>tygen requires high<br>he reason is the co<br>he reason is not the<br>correct | atmosphere but<br>[JEI<br>temperature.<br>rrect explanation<br>correct explana | these do not react to<br>E(Main) 2015, 4/120]<br>In for the assertion<br>In for the assertion |
| 11.   | The pair in wh<br>(1) Pyrophosp<br>(3) Pyrophosp                                                                                     | ch phosphorous<br>horous and hypo<br>horous and pyro                                                                              | atoms have a for<br>ophosphoric acids<br>phosphoric acids                                                                          | rmal oxidation state<br>(2) Orthophospho<br>(4) Orthophospho                                       | e of +3 is: [JEI<br>rous and hypop<br>rous and pyroph                          | E(Main) 2016, 4/120]<br>hosphoric acids<br>hosphorous acids                                   |
| 12.   | The reaction o                                                                                                                       | f zinc with dilute                                                                                                                | and concentrated                                                                                                                   | d nitric acid, respec                                                                              | tively, produces                                                               | :<br>=(Main) 2016 <i>4/</i> 1201                                                              |
|       | (1) NO <sub>2</sub> and N                                                                                                            | O (2) NC                                                                                                                          | D and N <sub>2</sub> O                                                                                                             | (3) NO <sub>2</sub> and N <sub>2</sub> O                                                           | (4) N <sub>2</sub> O a                                                         | and $NO_2$                                                                                    |
| 13.   | Hydrogen per<br>[Fe(CN) <sub>6</sub> ] <sup>4–</sup> in a<br>(1) H <sub>2</sub> O and (H<br>(3) (H <sub>2</sub> O + O <sub>2</sub> ) | oxide oxidises<br>alkaline medium<br>I <sub>2</sub> O + O <sub>2</sub> )<br>and H <sub>2</sub> O                                  | [Fe(CN)₀] <sup>4−</sup> to [F<br>. The other produ                                                                                 | e(CN)₀] <sup>3–</sup> in acidic<br>cts formed are, res<br>(2) H₂O and (H₂O<br>(4) (H₂O + O₂) and   | medium but re<br>pectively. <b>[JEE</b><br>+ OH⁻)<br>d (H₂O+ OH⁻)              | educes [Fe(CN) <sub>6</sub> ] <sup>3–</sup> to<br><b>(Main) 2018, 4/120]</b>                  |
| 14.   | The compound                                                                                                                         | d that does not p                                                                                                                 | oroduce nitrogen g                                                                                                                 | gas by the thermal o                                                                               | decomposition is                                                               | 3 :<br>in) 2018 4/1201                                                                        |
|       | (1) NH <sub>4</sub> NO <sub>2</sub>                                                                                                  | (2) (N                                                                                                                            | H4)2SO4                                                                                                                            | (3) Ba(N <sub>3</sub> ) <sub>2</sub>                                                               | (4) (NH <sub>4</sub> )                                                         | <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                                                   |
| PAR   | T - II : NATIO                                                                                                                       | ONAL STAN                                                                                                                         | DARD EXAM                                                                                                                          | NATION IN CH                                                                                       | IEMISTRY (I                                                                    | NSEC) STAGE-I                                                                                 |
| 1.    | Which elemen                                                                                                                         | t of group V A sl                                                                                                                 | nows maximum o                                                                                                                     | xidation states ?                                                                                  |                                                                                | [NSEC-2002]                                                                                   |
|       | (A) bismuth                                                                                                                          | (B) ph                                                                                                                            | osphorus                                                                                                                           | (C) nitrogen                                                                                       | (D) arser                                                                      | ic                                                                                            |

- 2. Which of the halide is unstable ? (C) Bil<sub>3</sub> (B) Asl<sub>3</sub> (A) NI<sub>3</sub>
- 3. Platinum metal (Pt) dissolves in aqua- regia but not in concentrated HCl or HNO<sub>3</sub> because[NSEC-2003] (A) HCI oxidises Pt in the presence of HNO<sub>3</sub>
  - (B) HNO3 reacts with HCI to form chlorine which attacks Pt
  - (C)  $HNO_3$  oxidises Pt which is followed by formation of a chloro complex
  - (D) HCI and HNO<sub>3</sub> together give  $O_2$  that oxidises Pt.
- 4. The reaction  $3O_{2(g)} \rightarrow 2O_{3(g)}$  is endothermic. What can be concluded about the average per bond in  $O_2$ and O<sub>3</sub>? [NSEC-2003]
  - (A) the average energy per bond in  $O_2$  greater than that in  $O_3$
  - (B) the average energy per bond in O<sub>2</sub> is less than in O<sub>3</sub>
  - (C) the average energy per bond in O<sub>2</sub> is equal to that in O<sub>3</sub>
  - (D) on conclusions can be drawn about the average bond energies from this information alone.



[NSEC-2002]

(D) Pl<sub>3</sub>

\_p-block elements (N & O Family)

