HINTS & SOLUTIONS

TOPIC : QUADRATIC EQUATION

EXERCISE # 1

PART-1

A-1. $a^2 - a - 2 = 0$, $a^2 - 4 = 0$, $a^2 - 3a + 2 = 0 \Rightarrow a = 2$, -1 and $a = \pm 2$ and a = 1, $2 \Rightarrow a = 2$ Now $(x^2 + x + 1) a^2 - (x^2 + 3) a - (2x^2 + 4x - 2) = 0$ will be an identity if $x^2 + x + 1 = 0$ & $x^2 + 3 = 0$ & $2x^2 + 4x - 2 = 0$ which is not possible.

A-2. (i)
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(\frac{-3}{2}\right)^2 - 2(2) = \frac{-7}{4}$$
 (ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = -\frac{7}{8}$

A-3.
$$\alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{c}{a}$$

(i) $\alpha + \frac{1}{\beta} + \beta + \frac{1}{\alpha} = \alpha + \beta + \frac{\alpha + \beta}{\alpha \beta} = \frac{-b}{a} + \frac{-b/a}{c/a} = -\left(\frac{b}{a} + \frac{b}{c}\right) = -b\frac{(a+c)}{ac}$
and $\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right) = \alpha\beta + \frac{1}{\alpha\beta} + 2 = \frac{c}{a} + \frac{a}{c} + 2 = \frac{(a+c)^2}{ac}$
 \therefore equation whose roots are $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$ is
 $\therefore \quad \alpha + \frac{1}{\beta}\beta + \frac{1}{\alpha} \Rightarrow acx^2 + b(a + c)x + (a + c)^2 = 0$
(ii) $\alpha^2 + 2 + \beta^2 + 2 = (\alpha + \beta)^2 - 2\alpha\beta + 4 = \frac{b^2}{a^2} - \frac{2ac}{a^2} + 4 = \frac{4a^2 + b^2 - 2ac}{a^2}$
and $(\alpha^2 + 2)(\beta^2 + 2) = \alpha^2\beta^2 + 2(\alpha^2 + \beta^2) + 4 = \frac{c^2}{a^2} + \frac{2(b^2 - 2ac)}{a^2} + 4$
 \therefore equation whose roots are $\alpha^2 + 2\delta\beta^2 + 2is$
 $a^2 x^2 + (2ac - b^2 - 4a^2)x + 2b^2 + 4a^2 + c^2 - 4ac = 0$
 $\Rightarrow a^2 x^2 + (2ac - b^2 - 4a^2)x + 2b^2 + 4a^2 + c^2 - 4ac = 0$
 $\Rightarrow a^2 x^2 + (2ac - b^2 - 4a^2)x + 2b^2 + (2a - c)^2 = 0$
A-4. given $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$
 $\Rightarrow \quad \alpha & \delta & \beta \text{ are the roots of } x^2 - 5x + 3 = 0$
 $\therefore \quad \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{25 - 6}{3} = \frac{1}{3}$ and $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 1$
 \therefore equation have $\frac{\alpha}{\beta} , \frac{\beta}{\alpha}$ as its roots is $3x^2 - 19x + 3 = 0$
A-5. $x^2 + px + q = 0$
 $\Rightarrow \quad (x - b)(x - 3) = 0$ $\Rightarrow x = 3, 8$
A-6. (i) $E = 2x^3 + 2x^2 - 7x + 72$
Given, $x = \frac{3 + 5i}{2}$
 $\Rightarrow \quad 2x - 3 = 5i$
 $\Rightarrow \quad 4x^2 + 9 - 12x = -25$
 $\Rightarrow \quad 4x^2 + 12x + 34 = 0$
 $\Rightarrow \quad 2x^2 - 6x + 17 = 0$
 $\Rightarrow \quad 2x^2 - 6x + 17 = 0$
 $\Rightarrow \quad 2x^2 - 6x + 17 = 0$

Quadratic Equation

$$E = (2x^{2} - 6x + 17) (x + 4) + 4 = 4 \quad (using (i))$$
(ii) $(x + \frac{1}{2}) = \frac{\sqrt{15}}{2} \Rightarrow x^{2} + x + \frac{1}{4} = \frac{15}{15} \Rightarrow x^{2} + x = \frac{14}{4} \Rightarrow x^{2} + x = \frac{7}{2}$

$$\therefore 2x^{3} + 2x^{2} - 7x + 72 = 2x (x^{2} + x) - 7x + 72 = 2x (\frac{7}{2}) - 7x + 72 = 7x - 7x + 72 = 72.$$
(iii) $2^{\alpha} = y \Rightarrow y^{2} + 22^{\gamma} - 32 = 0 \Rightarrow y^{2} + 8y - 4y - 32 = 0$

$$\Rightarrow y = 4 = 2^{\alpha} \qquad \therefore 2^{2} x - 8 \qquad \Rightarrow x = 2.$$
A.7. $\therefore ax^{2} + bx + c = 0 \int_{\beta}^{\alpha} \Rightarrow a + \beta = -\frac{b}{a} \Rightarrow a\beta = \frac{c}{a}$

$$\therefore y + \delta = -\frac{abc}{a^{3}} = (-\frac{b}{a}) (\frac{c}{a}) = (\alpha \beta) (\alpha + \beta) = \alpha^{2}\beta + \alpha\beta^{2} \quad v \qquad ...(i)$$

$$\therefore y + \delta = -\frac{abc}{a^{3}} = (-\frac{b}{a}) (\frac{c}{a}) = (\alpha \beta) (\alpha + \beta) = \alpha^{2}\beta + \alpha\beta^{2} \quad v \qquad ...(i)$$

$$\therefore y + \delta = -\frac{abc}{a^{3}} = (-\frac{b}{a}) (\alpha^{2}) \qquad ...(i)$$
From (i) and (ii) we can say that $y = \alpha^{2}\beta$ and $\delta = \alpha\beta^{2}$ and $\gamma = \alpha\beta^{2}$ and $\delta = \alpha^{2}\beta$
A.8.a: $\alpha + \beta = p, \alpha\beta = q \qquad (\alpha - 2) (\beta + 2) = r \qquad \Rightarrow \alpha\beta + 2\alpha - 2\beta - 4 = r$

$$q + 2(\alpha - \beta) - 4 = r \qquad \Rightarrow 2\alpha - 2\beta = r + 4 - q \qquad \Rightarrow 16\alpha\beta = \alpha^{2}\beta$$
A.9.a: $\alpha \cdot \alpha^{\alpha} = \frac{c}{a} \Rightarrow \alpha = \left[\frac{c}{a}\right]^{\frac{n}{n+1}} \Rightarrow \alpha + \alpha^{\alpha} = -\frac{b}{a} \Rightarrow \left(\frac{c}{a}\right)^{\frac{n}{n+1}} + \left(\frac{c}{a}\right)^{\frac{n}{n+1}} = -\frac{b}{a}$

$$a^{\frac{1}{n+1}} \cdot c^{\frac{1}{n+1}} + c^{\frac{1}{n+1}} \Rightarrow \alpha + \alpha^{\alpha} = -\frac{b}{a} \Rightarrow \left(\frac{c}{a}\right)^{\frac{n}{n+1}} + b = 0$$

$$(a^{\alpha} c)^{\frac{1}{n+1}} + a^{\alpha} + \frac{1}{a} = \frac{1}{a} \Rightarrow \alpha + \beta = -2; p = \frac{3a + 4}{a + 1} = \frac{-6 + 4}{-2 + 1} = 2$$
A.10. $S = \frac{-(2a + 3)}{a + 1} = -1 \Rightarrow 2a + 3a = a + 1 \Rightarrow a = -2; p = \frac{3a + 4}{a + 1} = \frac{-6 + 4}{-2 + 1} = 2$

$$A.10. S = \frac{-(2a + 3)}{a + 1} = -1 \Rightarrow 2a + 3 = a + 1 \Rightarrow a = -2; p = \frac{3a + 4}{a + 1} = \frac{-6 + 4}{-2 + 1} = 2$$

$$A.11. 2x^{2} + 6x + a = 0$$

$$\because \text{ Its roots are } \alpha, \beta \Rightarrow \alpha + \beta = -3 \& \alpha\beta = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} < 2$$

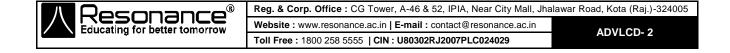
$$\Rightarrow \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{\alpha\beta} < 2 \Rightarrow \frac{a + 3}{a} = 1 = 3 \Rightarrow \alpha = \frac{1}{a} = \frac{1}{a} = 2$$

$$\Rightarrow \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{\alpha\beta} < 2 \Rightarrow \frac{a - 3}{a} < 1$$

$$\Rightarrow \frac{2a - 9}{a\beta} > 0 \Rightarrow a \in (-\infty, 0) \cup (\frac{9}{2}, \infty) \Rightarrow 2a = 11 \text{ is least prime.}$$

B-1. Let 3rd root be γ then $\alpha\beta\gamma = -r$ But $\alpha\beta = -1$ (given) $\Rightarrow \gamma = r$ substituting $x = \gamma = r$ in the given equation we get $r^2 + pr + q + 1 = 0$.