| -   | The geometry                                                                                                                |                                                                               |                                                                                                                                                 | (D) dinitrogen pentoxide                                                                                                              | Э.                                                                           |                                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|
| 6.  | <ul><li>(A) nitrogen at hydrogens</li><li>(B) nitrogen at</li><li>(C) nitrogen at</li><li>(D) nitrogen at</li></ul>         | of ammo<br>one vert<br>the centr<br>the centri<br>the junct                   | nia molecule can be bes<br>ex of a regular tetrahedr<br>re of the tetrahedron, thro<br>re of an equilateral triang<br>ion of a T, three open er | t described as<br>on, the other three vertic<br>ee of the vertices being c<br>gle, three corners being c<br>nds being occupied by the | es being occupie<br>occupied by three<br>occupied by three<br>ree hydrogens. | [NSEC-2003]<br>ed by the three<br>hydrogens<br>hydrogens |
| 7.  | Bones glow in<br>(A) the presen<br>(B) conversion<br>(C) the presen<br>(D) the presen                                       | the dark.<br>ce of red<br>of white<br>ce of calo<br>ce of calo                | This is due to<br>phosphorus.<br>phosphorus into red pho<br>cium carbonate<br>cium phosphate.                                                   | osphorus.                                                                                                                             |                                                                              | [NSEC-2005]                                              |
| 8.  | Inert pair effec<br>(A) P                                                                                                   | t plays ar                                                                    | n important role in the ca<br>(B) Bi                                                                                                            | se of<br>(C) Sb                                                                                                                       | (D) As                                                                       | [NSEC-2005]                                              |
| 9.  | In the presence<br>Na <sub>2</sub> S <sub>2</sub> O <sub>4</sub> (Fies<br>(A) Na <sub>2</sub> S <sub>2</sub> O <sub>6</sub> | e of an a<br>er`s solut                                                       | nthraquinone derivative<br>ion) effectively removes<br>(B) Na <sub>2</sub> S <sub>2</sub> O <sub>5</sub>                                        | as a catalyst, the aqueo<br>oxygen and forms<br>(C) Na <sub>2</sub> SO <sub>4</sub>                                                   | us solution of so<br>(D) Na <sub>2</sub> S <sub>2</sub> O <sub>8</sub> .     | odium dithionite<br>[NSEC-2006]                          |
| 10. | In the above re<br>(A) 2 electron<br>(C) 3 electron                                                                         | eaction (ir<br>reducing<br>reducing                                           | n Q. 99) Na₂S₂O₄ acts as<br>agent<br>agent                                                                                                      | s a<br>(B) 1 electron reducing<br>(D) 4 electron reducing                                                                             | agent<br>agent.                                                              | [NSEC-2006]                                              |
| 11. | The ozone hol<br>reaction is cata<br>(A) chlorofluor<br>(B) oxygen gen<br>(C) carbon dio<br>(D) chlorine fo                 | le in the u<br>alyzed by<br>ocarbons<br>nerated d<br>xide pres<br>rmed by t   | upper atmosphere of the<br>uring the reaction<br>ent in the atmosphere<br>he decomposition of chlo                                              | earth is due to the breal                                                                                                             | kdown of ozone i                                                             | to oxygen. The<br>[NSEC-2009]                            |
| 12. | The electron-p<br>(A) linear                                                                                                | air geom                                                                      | etry of the central oxyge<br>(B) trigonal planar                                                                                                | n atom of ozone is –<br>(C) tetrahdral                                                                                                | (D) trigonal bipy                                                            | [NSEC-2009]<br>/ramidal                                  |
| 13. | P₄ (s) + 3OH⁻<br>In the above e<br>(A) P₄ and OH                                                                            | (aq) + 3H<br>quation, t<br>-                                                  | $_{2}O(I) \longrightarrow PH_{3}(g) + 3H_{2}$<br>the species getting oxidiz<br>(B) OH <sup>-</sup> and P <sub>4</sub>                           | ₂PO₂⁻ (aq)<br>zed and reduced respect<br>(C) P₄ and H₂O                                                                               | ively are :<br>(D) P₄ and P₄                                                 | [NSEC-2009]                                              |
| 14. | The compound<br>(A) HNO <sub>2</sub>                                                                                        | d which c                                                                     | an act as an oxidizing ag<br>(B) HI                                                                                                             | gent as well as reducing a<br>(C) HCN                                                                                                 | agent is<br>(D) HCOOH                                                        | [NSEC-2010]                                              |
| 15. | When an inert<br>the extraction<br>(A) TiCl <sub>4</sub> to for<br>(B) magnesiun<br>(C) titanium to<br>(D) chlorine to      | atmosph<br>of titaniur<br>m titaniur<br>n to form<br>form titar<br>form nitre | ere is required in metallu<br>n from TiCl₄ using magn<br>n nitride<br>magnesium nitride<br>nium nitride<br>ogen chloride which inhit            | irgical operation nitrogen<br>esium, helium is used as<br>pits the reaction                                                           | is commonly us<br>nitrogen reacts                                            | ed. However in<br>with :<br>[NSEC-2010]                  |
| 16. | The nitrogen c<br>(A) N <sub>2</sub> O                                                                                      | ompound                                                                       | l formed when CaCN2 re<br>(B) NO                                                                                                                | eacts with steam or hot water<br>(C) NO <sub>2</sub>                                                                                  | ater is<br>(D) NH₃                                                           | [NSEC-2011]                                              |
| 17. | The element th<br>(A) silicon                                                                                               | nat has th                                                                    | e highest tendency to ca<br>(B) germanium                                                                                                       | atenate is :<br>(C) sulphur                                                                                                           | (D) boron                                                                    | [NSEC-2011]                                              |
| 18. | The chemical f<br>(A) NO                                                                                                    | formula o                                                                     | f 'laughing gas' is<br>(B) N₂O                                                                                                                  | (C) N <sub>2</sub> O <sub>4</sub>                                                                                                     | (D) N <sub>2</sub> O <sub>5</sub>                                            | [NSEC-2012]                                              |
| 19. | Phosphine is p<br>(A) P and HNC                                                                                             | orepared∣<br>D₃                                                               | by the reaction of<br>(B) P and H <sub>2</sub> SO <sub>4</sub>                                                                                  | (C) P and NaOH                                                                                                                        | (D) P and $H_2S$                                                             | [NSEC-2012]                                              |