B-2.
$$x^3 + px^2 + qx + r \rightleftharpoons^{\alpha}_{\gamma} \Rightarrow \alpha\beta\gamma = -r \Rightarrow \left(\alpha - \frac{1}{\beta\gamma}\right) \left(\beta - \frac{1}{\gamma\alpha}\right) \left(\gamma - \frac{1}{\alpha\beta}\right)$$
$$= \left(\alpha + \frac{\alpha}{r}\right) \left(\beta + \frac{\beta}{r}\right) \left(\gamma + \frac{\gamma}{r}\right) = \alpha\beta\gamma \left(1 + \frac{1}{r}\right)^3 = -r \frac{(r+1)^3}{r^3} = -\frac{(r+1)^3}{r^2}$$
 Ans.



B-3.3. (i) Let roots be
$$\alpha, 2\alpha, \beta \Rightarrow 3\alpha + \beta = \frac{14}{24}, 2\alpha^2 + 3\alpha\beta = \frac{-63}{24}, 2\alpha^2\beta = \frac{-\lambda}{24} \Rightarrow \beta = \frac{7}{12} - 3\alpha$$

 $2\alpha^2 + 3\alpha \left(\frac{7}{12} - 3\alpha\right) = \frac{-21}{8} \Rightarrow 2\alpha^2 + \frac{7\alpha}{4} - 9\alpha^2 = \frac{-21}{8} \Rightarrow 0 = 7\alpha^2 - \frac{7\alpha}{4} - \frac{21}{8}$
 $\alpha^2 - \frac{\alpha}{4} - \frac{3}{8} = 0 \Rightarrow 8\alpha^2 - 2\alpha - 3 = 0 \Rightarrow \alpha = \frac{3}{4} \text{ or } \frac{-1}{2}$
 $\alpha = \frac{3}{4} \Rightarrow \text{roots are } \frac{3}{4}, \frac{3}{2}, \frac{-5}{3} \text{ and } \lambda = 45 \Rightarrow \alpha = \frac{-1}{2}$
 $\Rightarrow \text{roots are } \frac{-1}{2}, -1, \frac{25}{12} \text{ and } \lambda = -25$
(i) $\alpha, \beta, \gamma \text{ be roots.}$
 $\alpha + \gamma = 2\beta$ (1) ; $\alpha + \beta + \gamma = \frac{-81}{18}$ (2)
 $\alpha\beta\gamma = \frac{-60}{18}$ (3)
(1), (2) $\Rightarrow \beta = \frac{-3}{2}$ Put in (1), (3)
 $\Rightarrow \alpha + \gamma = -3 \Rightarrow \alpha\gamma = \frac{20}{9}$
 $\therefore x^2 - (-3)x + \frac{20}{9} = 0 < \gamma \Rightarrow x = \frac{-3\pm\sqrt{9-4+1,\frac{20}{2}}}{2} = \frac{-5}{3}, \frac{-4}{3}$.
 $B-4. \alpha^3 - 6\alpha^2 + 10\alpha - 3 = 0.$
Let $x = 2\alpha + 1$ new root $\alpha = \frac{x-1}{2} \Rightarrow \frac{(x-1)^3}{6} - \frac{6(x-1)^2}{4} + 5(x-1) - 3 = 0$
 $(x^3 - 3x^2 + 3x - 1) - 12(x^2 - 2x + 1) + 40(x - 1) - 24 = 0 \Rightarrow x^3 - 15x^2 + 67x - 77 = 0.$
B-5. $2x^3 + x^3 - 7 = 0 < \frac{\alpha}{\gamma} \Rightarrow x + \frac{\alpha}{\gamma} + \frac{\alpha}{\gamma} + \frac{\alpha}{\gamma} = \frac{1}{\beta}(\alpha + \gamma) + \frac{1}{\gamma}(\alpha + \beta)$
 $= \frac{1}{\beta} \left(-\frac{1}{2} - \beta\right) + \frac{1}{\alpha} \left(-\frac{1}{2} - \alpha\right) + \frac{1}{\gamma} \left(-\frac{1}{2} - \gamma\right) = -\frac{1}{2} \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right) - 1 - 1 - 1 = -\frac{1}{2} \left(\frac{2\alpha\beta}{\alpha\beta\gamma}\right) - 3 = -3$
B-6. Let roots be α, α and β
 $\therefore \alpha + \alpha + \beta + \alpha = -\frac{20}{4} \Rightarrow 2\alpha + \beta = -5$ (1)
 $\therefore \alpha + \alpha + \beta + \alpha = -\frac{23}{4} \Rightarrow 2\alpha + \beta = -5$ (1)
 $\therefore \alpha + \alpha + \beta + \alpha = -\frac{23}{4} \Rightarrow 2\alpha + \beta = -\frac{23}{4}$ (2)
and $\alpha^2\beta = -\frac{6}{4} = -\frac{3}{2}$ (3)
from equation (1) put $\beta = -5 - 2\alpha$ in (2), we get $\alpha^2 + 2\alpha (-5 - 2\alpha) = -\frac{23}{4}$
 $\Rightarrow 12\alpha^2 + 40\alpha - 23 = 0$ $\therefore \alpha = 1/2, -\frac{23}{6}$
(i) If $\alpha = \frac{1}{2}$ then from (1), we get $\beta = -6$

八

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029

If $\alpha = -\frac{23}{6}$ then from (1), we get $\beta = \frac{8}{2}$ (ii) **Note**: $\therefore \qquad \alpha = \frac{1}{2}$ and $\beta = -6$ also satisfy (3) but $\alpha = -\frac{23}{6}$ and $\beta = \frac{8}{3}$ does not satisfy (3) \therefore required roots are $\frac{1}{2}$, $\frac{1}{2}$, -62 + i $\sqrt{3}$ and 2 - i $\sqrt{3}$ are the roots of x² + px + q = 0 C-1. $-p = 4 \Rightarrow p = -4 \& q = 7.$ $x^2 - 2cx + ab = 0$ has roots real and unequal i.e. $D_1 > 0 \Rightarrow 4c^2 - 4ab > 0 \Rightarrow c^2 - ab > 0$ (1) C-2. Now, $x^2 - 2(a + b) x + (a^2 + b^2 + 2c^2) = 0$ $D_2 = 4(a + b)^2 - 4(a^2 + b^2 + 2c^2) = -8(c^2 - ab)$ \Rightarrow by (1) $D_2 < 0$ roots will be imaginary. $\mathsf{D} = 0 \Rightarrow (\mathsf{k} + 1)^2 - 8\mathsf{k} = 0 \Rightarrow \mathsf{k}^2 + 1 - 6\mathsf{k} = 0 \Rightarrow \mathsf{k} = \frac{6 \pm \sqrt{36 - 4}}{2} \Rightarrow \mathsf{k} = 3 \pm 2\sqrt{2} \ .$ C-3. $D = 0 \implies 4(b^2 - ac)^2 - 4(a^2 - bc)(c^2 - ab) = 0 \implies b(a^3 + b^3 + c^3 - 3abc) = 0$ C-4. \Rightarrow Either b = 0 or a³ + b³ + c³ = 3abc. **C-5.2** $\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = 0$...(1) (x-b)(x-c) + (x-a)(x-c) + (x-a)(x-b) = 0 $3x^2 - 2(a + b + c)x + ab + bc + ac = 0$...(2) $D = 4(a + b + c)^{2} - 12(ab + bc + ac) = 4[a^{2} + b^{2} + c^{2} - ab - bc - ac] = 2[(a - b)^{2} + (b - c)^{2} + (c - a)^{2}]$ $D \ge 0 \Rightarrow$ roots are always real But if a = b = c· Then $\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = 0 \Rightarrow \frac{3}{x-a} = 0$ which has no real 'x' \Rightarrow this equation cannot have roots if a = b = c. a = b = c $\frac{1}{(x+p)} + \frac{1}{(x+q)} = \frac{1}{r} \Rightarrow x^2 + x (p+q-2r) + (pq-pr-qr) = 0$ C-6. \therefore $\alpha + (-\alpha) = -(p+q-2r) = 0 \Rightarrow p + q = 2r$ &Product of roots = $pq - r(p + q) = pq - r(p + q) = pq - \frac{(p + q)^2}{2} = -\frac{1}{2}(p^2 + q^2)$ Roots are $-2 + i\beta$, $-2 - i\beta$, γ (say); Sum of roots $(-2 + i\beta) + (-2 - i\beta) + \gamma = 0$; $\gamma = 4$. C-7. 🔉 (i) Sum of products taken two at a time. $4(-2+i\beta) + 4(-2-i\beta) + (4+\beta^2) = 63$; $-16+4+\beta^2 = 63$; $\beta^2 = 75$ $\beta = \pm 5\sqrt{3}$. Roots are 4, $-2 \pm i 5\sqrt{3}$. Call roots as α , $\frac{-1}{2}$ + i β , $\frac{-1}{2}$ - i β (ii) $\alpha - 1 = \frac{-b}{2}$ $\alpha \left(\frac{-1}{2} + i\beta\right) + \alpha \left(\frac{-1}{2} + i\beta\right) + \frac{1}{4} + \beta^2 = \frac{3}{2} \dots (2)$ $\alpha \left(\frac{1}{4}+\beta^2\right)=\frac{-1}{2}$(3) $(2) \Rightarrow \frac{1}{4} + \beta^2 = \frac{3}{2} + \alpha$ Put in (3) $\alpha \left(\frac{3}{2} + \alpha\right) = \frac{-1}{2}$; $\alpha (2\alpha + 3) = -1$. $\Rightarrow \alpha = -1, \frac{-1}{2}$. If $\alpha = -1$, (3) \Rightarrow b = 4 $\therefore \alpha = \frac{-1}{2} \Rightarrow$ b = 3 Resonance[®] Educating for better tomorrow Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in ADVLCD-4