八



| p-b  | lock elements (I                                                                                                        | N & O F                                                                              | amily)                                                                                                                                           |                                                                 |                                                                                                                  |                                                                                                                       |                        | ——————————————————————————————————————                        |
|------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------|
| 20.  | The reddish-b<br>(A) NO <sub>2</sub>                                                                                    | rown gas                                                                             | formed when nitric<br>(B) N <sub>2</sub> O <sub>4</sub>                                                                                          | oxide                                                           | is oxidized by air (C) $N_2O_5$                                                                                  | is                                                                                                                    | (D) N2O3               | [NSEC-2013]                                                   |
| 21.  | Which of the f<br>(I) NaH₂PO₃<br>(A) I and II onl                                                                       | ollowing s<br>ly                                                                     | alt/s of H₃PO₃ exis<br>(II) Na₂HPO₃<br>(B) I, II and IIII                                                                                        | ts ?                                                            | (III) Na <sub>3</sub> PO <sub>3</sub><br>(C) II and III only                                                     |                                                                                                                       | (D) III on             | [NSEC-2013]<br>Ny                                             |
| 22.  | The order of a<br>(A) H <sub>2</sub> S <h<sub>2S</h<sub>                                                                | acidity in a<br>Se < H₂Te                                                            | queous solution for (B) $H_2$ Se $<$ $H_2$ S $<$                                                                                                 | r the fo<br>H₂Te                                                | ollowing acids is<br>(C) H <sub>2</sub> Te < H <sub>2</sub> S <                                                  | <h₂se< td=""><td>(D) H<sub>2</sub>Se</td><td>[<b>NSEC-2014</b>]<br/>e<h<sub>2Te<h<sub>2S</h<sub></h<sub></td></h₂se<> | (D) H <sub>2</sub> Se  | [ <b>NSEC-2014</b> ]<br>e <h<sub>2Te<h<sub>2S</h<sub></h<sub> |
| 23.  | Upon long sta<br>(A) remains co<br>(B) turns yello<br>(C) turns yello<br>(D) remains co                                 | nding con<br>plourless,<br>w brown o<br>w brown o<br>plourless,                      | centrated HNO <sub>3</sub><br>but gives out NO<br>due to formation NO<br>due to the formation<br>but gives N <sub>2</sub> O                      | D₂<br>n of N₂                                                   | 2 <b>O</b> 4                                                                                                     |                                                                                                                       |                        | [NSEC-2014]                                                   |
| 24.  | The reaction t<br>(A) heating (N<br>(C ) heating of                                                                     | hat does i<br>H <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O;<br>f NaN <sub>3</sub> | not produce nitroge                                                                                                                              | en is                                                           | <ul><li>(B) NH<sub>3</sub> + excess</li><li>(D) heating of NH</li></ul>                                          | s of Cl <sub>2</sub><br>H4NO3                                                                                         |                        | [NSEC-2015]                                                   |
| 25.  | White phosph<br>(A) Na₂HPO₃                                                                                             | orous on                                                                             | reaction with NaOF<br>(B) NaH₂PO₂                                                                                                                | ł gives                                                         | PH₃ and<br>(C) NaH₂PO₃                                                                                           |                                                                                                                       | (D) Na₃F               | [ <b>NSEC-2016</b> ]<br>PO <sub>4</sub>                       |
| 26.  | P, Q, R and S<br>(I) Only Q and<br>(II) When Q is<br>formed.<br>(III) P reacts w<br>The correct or<br>(A) S < P < R     | are four r<br>I R react v<br>s added t<br>vith conce<br>der of the<br>< Q            | netals whose typic<br>vith dilute HCl to gi<br>to a solution conta<br>ntrated HNO <sub>3</sub> but S<br>ir reducing charact<br>(B) S < R < P < Q | al reac<br>ve H <sub>2</sub> (<br>iining t<br>S does<br>er is : | tions are given b<br>gas.<br>the ions of the o<br>not<br>(C) R < Q < P < 3                                       | elow :<br>ther me<br>S                                                                                                | etals, me<br>(D) Q < I | [NSEC-2016]<br>etallic P, R and S are<br>P < S < R            |
| 27.  | The following<br>following state<br>(A) (ii) and (iii)<br>(C) (i), (ii) and                                             | compoun<br>ement/s is<br>liberate f<br>(iii) libera                                  | ds are heated (i) ł<br>/are correct ?<br>NO <sub>2</sub><br>te O <sub>2</sub>                                                                    | KNO3,                                                           | <ul><li>(ii) Cu(NO<sub>3</sub>)<sub>2</sub> (iii)</li><li>(B) (iv) liberates</li><li>(D) All statement</li></ul> | Pb(NO:<br>N <sub>2</sub> O<br>s are co                                                                                | ₃)₂, (iv) №<br>prrect. | NH₄NO₃. Which of the<br>[NSEC-2016]                           |
| 28.  | At 25°C, nitrog<br>(A) N <sub>2</sub> has val<br>both bonding a<br>(B) higher eleo<br>(C) bigger size<br>(D) P has pref | gen exists<br>ence elec<br>and antibo<br>ctronegati<br>e of P doe<br>erence to       | as N <sub>2</sub> and phosph<br>trons only in bondin<br>onding orbitals<br>vity of N favours fo<br>s not favour multip<br>adapt structures w     | orous<br>ng and<br>rmatio<br>le bon<br>vith sm                  | exists as P₄ beca<br>I nonbonding orbi<br>n of multiple bond<br>ds<br>all bond angles                            | use<br>tals, wh<br>ds                                                                                                 | ile P has              | [NSEC-2017]<br>valence electrons in                           |
| 29.  | Which of the f<br>(A) S <sup>2–</sup>                                                                                   | ollowing c                                                                           | annot act as an ox<br>(B) Br <sub>2</sub>                                                                                                        | idising                                                         | agent ?<br>(C) HSO <sub>4</sub>                                                                                  |                                                                                                                       | (D) <b>SO</b> 3        | [NSEC-2017]                                                   |
|      | PART -                                                                                                                  | III : PR                                                                             | ACTICE TES                                                                                                                                       | T-2 (                                                           | (IIT-JEE (AD                                                                                                     | VAN                                                                                                                   | CED F                  | Pattern))                                                     |
| Max. | Time : 1 Hr.                                                                                                            |                                                                                      |                                                                                                                                                  |                                                                 |                                                                                                                  |                                                                                                                       |                        | Max. Marks : 69                                               |

### Important Instructions

#### Α. General :

- The test is of 1 hour duration. 1.
- 2. The Test Booklet consists of 23 questions. The maximum marks are 69.
- Β. **Question Paper Format**
- 3. Each part consists of five sections.
- Section-1 contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out 4. of which ONE is correct.
- 5. Section-2 contains 6 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR MORE THAN ONE are correct.





- 6. Section-3 contains 6 questions. The answer to each of the questions is numerical value, ranging from 0 to 9 (both inclusive).
- 7. Section-4 contains 1 paragraphs each describing theory, experiment and data etc. 2 questions relate to paragraph. Each question pertaining to a partcular passage should have only one correct answer among the four given choices (A), (B), (C) and (D).
- Section-5 contains 1 multiple choice questions. Question has two lists (list-1 : P, Q, R and S; List-2 : 1, 8. 2, 3 and 4). The options for the correct match are provided as (A), (B), (C) and (D) out of which ONLY ONE is correct.

#### Marking Scheme : C.

- For each question in Section-1, 4 and 5 you will be awarded 3 marks if you darken the bubble 9 corresponding to the correct answer and zero mark if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.
- 10. For each question in Section-2, you will be awarded 3 marks. If you darken all the bubble(s) corresponding to the correct answer(s) and zero mark. If no bubbles are darkened. No negative marks will be answered for incorrect answer in this section.
- 11. For each question in Section-3, you will be awarded 3 marks if you darken only the bubble corresponding to the correct answer and zero mark if no bubble is darkened. No negative marks will be awarded for incorrect answer in this section.

### SECTION-1 : (Only One option correct Type) This section contains 8 multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which Only ONE option is correct.