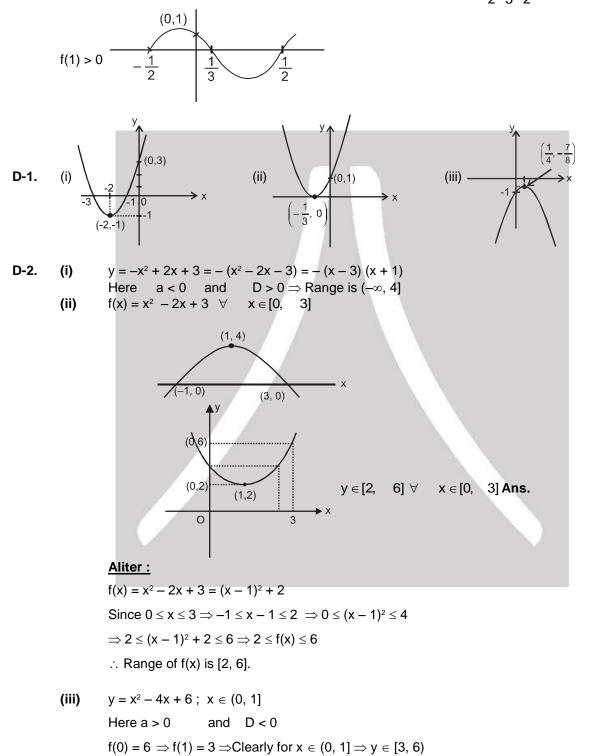
Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029

Put in (1) b = 3 or 4

C-8. Given one root is -1 + i

- \therefore 2nd root will be -1 i
- \therefore x² + 2x + 2 will be one factor of x⁴ + 4x³ + 5x² + 2x 2 = 0 and x² + 2x 1 will be another factor
- \therefore The roots of given equation are $-1 \pm \sqrt{2}$ and $-1 \pm i$.

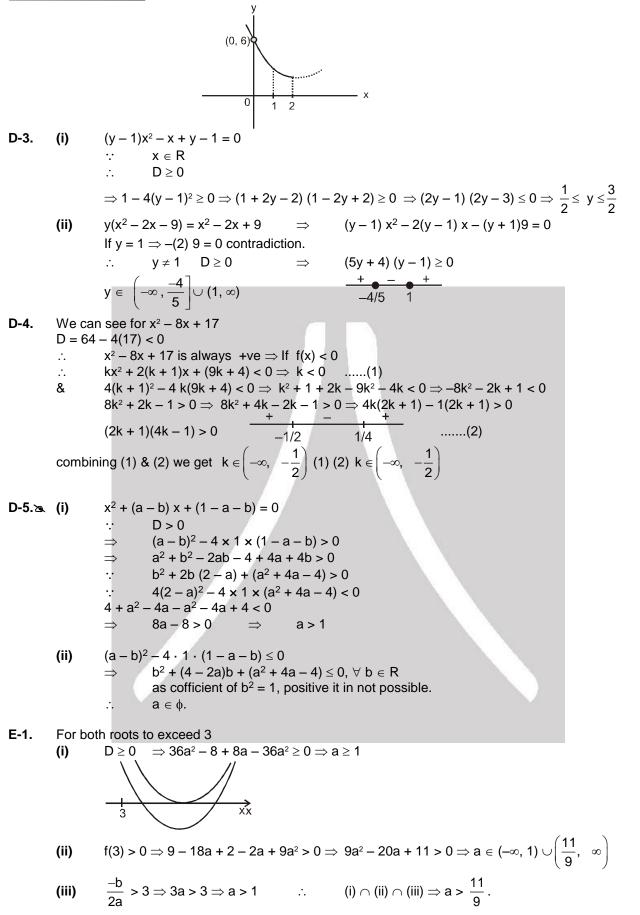
C-9. $y = (2x - 1)(6x^2 + x - 1) = (2x - 1)(2x + 1)(3x - 1)$. Hence roots are $x = -\frac{1}{2}, \frac{1}{3}, \frac{1}{2}$



 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

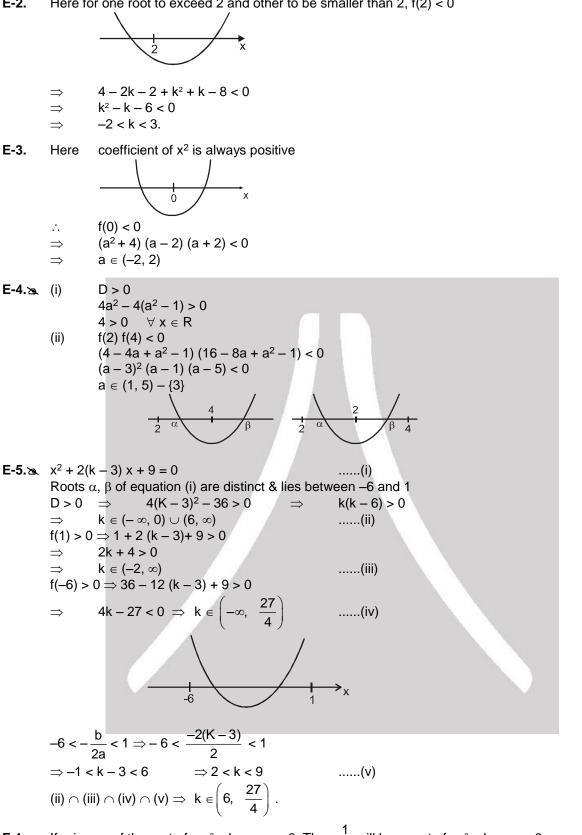
 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029



Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha	lawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVLCD- 6
Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVLCD- 6

Here for one root to exceed 2 and other to be smaller than 2, f(2) < 0E-2.



F-1. If α is one of the root of $a_1x^2 + b_1x + c_1 = 0$. Then $\frac{1}{\alpha}$ will be a root of $ax^2 + bx + c = 0$

 \Rightarrow c α^2 + b α + a = 0 & a_1\alpha^2 + b_1\alpha + c_1 = 0 have one common root.

 \therefore applying the condition for one common root we get $(aa_1 - cc_1)^2 = (bc_1 - ab_1)(b_1c - a_1b)$

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha	lawar Road, Kota (Raj.)-324005
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVI CD- 7
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVECD-7

F-2. Given equation are $x^2 - 11x + a = 0$(i)(ii) $x^2 - 14x + 2a = 0$ Multiplying equation (i) by 2 and then subtracting, we get $x^2 - 8x = 0 \Rightarrow x = 0, 8$ x = 0, a = 0lf lf x = 8, a = 24

F-3.
$$ax^2 + bx + c = 0 \Rightarrow bx^2 + cx + a = 0$$
 have a common root, say α

$$\therefore \quad a\alpha^{2} + b\alpha + c = 0 \Rightarrow \qquad b\alpha^{2} + c\alpha + a = 0 \Rightarrow \frac{\alpha^{2}}{ab - c} = \frac{\alpha}{bc - a^{2}} = \frac{1}{ac - b^{2}}$$

$$\alpha^{2} = \frac{ab - c^{2}}{ac - b^{2}}, \quad \alpha = \frac{bc - a^{2}}{ac - b^{2}} \Rightarrow \left(\frac{ab - c^{2}}{ac - b^{2}}\right) = \left(\frac{bc - a^{2}}{ac - b^{2}}\right)^{2} \Rightarrow \quad (ab - c^{2})(ac - b^{2}) = (bc - a^{2})^{2}$$

$$\Rightarrow a^{3} + b^{3} + c^{3} = 3abc \qquad [\because a \neq 0] \qquad \Rightarrow \frac{a^{3} + b^{3} + c^{3}}{abc} = 3 \quad Ans.$$

Aliter :

By observation, x = 1 is the common root \therefore a + b + c = 0 \therefore a³ + b² + c³ = 3abc or = 3.

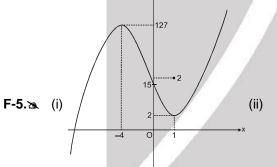
F-4. Let
$$\alpha$$
 is the common root hence $\alpha^2 + p\alpha + q = 0 \Rightarrow \alpha^2 + q\alpha + p = 0$

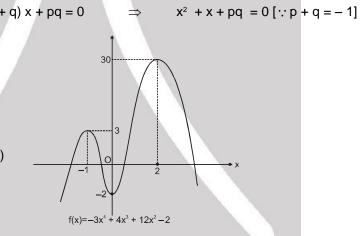
$$\frac{\alpha^2}{p^2 - q^2} = \frac{\alpha}{q - p} = \frac{1}{q - p} \Rightarrow \alpha^2 = -(p + q), \quad \alpha = 1 \quad \Rightarrow -(p + q) = 1 \Rightarrow p + q + 1 = 0$$
Let other roots be β and δ then $\alpha + \beta = -p$, $\alpha\beta = q \Rightarrow \alpha + \delta = -q$, $\alpha\delta = p$
 $\beta - \delta = q - p, \quad \frac{\beta}{\delta} = \frac{q}{p} \Rightarrow \frac{\beta - \delta}{\delta} = \frac{q - p}{p} \Rightarrow \frac{q - p}{\delta} = \frac{q - p}{p} \Rightarrow \delta = p \Rightarrow \beta = q$
Equation having $0 = \delta$ as matrix

Equation having β , δ as roots

 $f(x)=2x^3+9x^2-24x+15$

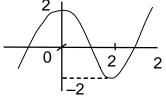
$$x^{2} - (\beta + \delta) x + \beta \delta = 0 \implies x^{2} - (p + q) x + pq = 0 \implies x^{2} + x + pq = 0$$





F-6.2 $f(x) = x^3 - 3x^2 + 2$ $f'(x) = 3x^2 - 6x = 3x (x - 2) = 0$

> f(0) = 2f(2) = 8 - 12 + 2 = -2(i) k∈[-2,2] (ii) k∈(-∞,-2) (2, ∞)



Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in ADVLCD-8 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029

PART - II

A-1. x = 1 is root. Let other root = α ∴ Product of the roots = (1) (α) = $\frac{a-b}{b-c}$ \Rightarrow roots are 1, $\frac{a-b}{b-c}$ A-2. $\alpha + \beta = -p$ $\gamma + \delta = -p$ $\alpha\beta = q$ $\gamma \delta = -r$ \Rightarrow $(\alpha - \gamma)(\alpha - \delta) = \alpha^2 - \alpha(\gamma + \delta) + \gamma \delta = \alpha^2 + p\alpha - r = \alpha(\alpha + p) - r = -\alpha\beta - r = -q - r = -(q + r)$ $\begin{array}{lll} (\alpha - \beta) = 4 & \Rightarrow & (\alpha - \beta)^2 = 16 & \Rightarrow & (\alpha + \beta)^2 - 4\alpha\beta = 16 \\ \Rightarrow & 9 - 4\alpha\beta = 16 & \Rightarrow & \alpha\beta = -\frac{7}{4} & \Rightarrow & \text{equation is } x^2 - 3x - \frac{7}{4} = 0 \end{array}$ A-3. $3x^{2} + px + 3 = 0 \bigvee_{\alpha}^{\alpha^{2}} \qquad \because \qquad \alpha + \alpha^{2} = -\frac{p}{3}$ $\alpha^{3} = 1, \qquad \Rightarrow \qquad \alpha = 1, \ \omega, \ \omega^{2} \qquad \because \qquad \alpha \neq 1$ $\alpha = \omega \text{ or } \alpha = \omega^{2} \quad \text{put is (i)} \qquad \therefore \qquad p = 3$ A-4. (i) $\mathbf{S}_{1}: \qquad \mathbf{x}^{2} - \mathbf{b}\mathbf{x} + \mathbf{c} = \mathbf{0} \boldsymbol{\leqslant}_{\beta}$ $|\alpha - \beta| = 1 \implies (\alpha - \beta)^2 = 1 \implies b^2 - 4c = 1.$ $\alpha + \beta = 1 \text{ and } \alpha \beta = 2$ A-5. $S_2:$ \cdots $S_3:$ \cdots $\alpha + \beta = 1$ and $\alpha\beta = 3$ $\alpha^{4} + \beta^{4} = (\alpha^{2} + \beta^{2})^{2} - 2\alpha^{2}\beta^{2} = [(\alpha + \beta)^{2} - 2\alpha\beta]^{2} - 2(\alpha\beta)^{2} = (1 - 6)^{2} - 2(9) = 25 - 18 = 7$ $\Sigma \alpha = 7 \Rightarrow \Sigma \alpha\beta = 16 \Rightarrow \alpha\beta\gamma = 12$ $\Sigma \alpha^2 = (\Sigma \alpha)^2 - 2 (\Sigma \alpha \beta) = 49 - 32$ $\alpha^2 + \beta^2 + \gamma^2 = 17$ B-1. Let the roots be α , β , $-\beta$ then $\alpha + \beta - \beta = p$...(1) and $\alpha\beta - \alpha\beta - \beta^2 = q \implies \beta^2 = -q$ [using (1)]. $\Rightarrow \alpha = p$...(2) also – $\alpha\beta^2 = r \Rightarrow pq = r$ [using (1)]. **B-2.2** $x^{3} - x - 1 = 0$ then $\alpha^3 - \alpha - 1 = 0$ (1) Let $\frac{1+\alpha}{1-\alpha} = y \Rightarrow \alpha = \frac{y-1}{y+1}$ from equation (1) $\left(\frac{y-1}{y+1}\right)^3 - \left(\frac{y-1}{y+1}\right) - 1 = 0$ $y^3 + 7y^2 - y + 1 = 0$ then $\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma} = -7$ Ans. **B-3.** Clearly $(x - a) (x - b) (x - c) = -(x - \alpha) (x - \beta) (x - \gamma)$ \therefore if α , β , γ are the roots of given equation then $(x - \alpha) (x - \beta) (x - \gamma) + d = 0$ will have roots a, b, c. $\Rightarrow \qquad \frac{\alpha^3 + \beta^3 + \gamma^3}{\alpha^2 + \beta^2 + \gamma^2} = \frac{3\alpha\beta\gamma}{-2(\alpha\beta + \beta\gamma + \gamma\alpha)} = \frac{3b}{2a}$ **B-4_.** $\alpha + \beta + \gamma = 0$ **B-5_** Let roots are α , $-\alpha$, β , γ then $\beta + \gamma = 2$ and $-\alpha^2 (\beta + \gamma) = -8$