|    | This section<br>and (D) out o                                                                | Section<br>contains<br>f which O                          | on-2 : (One or<br>6 multiple ch<br>ONE or MORE                      | r More tha<br>noice ques<br>THAN ON    | an one options<br>stions. Each qu<br>NE are correct.                       | correct<br>lestions     | Гуре)<br>has four choices                       | (A), (B), (C)  |
|----|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|-------------------------|-------------------------------------------------|----------------|
| 8. | Sulphuric acid<br>(A) Thionyl ch<br>(C) Sulphuryl                                            | l reacts wi<br>loride<br>chloride                         | th PCl₅ to give                                                     | e                                      | (B) Sulphur ma<br>(D) Sulphur tet                                          | onochlori<br>trachlorid | de<br>e                                         |                |
| 7. | Which of the f<br>(A) It is a pale<br>(B) It oxidises<br>(C) It is odour<br>(D) It turns dry | ollowing s<br>blue gas<br>sulphur a<br>less.<br>/ KOH red | tatements is r<br>at room tempe<br>nd phosphoru                     | not true abo<br>erature.<br>s evolving | out ozone ?<br>oxygen gas.                                                 |                         |                                                 |                |
| 6. | Which of the f<br>(A) S <sub>2</sub> O <sub>4</sub> <sup>2–</sup>                            | ollowing w                                                | vill not decolou<br>(B) S <sub>2</sub> O <sub>5</sub> <sup>2–</sup> | urise acidif                           | ied KMnO <sub>4</sub> ?<br>(C) S <sub>2</sub> O <sub>3</sub> <sup>2–</sup> |                         | (D) S <sub>2</sub> O <sub>7</sub> <sup>2–</sup> |                |
| 5. | A substance c<br>I₂ in acidic me<br>(A) N₂O₅                                                 | lissolves i<br>dium :                                     | n water giving<br>(B) NH₃                                           | a pale blu                             | ie solution which<br>(C) N2O3                                              | n decolou               | rises KMnO4 and (<br>(D) HNO3                   | oxidises KI to |
| 4. | Which of the<br>(A) N <sub>2</sub> + O <sub>2</sub> (E<br>(C) NaNO <sub>3</sub> / H          | following o<br>lectric arc<br>ICI                         | cannot result i                                                     | n the form                             | ation of NO ?<br>(B) NH <sub>3</sub> + O <sub>2</sub> ;<br>(D) None of the | (Pt / Rh o<br>ese       | catalyst / 1200 K)                              |                |
| 3. | Which of the f<br>(A) NH4NO2                                                                 | ollowing c                                                | ompounds do<br>(B) NH4NO3                                           | es give N <sub>2</sub>                 | on heating ?<br>(C) NaN₃                                                   |                         | (D) Both (A) and (                              | (C)            |
| 2. | The compound<br>(A) Cupric oxid                                                              | d which gi<br>de                                          | ves off oxyger<br>(B) Mercuric                                      | n on mode<br>oxide                     | erate heating is :<br>(C) Zinc oxide                                       |                         | (D) Aluminium ox                                | ide            |
| 1. | An unknown s<br>dilute HCl to p<br>(A) NH <sub>3</sub>                                       | substance<br>produce (C                                   | (P) functions<br>a) which turns<br>(B) PH <sub>3</sub>              | as weak b<br>blue litmu                | pase in water. It<br>s red. (P) may b<br>(C) NH₂OH                         | produces<br>e :         | s silver mirror test.<br>(D) HPO <sub>3</sub>   | It reacts with |

- 9. Which is greater for P4 (white) than P4 (red) -
  - (A) Molar entropy (C) Solubility in CS<sub>2</sub>