 $\Rightarrow \qquad \alpha^2 = 4 \quad \Rightarrow \qquad \alpha \pm 2$

$$\Rightarrow \qquad 2^4 - 2(2^3) + a(2)^2 + 8(2) + b = 0$$

$$\Rightarrow$$
 4a + b = -16

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029

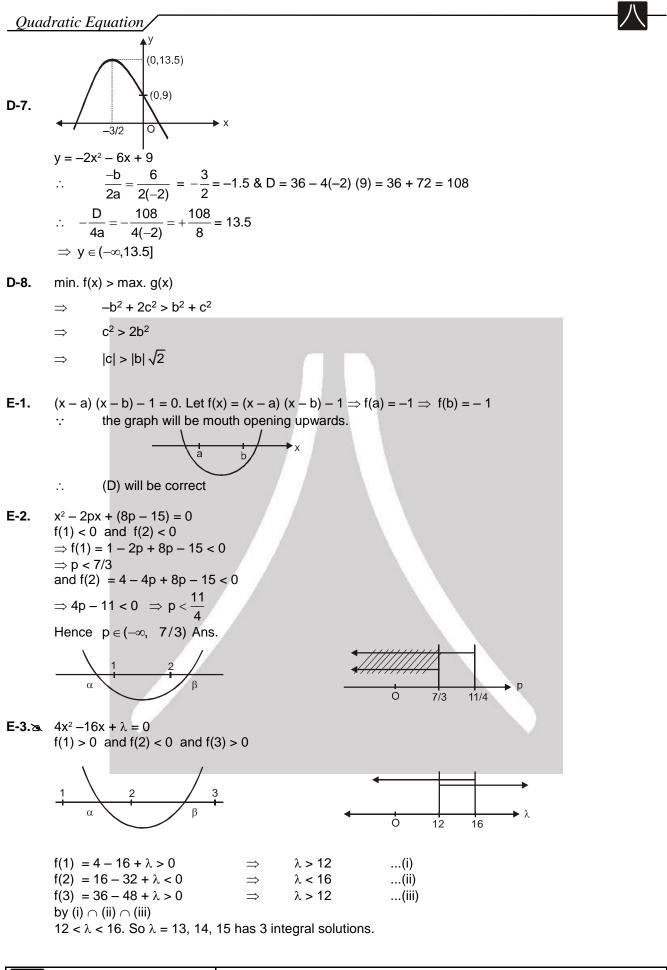
八

0	
	$\frac{dratic Equation}{\alpha + \beta = \sqrt{3}}$
0-1.	$\sqrt{3} + \beta = \sqrt{3} \qquad \Rightarrow \beta = -2$
C-2.	$D_{1} = b^{2} - 4.2.c > 0 \Rightarrow b^{2} - 8c > 0$ $D_{2} = (b - 4c)^{2} 4.2c. (2c - b + 1) = b^{2} + 16c^{2} - 8bc - 16c^{2} + 8bc - 8c = b^{2} - 8c > 0$
C-3.	$\begin{array}{l} \alpha + \alpha^2 = -\ell, \alpha^3 = m \\ \alpha^6 + \alpha^3 + 3\alpha^2 (\alpha + \alpha^2) = -\ell^3 \\ \Rightarrow \qquad m^2 + m + 3m (-\ell) + \ell^3 = 0 \qquad \Rightarrow \qquad m^2 + m (1 - 3\ell) + \ell^3 = 0 \\ \Rightarrow \qquad (1 - 3\ell)^2 - 4\ell^3 \ge 0 \qquad \{ \text{because } m \in R \} \end{array}$
	$\Rightarrow \qquad 4\ell^3 - 9\ell^2 + 6\ell - 1 \le 0 \qquad \Rightarrow \qquad (\ell - 1)^2 (4\ell - 1) \le 0 \qquad \Rightarrow \qquad \ell \in (-\infty, \frac{1}{4}] \cup \{1\}$
C-4.	$D = b^2 - 4ac = 20d^2$ $\Rightarrow \sqrt{D} = 2\sqrt{5}d$ So roots are irrational.
C-5.æ	$D = b^2 - 4ac = b^2 - 4a (-4a - 2b) = b^2 + 16a^2 + 8ab$ Since $ab > 0 \Rightarrow D > 0$. So equation has real roots.
C-6.	For integral roots, D of equation should be perfect sq.
	D = 4(1+n) By observation, for n ∈ N, D should be perfect sq. of even integer. So D = 4(1+n) = 6 ² , 8 ² , 10 ² , 12 ² , 14 ² , 16 ² , 18 ² , 20 ² . No. of values of n = 8.
D-1.	$x^2 + bx + c = 0 < \beta$
	$\begin{array}{l} \ddots & \alpha + \beta = -b \\ \Rightarrow & \alpha\beta = c \\ \ddots & \text{Sum is +ve and product is - ve.} \\ \therefore & \alpha < 0 < \beta < \alpha \end{array}$
D-2.	a > 0 & c < 0 is satisfied by (B) only [\therefore f(0) = 0 & a > 0] Further in (B)
	$-\frac{b}{2a} > 0 \qquad \Rightarrow \qquad b < 0 \qquad [\because a > 0].$
D-3.	For y = $ax^2 + bx + c$ to have the sign always same of 'a' $b^2 - 4ac < 0 \Rightarrow 4ac > b^2$
D-4.	Herefor D < 0, entire graph will be above x-axis
D-5.	Let $f(x) = ax^2 - bx + 1$. Given $D < 0 \& f(0) = 1 > 0$ \therefore possible graph is as shown i.e. $f(x) > 0 \ x \in \mathbb{R} \text{ or } f(-1) = a + b + 1 > 0$
D-6.	$x^{2} + ax + b = 0 \implies a + b = -a \implies 2a + b = 0 \text{ and } ab = b$ $ab - b = 0 \implies b(a - 1) = 0 \implies \text{Either } b = 0 \text{ or } a = 1$ But $b \neq 0$ (given) $\therefore a = 1$ $\therefore b = -2$ $\therefore f(x) = x^{2} + x - 2$ Least value occurs at $x = -\frac{1}{2}$ Least value $= \frac{1}{4} - \frac{1}{2} - 2 = -\frac{9}{4}$

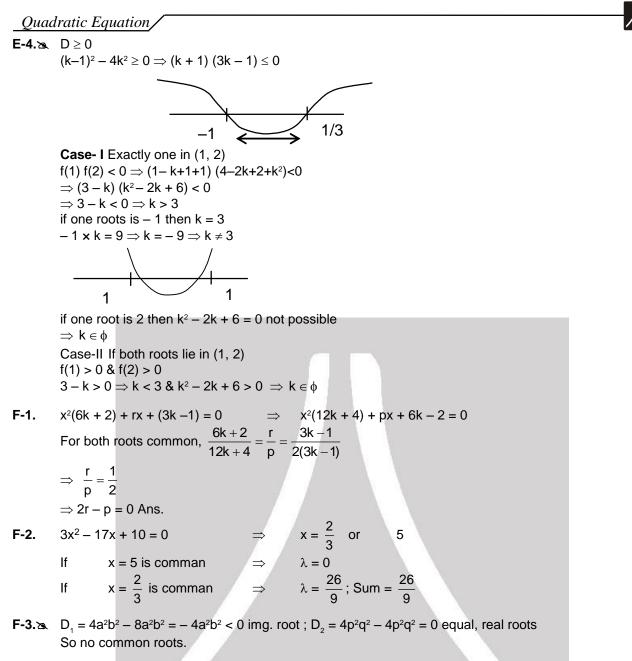
 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

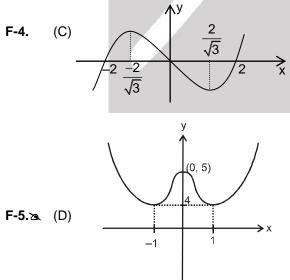
 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

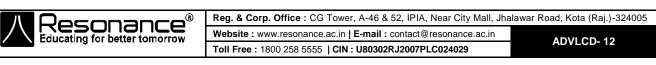
 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029



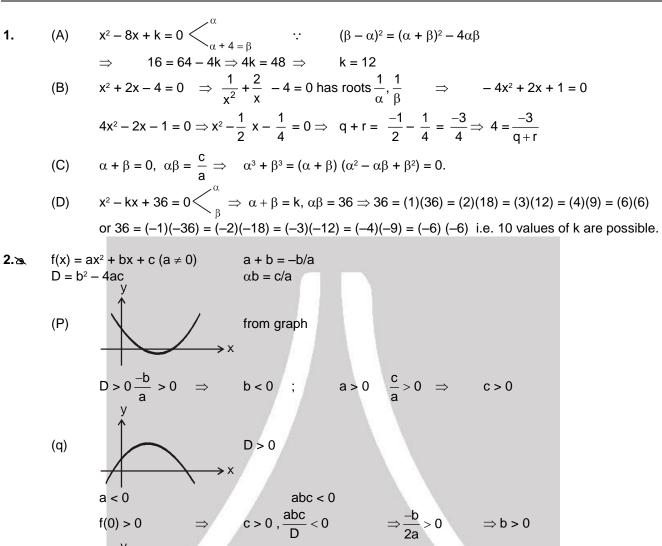
A Resonance®	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005	
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVLCD- 11
	Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVECD- II

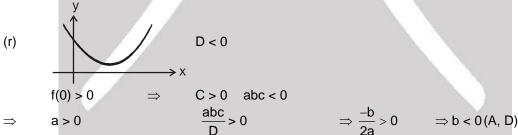


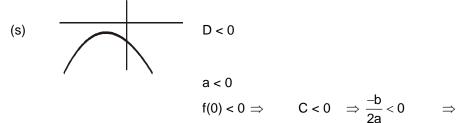




PART - III







 $f(0) < 0 \Rightarrow C < 0 \Rightarrow \frac{-D}{2a} < 0 \Rightarrow b < 0$ $abc < 0 \Rightarrow \frac{abc}{D} > 0 \quad (A, D)$

3.24 (A) q, s, t (B) p, t (C) r (D) q, s.

Resonance [®]	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha	alawar Road, Kota (Raj.)-324005	
	Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVLCD- 13
		Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVECD- 13

Exercise # 2

PART - I

a > 0, b > 0 and $c > 0 \Rightarrow ax^2 + bx + c = 0$ 1. $\alpha + \beta = -b/a = -ve, \ \alpha\beta = \frac{c}{a} = +ve$ -ve real part $\Rightarrow \qquad 0 < |\alpha - \beta| \le 2m \qquad \Rightarrow \qquad 0 < \sqrt{(\alpha + \beta)^2 - 4 \alpha \beta} \le 2m$ $x^{2} + 2ax + b = 0$ 2. $0 < 4a^2 - 4b \le 4m^2$ $a^2 - m^2 \le b < a^2$ \Rightarrow b \in [a² – m², a²) Sum of roots < 1 3. $\lambda^2 - 5\lambda + 5 < 1 \implies (\lambda - 1) (\lambda - 4) < 0$ \Rightarrow 1 < λ < 4 \Rightarrow ...(1) Product of roots < 1 \Rightarrow $2\lambda^2 - 3\lambda - 5 < 0 \qquad \Rightarrow \qquad (2\lambda - 5) (\lambda + 1) < 0 \qquad \Rightarrow \qquad -1 < \lambda < \frac{5}{2}$...(2) \Rightarrow $\Rightarrow \qquad 1 < \lambda < \frac{5}{2} \ .$ (1) & (2) 4. Dis. of $-x^2 + sx - 2q$ is $s^2 - 8q \equiv D_3$ **Case 1** : If q < 0, then $D_1 > 0$, $D_3 > 0$ and D_2 may or may not be positive **Case 2** : If q > 0, then $D_2 > 0$ and D_1 , D_3 may or may not be positive $\textbf{Case 3}: \ \ \textbf{If q = 0, then} \quad \ \ \textbf{D}_{_1} \geq \textbf{0}, \ \textbf{D}_{_2} \geq \textbf{0} \ \textbf{and} \ \textbf{D}_{_3} \geq \ \textbf{0}$ from Case 1, Case 2 and Case 3 we can say that the given equation has atleast two real roots. We, know that a + b > c, b + c > a and $c + a > b \Rightarrow c - a < b$, a - b < c, b - c < a5.2 squaring on both sides and adding $(c-a)^2 + (a-b)^2 + (b-c)^2 < a^2 + b^2 + c^2$ $a^{2} + b^{2} + c^{2} - 2(ab + bc + ca) < 0$ $(a + b + c)^2 - 4(ab + bc + ca) < 0$ \Rightarrow $\frac{(a+b+c)^2}{ab+bc+ca} < 4$(i) \Rightarrow roots of equation $x^2 + 2(a + b + c) x + 3\lambda$ (ab + bc + ca) = 0 are real, then $D \ge 0$ Now $\frac{(a+b+c)^2}{ab+bc+ca} \ge 3\lambda$ 4 (a + b + c)² – 4. 3λ (ab + bc + ca) $\geq 0 \implies$ \Rightarrow $3\lambda \leq \frac{(a+b+c)^2}{ab+bc+ca} < 4 \implies \lambda < \frac{4}{3}$ So

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha	lawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVLCD- 14
Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVECD- 14

Quadratic Equation 6.2 Let bighadratic is $ax^4 + bx^3 + cx^2 + dx + e = 0$ a + b + c + d + e = 0 as a, b, c, d, $e \in \{-9, -5, 3, 4, 7\}$ \Rightarrow Hence x = 1 is a root. So real root will be atleast two. $ax^4 + bx^3 + cx^2 + dx + e = 0 \implies a + b + c + d + e = 0 a, b, c, d, e \in \{-9, -5, 3, 4, 7\}$ 7.a $x^2 + px + q = 0 \implies$ $D_1 = p^2 - 4q$(1) $D_{2} = r^{2} - 4s$ $x^2 + rx + s = 0 \implies$(2) $D_1 + D_2 = p^2 + r^2 - 4 (q + s)$ [:: pr = 2(q + s)] = (p - r)^2 > 0 Since $D_1 + D_2$ is +ve, so atleast one of the equation has real roots. 8. $\pi^{x} = -2x^{2} + 6x - 9$ D = 36 - 4(-2)(-9) = 36 - 72 < 0 & a < 0 \Rightarrow So quadratic expression – $2x^2$ + 6x – 9 is always negative whereas π^x is always +ve \therefore Equation will not hold for any x. $\therefore x \in \phi$ So $\pi^x = -2x^2 + 6x - 9$ has no solution. $(\lambda + 2) (\lambda - 1)x^2 + (\lambda + 2)x - 1 < 0 \quad \forall x \in R \Rightarrow (\lambda + 2) (\lambda - 1) < 0$ 9.2 (a < 0) -2 < λ < 1 \Rightarrow ...(1) $(\lambda + 2)^2 + 4(\lambda + 2) (\lambda - 1) < 0$ (D < 0) and $(\lambda + 2) (\lambda + 2 + 4\lambda - 4) < 0 \implies (\lambda + 2) (5\lambda - 2) < 0$ \Rightarrow $\Rightarrow -2 < \lambda < \frac{2}{5}$...(2) (1) & (2) $\Rightarrow \lambda \in \left(-2, \frac{2}{5}\right)$ Also $\lambda = -2 \Rightarrow 0 < 1$ which is true \therefore Required interval is $\lambda \in \left[-2, \frac{2}{5}\right]$

 C_1 : b² - 4a c \ge 0; C_2 : a, -b, c are of same sign ax² + bx + c = 0 has real roots then D \ge 0 i.e. C_1 must 10. be satisfied

(i) Let
$$a, -b, c > 0$$
 then $-\frac{b}{2a} > 0$

(ii) Let
$$a, -b, c < 0$$
 then $-\frac{b}{2a} > 0$

Hence, for roots to be + ve, C₂ must be satisfied. Thus both C₁, C₂ are satisfied

11.5 Let
$$y = \frac{x^2 - x + c}{x^2 + x + 2c}$$
; $x \in R$ and $y \in R$ \Rightarrow $(y - 1) x^2 + (y + 1)x + 2y c - c = 0$
 $\therefore x \in R \Rightarrow D \ge 0 \Rightarrow (y + 1)^2 - 4c(y - 1)(2y - 1) \ge 0$
 $\Rightarrow y^2 + 1 + 2y - 4c[2y^2 - 3y + 1] \ge 0 \Rightarrow (1 - 8c)y^2 + (2 + 12c) y + 1 - 4c \ge 0 \dots (1)$
Now for all $y \in R$ (1) will be true if $1 - 8c > 0 \Rightarrow c < \frac{1}{8}$ and $D \le 0$
 $\Rightarrow 4(1 + 6c)^2 - 4(1 - 8c)(1 - 4c) \le 0 \Rightarrow 1 + 36c^2 + 12c - 1 - 32c^2 + 12c \le 0$
 $\Rightarrow 4c^2 + 24c \le 0 \Rightarrow -6 \le c \le 0$
But $c = -6$ and $c = 0$ will not satisfy given condition
 $\therefore c \in (-6, 0)$
12. $(2 - x)(x + 1) = p \Rightarrow x^2 - x + (p - 2) = 0$...(1)
(1) has both roots distinct & positive
 \therefore (i) $D > 0$ (ii) $f(0) > 0$ (iii) $\frac{-b}{2a} > 0$
(i) $D > 0 \Rightarrow p < \frac{9}{4}$ (ii) $f(0) > 0 \Rightarrow p > 2$ (iii) $\frac{-b}{2a} = \frac{1}{2} > 0$ (always true)