- (B) Melting point
- (D) Ignition temperature





| 10.                                    | What is/are not true al<br>(A) It turns red litmus I<br>(B) It reacts with HCI (<br>(C) Phosphonium com<br>(D) It is prepared by h                                                                                                                                                                                                                                                                                                                                                                                                                               | bout phosphine (Pl<br>blue.<br>(aq.) to give PH₄CI<br>pounds are obtaine<br>ydrolysis of metal                                                                                                                                                                                                                   | H <sub>3</sub> ) ?<br>ed when anhydrous<br>phosphides with aci                                                                                                                                                                                                                                                                                                                                                                          | phosphine reacts with anhydrous HBr or<br>ds.                                                                                                                                                                                                                                                                                                                                                                           | r HI.                    |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 11.                                    | Which of the following<br>(A) Nitrogen is restrict<br>(B) The single N–N bc<br>(C) The catenation ter<br>(D) Nitrogen forms pπ                                                                                                                                                                                                                                                                                                                                                                                                                                   | is/are correct rega<br>ed to a maximum o<br>ond is weaker than<br>idency is weaker in<br>-pπ bond as well as                                                                                                                                                                                                     | arding nitrogen fami<br>covalency of 4 as or<br>the single P–P bon<br>n nitrogen as compa<br>s $p\pi$ -d $\pi$ bonds.                                                                                                                                                                                                                                                                                                                   | y.<br>Ily four orbitals are available for bondin<br>d.<br>ared to phosphorous.                                                                                                                                                                                                                                                                                                                                          | g.                       |
| 12.                                    | P₂O₅ can dehydrate.<br>(A) H₂SO₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (B) HNO3                                                                                                                                                                                                                                                                                                         | (C) HClO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                   | (D) HPO₃                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 13.                                    | The products formed v<br>(A) H <sub>3</sub> PO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | when H₃PO₂ is hea<br>(B) H₃PO₄                                                                                                                                                                                                                                                                                   | ted at 415 K and at<br>(C) HPO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                             | 435 K are :<br>(D) PH₃                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
| 14.                                    | $4AgNO_3 + 2H_2O + H_3F$<br>If X is oxyacid of nitrog<br>(A) X is HNO <sub>2</sub><br>(B) Y is H <sub>3</sub> PO <sub>4</sub><br>(C) H <sub>3</sub> PO <sub>2</sub> act as good<br>(D) The oxidation num                                                                                                                                                                                                                                                                                                                                                         | $PO_2 \xrightarrow{boil} 4Ag +$<br>gen and Y is oxyac<br>d reducing agent<br>iber of 'P' changed                                                                                                                                                                                                                 | 'X' + 'Y'<br>id of phosphorous t<br>from +1 to +5                                                                                                                                                                                                                                                                                                                                                                                       | hen correct statement(s) is/are :                                                                                                                                                                                                                                                                                                                                                                                       |                          |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O a ati a m O a                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>-</b> \                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
|                                        | This section contair value from 0 to 9 (bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | section-3 :<br>ns 6 questions. I<br>th inclusive).                                                                                                                                                                                                                                                               | (Numerical Value<br>Each question, wl                                                                                                                                                                                                                                                                                                                                                                                                   | nen worked out will result in nume                                                                                                                                                                                                                                                                                                                                                                                      | erical                   |
| 15.                                    | This section contain<br>value from 0 to 9 (bo<br>Cold dilute nitric acid v<br>Pb, Mg, Sb, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | section-3 :<br>ns 6 questions. I<br>th inclusive).<br>would dissolve how<br>u, Ag, Fe, Mn, Sn,                                                                                                                                                                                                                   | (Numerical Value<br>Each question, wl                                                                                                                                                                                                                                                                                                                                                                                                   | ing without significant evolution of any                                                                                                                                                                                                                                                                                                                                                                                | erical<br>gas :          |
| 15.<br>16.                             | This section contain<br>value from 0 to 9 (bo<br>Cold dilute nitric acid v<br>Pb, Mg, Sb, A<br>Which of the following<br>(NH4) <sub>2</sub> SO <sub>4</sub> , (N                                                                                                                                                                                                                                                                                                                                                                                                 | would dissolve how<br>u, Ag, Fe, Mn, Sn,<br>on heating will pro                                                                                                                                                                                                                                                  | (Numerical Value<br>Each question, wl<br>v many of the follow<br>P <sub>4</sub><br>oduce an oxide of ni<br>D <sub>3</sub> , KNO <sub>3</sub> , Pb(NO <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                        | ing without significant evolution of any<br>trogen.<br>, (NH4)2HPO4, NH4CI, NH4NO2                                                                                                                                                                                                                                                                                                                                      | gas :                    |
| 15.<br>16.<br>17.                      | This section contain<br>value from 0 to 9 (bo<br>Cold dilute nitric acid<br>Pb, Mg, Sb, A<br>Which of the following<br>(NH4) <sub>2</sub> SO <sub>4</sub> , (N<br>NaPO <sub>3</sub> can significant<br>CaCl <sub>2</sub> , MgSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                     | would dissolve how<br>u, Ag, Fe, Mn, Sn,<br>on heating will pro<br>NH4)2Cr2O7, NH4N0<br>ly react with how n                                                                                                                                                                                                      | (Numerical Value<br>Each question, wi<br>v many of the follow<br>P <sub>4</sub><br>oduce an oxide of ni<br>O <sub>3</sub> , KNO <sub>3</sub> , Pb(NO <sub>3</sub> ) <sub>2</sub><br>nany of the following<br>ry HCl, Ca(HCO <sub>3</sub> ) <sub>2</sub> ,                                                                                                                                                                               | ing without significant evolution of any<br>trogen.<br>, (NH4)2HPO4, NH4CI, NH4NO2                                                                                                                                                                                                                                                                                                                                      | gas :                    |
| 15.<br>16.<br>17.<br>18.               | This section contain<br>value from 0 to 9 (bo<br>Cold dilute nitric acid<br>Pb, Mg, Sb, A<br>Which of the following<br>(NH4) <sub>2</sub> SO <sub>4</sub> , (N<br>NaPO <sub>3</sub> can significant<br>CaCl <sub>2</sub> , MgSO <sub>4</sub><br>One mole of PCl <sub>3</sub> is<br>solution completely is                                                                                                                                                                                                                                                        | would dissolve how<br>u, Ag, Fe, Mn, Sn,<br>on heating will pro<br>NH4)2Cr2O7, NH4N0<br>ly react with how n<br>4, CaO, Na2CO3, d<br>dissolved in excest                                                                                                                                                          | (Numerical Value<br>Each question, will<br>w many of the follow<br>P4<br>oduce an oxide of ni<br>D3, KNO3, Pb(NO3)2<br>nany of the following<br>ry HCl, Ca(HCO3)2,<br>ss of water. No. of                                                                                                                                                                                                                                               | I ype.)<br>nen worked out will result in nume<br>ing without significant evolution of any<br>trogen.<br>, (NH4) <sub>2</sub> HPO4, NH4CI, NH4NO <sub>2</sub><br>g ?<br>Na <sub>3</sub> PO4<br>moles of NaOH required to neutralise                                                                                                                                                                                      | gas :                    |
| 15.<br>16.<br>17.<br>18.<br>19.        | This section contain<br>value from 0 to 9 (bo<br>Cold dilute nitric acid y<br>Pb, Mg, Sb, A<br>Which of the following<br>(NH4) <sub>2</sub> SO <sub>4</sub> , (N<br>NaPO <sub>3</sub> can significant<br>CaCl <sub>2</sub> , MgSO <sub>4</sub><br>One mole of PCl <sub>3</sub> is<br>solution completely is<br>When hypo solution r<br>atoms present in one r                                                                                                                                                                                                    | section-3 :<br>hs 6 questions. If<br>th inclusive).<br>would dissolve how<br>u, Ag, Fe, Mn, Sn,<br>on heating will pro-<br>NH4)2Cr2O7, NH4NO<br>ly react with how n<br>4, CaO, Na2CO3, d<br>dissolved in excess<br>:<br>react with CuCl2 a<br>mole of soluble con                                                | (Numerical Value<br>Each question, will<br>w many of the follow<br>P4<br>oduce an oxide of ni<br>D3, KNO3, Pb(NO3)2<br>nany of the following<br>ry HCI, Ca(HCO3)2,<br>as of water. No. of<br>nd produce soluble<br>mplex in co-ordinati                                                                                                                                                                                                 | ing without significant evolution of any<br>trogen.<br>, (NH4)2HPO4, NH4CI, NH4NO2<br>g ?<br>Na3PO4<br>moles of NaOH required to neutralise<br>e complex, then how many no. of mol<br>on sphere.                                                                                                                                                                                                                        | gas :<br>e this<br>es of |
| 15.<br>16.<br>17.<br>18.<br>19.<br>20. | This section contain<br>value from 0 to 9 (bo<br>Cold dilute nitric acid y<br>Pb, Mg, Sb, A<br>Which of the following<br>$(NH_4)_2$ SO <sub>4</sub> , (N<br>NaPO <sub>3</sub> can significant<br>CaCl <sub>2</sub> , MgSO <sub>4</sub><br>One mole of PCl <sub>3</sub> is<br>solution completely is<br>When hypo solution r<br>atoms present in one follow<br>(i) PCl <sub>3</sub> + O <sub>2</sub> $\longrightarrow$<br>(iv) PCl <sub>5</sub> + H <sub>3</sub> BO <sub>3</sub> $\longrightarrow$<br>(vii) PCl <sub>5</sub> + H <sub>2</sub> O $\longrightarrow$ | section-3 :<br>ns 6 questions. If<br>th inclusive).<br>would dissolve how<br>u, Ag, Fe, Mn, Sn,<br>on heating will pro-<br>NH4)2Cr2O7, NH4NO<br>ly react with how n<br>4, CaO, Na2CO3, d<br>dissolved in exces<br>:<br>react with CuCl2 a<br>mole of soluble con<br>wing reactions yiel<br>(ii) PCl3<br>(v) PCl3 | (Numerical Value<br>Each question, will<br>we many of the follow<br>$P_4$<br>boduce an oxide of ni<br>$D_3$ , KNO <sub>3</sub> , Pb(NO <sub>3</sub> ) <sub>2</sub><br>many of the following<br>ry HCl, Ca(HCO <sub>3</sub> ) <sub>2</sub> ,<br>as of water. No. of<br>nd produce soluble<br>mplex in co-ordinati<br>d POCl <sub>3</sub> ?<br>+ CO <sub>2</sub> $\longrightarrow$<br>+ SO <sub>2</sub> Cl <sub>2</sub> $\longrightarrow$ | ing without significant evolution of any<br>trogen.<br>, (NH4) <sub>2</sub> HPO4, NH4Cl, NH4NO <sub>2</sub><br>g ?<br>Na <sub>3</sub> PO4<br>moles of NaOH required to neutralise<br>complex, then how many no. of mol<br>on sphere.<br>(iii) PCl <sub>5</sub> + CH <sub>3</sub> COOH $\longrightarrow$<br>(vi) P4O <sub>10</sub> + NaCl $\longrightarrow$<br>(ix) PCl <sub>3</sub> + SO <sub>3</sub> $\longrightarrow$ | gas :<br>e this<br>es of |

This section contains 1 paragraphs, each describing theory, experiments, data etc. 2 questions relate to the paragraph. Each question has only one correct answer among the four given options (A), (B), (C) and (D).

# Paragraph for Questions 21 to 22

An orange solid (A) on heating gives a green residue (B), a colourless gas (C) and water vapours. The dry gas (C) on passing over heated Mg gave a white solid (D). (D) on reaction with water gave a gas (E) which formed black precipitate with mercurous nitrate solution.