ADVLCD-15

$$(i) \cap (ii) \cap (iii) \Rightarrow p \in \left(2, \frac{9}{4}\right).$$

$$13.x \quad (a-1) (x^2 + x + 1)^2 - (a+1) (x^4 + x^2 + 1) = 0 \qquad \dots \dots \dots (1) \\ \therefore \quad x^4 + x^2 + 1 = (x^2 + x + 1) (x^2 - x + 1) \\ \therefore \quad (1) becomes \\ \Rightarrow \quad (x^2 + x + 1) [(x^2 + x + 1) (a - 1) - (a + 1) (x^2 - x + 1)] = 0 \\ \Rightarrow \quad (x^2 + x + 1) [(x^2 - a x + 1) = 0 \\ \text{Here two roots are imaginary and for other two roots to be real D > 0 \\ \Rightarrow \quad a^2 - 4 > 0 \qquad \Rightarrow \quad a \in (-\infty, -2) \cup (2, \infty)$$

$$14.x \quad x^3 + 5x^2 + px + q = 0 \quad \bigcap_{x_1}^{\alpha} \Rightarrow \qquad \alpha + \beta + x_1 = -5, \alpha \beta + \beta x_1 + \alpha x_1 = p \qquad \dots (1) \\ x^3 + 7x^2 + px + r = 0 \quad \bigcap_{x_2}^{\alpha} \Rightarrow \qquad \alpha + \beta + x_2 = -7, \alpha \beta + \beta x_2 + \alpha x_2 = p \qquad \dots (2) \\ \text{Subtracting (2) from (1)} \\ \alpha \beta + \beta x_1 + \alpha x_1 = p \qquad \Rightarrow \qquad \frac{\alpha \quad \beta + \beta x_2 + \alpha x_2 = p}{\alpha \quad (x_1 - x_2) + \beta \quad (x_1 - x_2) = 0} \Rightarrow \qquad (x_1 - x_2) (\alpha - \beta) = 0 [x_1 \neq x_2] \\ \therefore \quad \alpha + \beta = 0 \qquad \Rightarrow \qquad x_1 = -5 \Rightarrow \qquad x_2 = -7$$

$$15.x \quad \because \quad a^2 + b^2 + c^2 = 1 \qquad \Rightarrow \qquad (a + b + c)^2 = a^2 + b^2 + c^2 + 2 (ab + bc + ca) \ge 0 \\ \Rightarrow \quad 1 + 2 (ab + bc + ca) \ge 0 \Rightarrow \qquad (ab + bc + ca) \le 1 \qquad \dots \dots (1) \\ \therefore \quad a^2 + b^2 + c^2 - (ab + bc + ca) \ge 0 \Rightarrow \qquad (ab + bc + ca) \le 1 \qquad \dots \dots (2) \\ \therefore \qquad From (1) and (2) we can say that \qquad (ab + bc + ca) \le \left[-\frac{1}{2}, 1\right]$$

PART - II

1.28.
$$(x^{2} + 3x + 2) (x^{2} + 3x) = 120$$
Let $x^{2} + 3x = y \Rightarrow y^{2} + 2y - 120 = 0 \Rightarrow (y + 12) (y - 10) = 0$

$$\Rightarrow y = -12 \Rightarrow x^{2} + 3x + 12 = 0 \Rightarrow x \in \phi$$

$$y = 10 \Rightarrow x^{2} + 3x - 10 = 0 \Rightarrow (x + 5) (x - 2) = 0$$

$$\Rightarrow x = \{-5, 2\}$$

$$x = 2, -5 \text{ are only two integer roots.}$$
2.28.
$$(5 + 2\sqrt{6})^{x^{2}-3} + \frac{1}{(5 + 2\sqrt{6})^{x^{2}-3}} = 10$$

$$\Rightarrow t + \frac{1}{t} = 10$$

$$\Rightarrow t^{2} - 10t + 1 = 0$$

$$t = \frac{10 \pm \sqrt{96}}{2} = 5 \pm 2\sqrt{6}$$

$$\Rightarrow (5 + 2\sqrt{6})^{x^{2}-3} = (5 + 2\sqrt{6}) \text{ or } \frac{1}{5 + 2\sqrt{6}}$$

$$\Rightarrow x^{2} - 3 = 1 \text{ or } x^{2} - 3 = -1$$

$$\Rightarrow x = 2 \text{ or } -2 \text{ or } -\sqrt{2} \text{ or } \sqrt{2} \text{ Product 8}$$

$$\overrightarrow{Product 8}$$

$$\overrightarrow{Product 8}$$

$$\overrightarrow{Product 8}$$

$$\overrightarrow{Product 8}$$

$$\overrightarrow{Product 8}$$

$$\overrightarrow{Product 8}$$

3.3.
$$x^2 + px + 1 = 0$$

 b
 $a + b = -p, ab = 1$
 $a - b = -p^2(1 + ad + bd + d^2)$
 $a = -a - b + c^2(1 + ad + bd + d^2)$
 $a = -a - b + c^2(1 + ad + bd + d^2)$
 $a = -a - b + c^2(1 + ad + bd + d^2)$
 $a = -a - b + c^2(1 + ad + bd + d^2)$
 $a = -a - b + c^2(1 + ad + bd + d^2)$
 $a = -a - b + c^2(1 + ad + bd + d^2)$
 $a = -a - b + c^2(1 + ad + bd + d^2)$
 $a = -a - b + c^2(1 + ad + bd + d^2)$
 $a = -a - b + c^2(1 + ad + bd + d^2)$
 $a = -a - b + c^2(1 + ad + bd + d^2)$
 $a = -a - b^2 - a^2(1 + b^2) - 2d - (a + b)^2 + 2a + q^2 - 2 - p^2 + 2 - q^2 - p^2 = 1.HS.$ Proved.

Alter:
RHS: (ab - ((a + b) + c^2)(ab + d(ab + d(a + b) + d^2) = (c^2 + bc + 1)(1 - pd + d^2) ...(1)
Since c 8 d are the roots of $h x^2 - (h - 1) x + 5 = 0$
 $\therefore a + \beta = \frac{h}{h} = -4$
 $\Rightarrow \frac{a^2 + b^2}{a\beta} = 4$
 $\Rightarrow \frac{a^2 + b^2}{\lambda_1} = \frac{a^2 + b^2}{\lambda_2} = \frac{(32)^2 - 2}{1} = 1022 \Rightarrow \left(\frac{\lambda_1 + \lambda_2}{\lambda_2} + \frac{\lambda_1}{\lambda_1}\right) = 73$
5.8. $a + 2a = -\frac{\ell}{\ell - m}$
 $\Rightarrow 2\ell^2 - 9\ell + 9m = 0$
 $\Rightarrow \ell = R \Rightarrow D \ge 0$
 $\Rightarrow 81 - 72m \ge 0 \Rightarrow m \le \frac{9}{8}$.
6. $a, \beta = b; \gamma \delta = b - 2$
 $\Rightarrow a\beta + b^2 - 2 \Rightarrow a\beta + b^2 - 2 = \frac{5}{6}; \frac{-22a}{b(b-2)} = \frac{5}{6}; \frac{-22a}{2a} - \frac{5}{6}; a = 10.$
7.8. $a^3 + b^3 + (-9)^3 = 3 \cdot a \cdot b(-9) \Rightarrow a + b - 9 = 0$ or $a = b = -9$. Which is rejected.
As $a > b > -9$
 $\Rightarrow a + b - 9 = 0$ $\Rightarrow a^2 - 2 = 6 ka$
 $a_{aa} - 2a_{aa} = a^{(1 - 2)} - 2a_{aa} = \frac{6}{a}, \beta = 1 \Rightarrow 4\beta - aa = 4 - a \left(\frac{(-9)}{a}\right) = 4 + 9 = 13.$
8.8. Let $t^2 - 2t + 2 = k \Rightarrow a^2 - a^2 - b - (b + 2) = 6(t - 1)^2 + 1] \therefore$ min. value of $\frac{a(a - 2aa}{a_{b0}} = 6ka_{aa} = \frac{a(a - 2aa}{a_{b0}} = 6k = 6(\ell^2 - 2t + 2) = 6((t - 1)^2 + 1] \therefore$ min. value of $\frac{a(a - 2aa}{a_{b0}} = 6ka_{aa} = \frac{a(a - 2aa}{a_{b0}} = 6k = 6(\ell^2 - 2t + 2) = 6((t - 1)^2 + 1] \therefore$ min. value of $\frac{a(a - 2aa}{a_{b0}} = 6ka_{aa} = \frac{a(a - 2aa}{a_{b0}} = 6k = 6(\ell^2 - 2t + 2) = 6((t - 2)^2$