- **21.** Select the incorrect statement.
  - (A) The central atom (s) of the anion of solid (A) has sp<sup>3</sup> hybridisation.
  - (B) The orange solid (A) is diamagnetic in nature.
  - (C) The anion of orange solid (A) is oxidising in nature.
  - (D) All metal oxygen bond lengths are equal in anion of solid (A).
- 22. Which of the following is false for the gas (E) ?
  - (A) It gives a deep blue colouration with  $CuSO_4$  solution.
  - (B) It is oxidised to a colourless gas (neutral oxide) at 1200 K in presence of a catalyst Pt/Rh in air.
  - (C) It gives the same gas (C) with potassium permanganate solution.
  - (D) It gives black precipitate with  $HgCl_2$ .

## SECTION-5 : Matching List Type (Only One options correct)

This section contains 1 questions, each having two matching lists. Choices for the correct combination of elements from List-I and List-II are given as options (A), (B), (C) and (D) out of which one is correct

23. Match the reactions listed in column-I with characteristic(s) listed in column-II.

| (1) $2NO_2 \xrightarrow{Cool}$ (p) One of the products is a mixed anhydride(2) $CIO_2 + O_3 \xrightarrow{H^+}$ (q) One of the products is an acidic oxide.(3) $K_4 [Fe(CN)_6] + H_2SO_4 (conc.) + H_2O \xrightarrow{A}$ (r) The oxidation state of the central atom one of the products is +6.(4) $KOH + O_3 \longrightarrow$ (s) One of the products is a colourle |     | Colum              | n-l                                                             |     | Column-II                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|-----------------------------------------------------------------|-----|-----------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                               | (1) | 2NO <sub>2</sub>   |                                                                 | (p) | One of the products is a mixed anhydride.                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                               | (2) | CIO <sub>2</sub> + | $O_3 \xrightarrow{H^+}$                                         | (q) | One of the products is an acidic oxide.                               |
| (4) $KOH + O_3 \longrightarrow$ (s) One of the products is a colourle                                                                                                                                                                                                                                                                                               | (3) | K4 [Fe(            | $CN)_{6}] + H_{2}SO_{4} (conc.) + H_{2}O \xrightarrow{\Lambda}$ | (r) | The oxidation state of the central atom of one of the products is +6. |
| paramagnetic gas.                                                                                                                                                                                                                                                                                                                                                   | (4) | KOH +              | $O_3 \longrightarrow$                                           | (s) | One of the products is a colourless paramagnetic gas.                 |

(A) 1 - p, q ; 2 - p, q, s ; 3 - r ; 4 - s (C) 1 - p ; 2 - p, q, r, s ; 3 - r ; 4 - s

(D) 1 - p, q ; 2 - q, r, s ; 3 - s ; 4 - r

# Practice Test-2 (IIT-JEE (ADVANCED Pattern))

**OBJECTIVE RESPONSE SHEET (ORS)** 

| Que. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|------|----|----|----|----|----|----|----|----|----|----|
| Ans. |    |    |    |    |    |    |    |    |    |    |
| Que. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Ans. |    |    |    |    |    |    |    |    |    |    |
| Que. | 21 | 22 | 23 |    |    |    |    |    |    |    |
| Ans. |    |    |    |    |    |    |    |    |    |    |



八

<sup>(</sup>B) 1 - p, q ; 2 - p, q, r, s ; 3 - r ; 4 - s

|   | 1 | ٩.  |    |
|---|---|-----|----|
| - | 1 | Л   |    |
|   | / | - 1 | ١I |

|     | APSP.  | Answ | /ers ⊨      |              |                 |             |      |     |        |
|-----|--------|------|-------------|--------------|-----------------|-------------|------|-----|--------|
|     |        |      |             | PA           | RT - I          |             |      |     |        |
| 1.  | (1)    | 2.   | (3)         | 3.           | (3)             | 4.          | (1)  | 5.  | (3)    |
| 6.  | (3)    | 7.   | (3)         | 8.           | (1)             | 9.          | (3)  | 10. | (2)    |
| 11. | (2)    | 12.  | (2)         | 13.          | (2)             | 14.         | (3)  | 15. | (3)    |
| 16. | (4)    | 17.  | (2)         | 18.          | (3)             | 19.         | (2)  | 20. | (2)    |
| 21. | 4.5    | 22.  | 8           | 23.          | 6               | 24.         | 3    | 25. | 2      |
|     |        |      |             | PA           | RT - II         |             |      |     |        |
| 1.  | (1)    | 2.   | (2)         | 3.           | (1)             | 4.          | (2)  | 5.* | (1, 4) |
| 6.  | (4)    | 7.   | All stateme | ent are corr | ect there is no | o answer    |      | 8.  | (1)    |
| 9.  | (1)    | 10.  | (1)         | 11.          | (4)             | 1 <b>2.</b> | (4)  | 13. | (1)    |
| 14. | (2)    |      |             |              |                 |             |      |     |        |
|     |        |      |             | PAF          | RT - III        |             |      |     |        |
| 1.  | (C)    | 2.   | (A)         | 3.           | (B)             | 4.          | (A)  | 5.  | (D)    |
| 6.  | (B)    | 7.   | (D)         | 8.           | (B)             | 9.          | (A)  | 10. | (A)    |
| 11. | (D)    | 12.  | (B)         | 13.          | (D)             | 14.         | (A)  | 15. | (B)    |
| 16. | (D)    | 17.  | (C)         | 18.          | (B)             | 19.         | (C)  | 20. | (A)    |
| 21. | (A)    | 22.  | (A)         | 23.          | (B)             | 24.         | (B)  | 25. | (B)    |
| 26. | (A)    | 27.  | (D)         | 28.          | (C)             | 29.         | (A)  |     |        |
|     |        |      |             | PAF          | RT - IV         |             |      |     |        |
| 1.  | (C)    | 2.   | (B)         | 3.           | (D)             | 4.          | (C)  | 5.  | (C)    |
| 6.  | (D)    | 7.   | (C)         | 8.           | (C)             | 9.          | (AC) | 10. | (AB)   |
| 11. | (ABCD) | 12.  | (ABC)       | 13.          | (ABD)           | 14.         | (BCD | 15. | 4      |
| 16. | 2      | 17.  | 6           | 18.          | 5               | 19.         | 31   | 20. | 7      |
| 21. | (D)    | 22.  | (D)         | 23.          | (B)             |             |      |     |        |



# **APSP Solutions**

# PART - I

- 1. Poor shielding by f- and d-electrons enhences the effective nuclear charge in Bi. This causes contraction in size. 2. (1) (NH<sub>4</sub>)NO<sub>3</sub> gives N<sub>2</sub>O, (2) chlorine (excess) with liquor NH<sub>3</sub> forms NCl<sub>3</sub> and (4) Pb(NO<sub>3</sub>)<sub>2</sub> gives NO<sub>2</sub> not N<sub>2</sub> on heating. (3) 5Cu (red hot) + 2HNO<sub>3</sub>  $\longrightarrow$  5CuO + N<sub>2</sub>  $\uparrow$  + H<sub>2</sub>O  $2Ca_3(PO_4)_2$  (from bone-ash) + 10C + 6SiO<sub>2</sub>  $\xrightarrow{\Delta}$  6CaSiO<sub>3</sub> + 10CO + P<sub>4</sub>(s) white phosphorus 3. 4. Factual 3O<sub>2</sub> electric 2O<sub>3</sub> 5. 6. Both rhombic & monoclinic sulphur has crown shape. 7. Tailing of mercury. 8. The order of boiling point of hydride of oxygen family is  $H_2O > H_2Te > H_2Se > H_2S$ . 9. The oxidation state of copper changes from +2 to 0 i.e. it gets reduced. So, NH<sub>3</sub> works as a reducing agent.  $P_4 + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_2$ 10.  $NH_4NO_3 \xrightarrow{\Lambda} N_2O + 2H_2O$ 11. 12.  $Fe^{2+} + NO + 5H_2O \longrightarrow [Fe(H_2O)_5NO]^{2+}$  (brown complex). 13. CHCl<sub>3</sub> (chloroform) react with conc. HNO<sub>3</sub> on heating to form chloropicrin (CCl<sub>3</sub>NO<sub>2</sub>)  $CHCl_3 + HONO_2 \longrightarrow CCl_3$ .  $NO_2 + H_2O$ Chloropicrin Chloropicrin is used as an insecticide and also war gas. It is also known as nitrochloroform or tear gas. 14.  $2H_2SO_4 + P_2O_5$  (dehydrating agent)  $\longrightarrow 2SO_3 + 2HPO_3 + H_2O_5$  $H_3PO_4 \xrightarrow{220^{\circ}C} H_4P_2O_7 \xrightarrow{320^{\circ}C} (HPO_3)_n.$ 15. 16. (1)  $Ba(NO_3)_2 + H_2SO_4 \longrightarrow 2HNO_2 + BaSO_4 \downarrow$ (2) It is an unstable, weak acid which is known only in aqueous solution. (3)  $2HNO_2 \longrightarrow N_2O_3 + H_2O_3$  $H_2O + OF_2 \xrightarrow{\text{very slowly}} 2HF + O_2$  (OF<sub>2</sub> is neutral towards litmus) 17.
- 18. Factual
- **19.**  $3S + 6NaOH \longrightarrow 3H_2O + 2Na_2S + Na_2SO_3$
- **20.** Na<sub>2</sub>SO<sub>3</sub> + S  $\xrightarrow{\text{Boiling}}$  Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>
- 21.  $2I_2 + 5O_3 \longrightarrow I_4O_9 + 3O_2$ Oxidation state of iodine in  $I_4O_9 \longrightarrow 4x - 9 \times 2 = 0$ X = 4.5 Ans
- **22.**  $Cu^{2+} + PH_3 + 4H_2O \longrightarrow H_3PO_4 + Cu + 8H^+$





24.

3.

**25.**  $SO_3(g) + PCI_5(g) \longrightarrow POCI_3(\ell) + SO_2(g) + CI_2(g)$ 

# PART - II

- 1. The spontaneous combustion of phosphine is technically used in Holme's signals. Containers containing calcium carbide and calcium phosphide are pierced and thrown in the sea when the gases evolved burn and serve as a signal.
- 2. Hypophosphorus acid

Number of hydrogen atom(s) attached to phosphorus atom is 2 which are called as reducing hydrogen.

4.  $(NH_4)_2SO_4 + 2H_2O \longrightarrow (2H^+ + SO_4^{2-}) + 2NH_4OH$ Strong acid Weakbase

 $(NH_4)_2$  SO<sub>4</sub> on hydrolysis produces strong acid H<sub>2</sub>SO<sub>4</sub>, which increases the acidity of the soil.

**5.\*** The stability of hydrides decreases from  $NH_3$  to  $BiH_3$  which can be observed from their bond dissociation enthalpy. The correct order is  $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$ .

| Property                                      | NH₃ | PH₃ | AsH₃ | SbH₃ | BiH₃ |
|-----------------------------------------------|-----|-----|------|------|------|
| $\Delta_{diss} H^{\Theta}(E-H) / kJ mol^{-1}$ | 389 | 322 | 297  | 255  | -    |

н

### **Alternate Solution**

 $N_2O_4$  may has four resonating structure but in NCERT only two resonating structure . Resonating structures of  $N_2O_4\,$  are



- 6. Sulphur exhibit + 2, + 4, + 6 oxidation states but + 4 and + 6 are more common.
- 7. (1) ONCI = 8 + 7 + 17 = 32e<sup>-</sup>
  - ONO<sup>-</sup> = 8 + 7 + 8 + 1 = 24e<sup>-</sup> (correct)
  - (2)  $O^{-1}$  Central atom O is sp<sup>2</sup> hybridised with 1 lone pair, so bent shape (correct)
  - (3) Ozone is violet-black in solid state. (Ref. NCERT & shriver atkins)
  - (4) O<sub>3</sub> has no unpaired electrons, so diamagnetic (correct)



八



8. NO is paramagnetic in gaseous state.

9.  $H_2O_2$  can undergo reduction as well as oxidation because oxidation number of oxygen in  $H_2O_2$  is -1. So, it can act both as reducing agent and oxidising agent.

**11.** Orthophosphorous acid  $\left(H_3^{+3}PO_3\right)$ ; Pyrophosphorous acid  $\left(H_2^{+3}P_2O_5\right)$ 

- 12.  $Zn + HNO_3 (dil.) \longrightarrow Zn(NO_3)_2 (aq) + N_2O + H_2O$  $Zn + HNO_3 (conc.) \longrightarrow Zn(NO_3)_2 + NO_2 + H_2O$
- **13.**  $2[Fe(CN)_6]^{4-} + H_2O_2 + 2H^+ \longrightarrow 2[Fe(CN)_6]^{3-} + 2H_2O_2$  $2[Fe(CN)_6]^{3-} + H_2O_2 + 2OH^- \longrightarrow 2[Fe(CN)_6]^{4-} + O_2 + 2H_2O_2$
- 14. (1) NH<sub>4</sub>NO<sub>2</sub>  $\longrightarrow$  N<sub>2(g)</sub> + 2H<sub>2</sub>O<sub>(\ell)</sub>
  - (2) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>  $\xrightarrow{\Delta}$  2NH<sub>3(g)</sub> + H<sub>2</sub>SO<sub>4</sub>
  - (3)  $Ba(N_3)_2 \xrightarrow{\Delta} Ba(s) + 3N_{2(g)}$  (Pure)
  - (4)  $(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_{2(g)} + Cr_2O_{3(s)} + 4H_2O_{(\ell)}$

# PART - IV

- **2.**  $2\text{HgO} \xrightarrow{450^{\circ}\text{C}} 2\text{Hg} + \text{O}_2$
- 3. (A)  $NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O_1$  (B)  $NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O_1$  (C)  $2NaN_3 \xrightarrow{\Delta} 3N_2 + 2Na_1$
- 4. The reaction of NaNO<sub>3</sub> and HCl do not give NO. NaNO<sub>3</sub> + HCl  $\longrightarrow$  NaCl + HNO<sub>3</sub> ; 4HNO<sub>3</sub>  $\longrightarrow$  H<sub>2</sub>O + NO<sub>2</sub> + O<sub>2</sub>
- 5.  $N_2O_3 + H_2O \longrightarrow HNO_2$ ;  $2KMnO_4 + 5 KNO_2 + 6HCI \longrightarrow 2MnCl_2 + 5KNO_3 + 3H_2O + 2KCI$  $2KI + 2HNO_2 + 2HCI \longrightarrow 2H_2O + 2NO + 3KCI + I_2$
- 6. (A), (B) and (C) are reducing agents while (D) is not.
- 8.  $2PCI_5 + H_2SO_4 \longrightarrow SO_2CI_2 + 2POCI_3 + 2HCI$
- 9. Factual
- (A) PH<sub>3</sub> is a lewis base but is neutral towards red litmus.
  (B) It does not react with HCl(aq) or HI(aq). This is because water decomposes PH<sub>4</sub>X formed to give back PH<sub>3</sub>.
  (C) It reacts only with anhydrous HI or HBr.
  - (D)  $2Na_3P + 3H_2SO_4 \longrightarrow 3Na_2SO_4 + 2PH_3\uparrow$ ;  $Ca_3P_2 + 6HCI \longrightarrow 3CaCl_2 + 2PH_3$
- **11.** Nitrogen can not form  $p\pi$ - $d\pi$  bond because nitrogen has no d-orbitals.
- **12.**  $P_2O_5$  reacts with  $H_2SO_4$ ,  $HNO_3$ ,  $HCIO_4$ .
- **13.** At 415 K ;  $3H_3PO_2 \longrightarrow 2H_3PO_3 + PH_3 \uparrow$
- 14.  $4AgNO_3 + 2H_2O + H_3PO_2 \longrightarrow 4Ag + 4HNO_3 (X) + H_3PO_4 (Y)$
- 16.  $NH_4NO_3 \xrightarrow{\Lambda} N_2O + 2H_2O$  $Pb(NO_3)_2 \xrightarrow{\Lambda} PbO + NO_2 + O_2$
- 17.  $CaCl_2 + NaPO_3 \longrightarrow$  Forms chelate complex with  $Ca^{2+}$ ,  $[Ca(P_3O_9)_2]^{4-}$ , used in softening of hard water.

|                               | Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005 |             |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| <u> </u>                      | Website : www.resonance.ac.in   E-mail : contact@resonance.ac.in                                     |             |  |  |  |
| Educating for better tomorrow | Toll Free : 1800 258 5555   CIN: U80302RJ2007PLC024029                                               | ADV FNO- 70 |  |  |  |

MgSO<sub>4</sub> + NaPO<sub>3</sub>  $\longrightarrow$  Forms chelate complex with Mg<sup>2+</sup>, [Mg(P<sub>3</sub>O<sub>9</sub>)<sub>2</sub>]<sup>4-</sup>, used in softening of hard water.  $CaO + NaPO_3 \longrightarrow NaCaPO_4$  $Na_2CO_3 + NaPO_3 \longrightarrow Na_3PO_4 + CO_2$ dry HCI + NaPO<sub>3</sub>  $\longrightarrow$  No reaction  $Ca(HCO_3)_2 + NaPO_3 \longrightarrow$  Forms chelate complex with  $Ca^{2+}$ .  $[Ca(P_3O_9)_2]^{4-}$  used in softening of hard water.  $Na_3PO_4 + NaPO_3 \longrightarrow Na_4P_2O_7$  $\mathsf{PCI}_3 + \mathsf{3H}_2\mathsf{O} \longrightarrow \underbrace{\mathsf{H}_3\mathsf{PO}_3}_{(\mathsf{dibasic})} + \mathsf{3HCI} \qquad \therefore$ 18. Total 5 moles of NaOH required.  $Na_2S_2O_3.5H_2O + CuCl_2 \longrightarrow Na_4[Cu_6(S_2O_3)_5]$ 19. soluable complex Number of atom in Co-ordination sphere =  $6 + 2 \times 5 + 3 \times 5 = 6 + 10 + 15 = 6 + 25 = 31$  Ans. (ii)  $PCI_5 + CO_2 \longrightarrow No$  reaction 20. (i)  $PCI_3 + O_2 \longrightarrow POCI_3$ (iii)  $PCI_5 + CH_3COOH \longrightarrow CH_3COCI + POCI_3 + HCI$ (iv)  $PCl_5 + H_3BO_3 \longrightarrow POCl_3 + B_2O_3$ (v)  $PCI_3 + SO_2CI_2 \longrightarrow PCI_5 + SO_2$ (vi)  $P_4O_{10} + NaCl \longrightarrow POCl_3 + NaPO_3$ (vii)  $PCl_5 + H_2O \longrightarrow POCl_3 + 2HCI$ (viii)  $PCl_5 + SO_2 \longrightarrow SOCl_2 + POCl_3$ (ix)  $PCl_3 + SO_3 \longrightarrow POCl_3 + SO_2$ sp<sup>3</sup> all electrons are paired. So diamagnetic (3dº 4sº) 21.  $A = (NH_4)_2 Cr_2O_7$  $Cr_2O_7^{2-}$  acts as strong oxidising agent in acidic medium. 22.  $(E) = NH_3$ (A)  $Cu^{2+} + 4NH_3 \longrightarrow [Cu(NH_3)_4]^{2+}$  (deep blue colouration). (D) HgCl<sub>2</sub> + NH<sub>3</sub> + H<sub>2</sub>O  $\longrightarrow$  HgO.Hg(NH<sub>2</sub>)Cl  $\downarrow$  (white)  $2NO_2 \xrightarrow{Cool} N_2O_4$  colourless solid / liquid, acidic, mixed anhydride of HNO<sub>2</sub> and HNO<sub>3</sub> 23. (1)  $2CIO_2 + 2O_3 \xrightarrow{H^+} Cl_2O_6$  (yellow solid) +  $2O_2$ ; acidic, mixed anhydride of HCIO<sub>3</sub> and HCIO<sub>4</sub>. (2)  $K_4 [Fe(CN)_6] + 6H_2O + 6H_2SO_4 \xrightarrow{\Lambda} 2K_2SO_4 + FeSO_4 + 3(NH_4)_2SO_4 + 6CO^{\uparrow}$ (3)

(4)  $2KOH + 5O_3 \longrightarrow 2KO_3$  (orange solid)  $+ 5O_2 + H_2O$ 