Quadratic Equation $x^4 - Kx^3 + Kx^2 + Lx + M = 0 \overbrace{\underset{\alpha}{\overset{\beta}{\underset{\gamma}{\gamma}}}^{\alpha}}^{\alpha} \Rightarrow \sum \alpha = K, \sum \alpha \beta = K, \sum \alpha \beta \gamma = -L$ 9. $\alpha\beta\gamma\delta = M \qquad \Rightarrow \qquad \alpha^2 + \beta^2 + \gamma^2 + \delta^2 = (\alpha + \beta + \gamma + \delta)^2 - 2\sum \alpha \beta$ $\mathsf{K}^2 - 2\mathsf{K} = (\mathsf{K} - 1)^2 - 1 \qquad \Rightarrow \qquad (\alpha^2 + \beta^2 + \gamma^2 + \delta^2)_{\min} = -1$ $y = \frac{2 x}{1 + x^2} \implies x^2y - 2x + y = 0 \quad \forall x \in R$ 10. $\begin{array}{lll} D \geq 0 & 4 - 4y^2 \geq 0 & \Rightarrow & y \in [-1, \ 1] \ \text{Now} \ f(y) = y^2 + y - 2 \\ \Rightarrow f(y) \in \left[- & \frac{9}{4}, \ 0 \end{array} \right] \Rightarrow & a = \frac{-9}{4}, \ b = 0 \Rightarrow b - 4a = 0 - 4 \ \left(\frac{-9}{4} \right) = 9. \ \text{Ans.} \end{array}$ - 9/4 Let α , β , γ be the roots of $x^3 - Ax^2 + Bx - C = 0$ 11.2 the roots of $x^3 + Px^2 + Qx - 19 = 0$ will be $(\alpha + 1)$, $(\beta + 1)$, $(\gamma + 1)$ $\begin{array}{l} (\alpha + 1) (\beta + 1) (\gamma + 1) = 19 \qquad \Rightarrow \qquad (\alpha \beta + \alpha + \beta + 1) (\gamma + 1) = 19 \\ \alpha \beta \gamma + \alpha \gamma + \beta \gamma + \alpha \beta + \alpha + \beta + \gamma + 1 = 19 \qquad \Rightarrow \qquad C + B + A = 18 \qquad [usi$ *.*.. \Rightarrow [using (1)]. $\begin{array}{l} \alpha = 4x \qquad \Rightarrow \\ f(x) = -32(x^2 + 2x) \qquad \Rightarrow \\ \text{Maximum value of } f(x) \text{ is } 32 \text{ } f(x) \end{array}$ $(\alpha)(2\alpha) = -f(x) - 64x$ $\alpha + 2\alpha = 12x$ 12. \Rightarrow $f(x) = -(32x^2 + 64x)$ $f(x) = -32((x + 1)^2 - 1)$ \Rightarrow \Rightarrow \Rightarrow $f(x) \le 32.$ \Rightarrow **Case-I**: Both the roots are positive $x^2 + 2(K - 1)x + (K + 5) = 0$ 13. $4(K-1)^2 - 4(K+5) \ge 0 \implies (K+1)(K-4) \ge 0$ $D \ge 0$ (i) \Rightarrow (case-I) K + 5 > 0K > – 5 (ii) f(0) > 0 $\frac{2(1-k)}{2} > 0$ $-\frac{b}{2a} > 0$ (iii) \Rightarrow K < 1 $K \in (-\infty, -1]$... (i) **Case-II :** One root is +ve and other root is $-ve f(0) < 0 \implies k + 5 < 0 \implies K < -5 \dots$ (ii) (case-II) **Case-III** : One root is zero and other is +ve f(0) = 0 & $\frac{-b}{2a} > 0 \implies K = -5$... (iii)

Union of all the three cases give $K \in (-\infty, -1] = (-\infty, -b] \Rightarrow b = 1$. Ans.

(case-III)

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha	lawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	
Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVLCD- 18

14.2 case- I : Both roots are greater than 2. one root is 2 & other is greater than 2 $(a-3)^2 - 4a \ge 0 \quad \Rightarrow$ $a^2 - 10a + 9 \ge 0$ $(a - 1)(a - 9) \ge 0$ $D \ge 0 \implies$ $a \in (-\infty, 1] \cup [9, \infty)$... (i) $\frac{-b}{2a} > 2 \Rightarrow \frac{a-b}{2} > 2 \Rightarrow a > 7$.. (ii) $f(2) \ge 0 \quad \Rightarrow \quad 4 - 2(a - 3) + a \ge 0$ $-a + 10 \ge 0 \implies a \le 10$... (iii) (i) \cap (ii) \cap (iii) gives a ∈ [9, 10] ... (iv) q Case-II : One root is greater than 2 f(2) < 0 \Rightarrow – a + 10 < 0 a > 10 a ∈ (10, ∞) \Rightarrow(v) (iv) \cup (v) gives final answer as a \in [9, ∞) Least value of 7a is 63. \Rightarrow $\begin{vmatrix} 3 & a \\ 2 & b \end{vmatrix} \begin{vmatrix} a & 1 \\ b & 1 \end{vmatrix} = \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix}^2$ 15. $(3b - 2a) (a - b) = (3 - 2)^2$ \Rightarrow $5ab - 3b^2 - 2a^2 = 1$ **16.** $x^3 - px^2 + qx = 0$...(1) $x = 0, \quad x^2 - px + q = 0$ $x(x^2 - px + q) = 0;$ \therefore 0, α , α are the roots of equation (1) $2\alpha = p \Rightarrow \alpha = p/2$...(2) $\alpha^2 = q$...(3) & Since α is the root of the equation $x^2 - ax + b = 0$ also, $\therefore \alpha^2 - a\alpha + b = 0$ $q - \frac{a p}{2} + b = 0$ [using (2) & (3)] \Rightarrow ap = 2(b + q) \Rightarrow 2 = $\frac{ap}{a+b}$. 17. Given expression is $f(x, y) = x^3 - 3x^2y + \lambda xy^2 + \mu y^3$(i) since (x - y) is a factor of (i) $x^3 - 3x^3 + \lambda x^3 + \mu x^3 = 0 \implies$ $\lambda + \mu - 2 = 0$ ÷.(ii) (y - 2x) is also a factor of (i) $x^{3} - 3x^{2}(2x) + \lambda x(4x^{2}) + \mu(8x^{3}) = 0$ *.*.. $4\lambda + 8\mu - 5 = 0$(iii) \Rightarrow Solving (ii) & (iii) we get $\lambda = \frac{11}{4}$ and $\mu = -\frac{3}{4}$ $\Rightarrow \frac{16\lambda}{11} + 4\mu = \frac{16}{11} \frac{11}{4} + 4\left(\frac{-3}{4}\right) = 4 - 3 = 1.$ Ans.

PART - III

2. (A) $S = \alpha^{2} + \beta^{2} = a^{2} - 2b; P = \alpha^{2} \beta^{2} = b^{2}$ \therefore equation is $x^{2} - (a^{2} - 2b) x + b^{2} = 0$ (B) $S = \frac{1}{\alpha} + \frac{1}{\beta} = -\frac{a}{b}, P = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{b}$ $\therefore x^{2} + \frac{a}{b} x + \frac{1}{b} = 0$ $\Rightarrow bx^{2} + ax + 1 = 0$ (C) $S = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta} = \frac{a^{2} - 2b}{b}; P = \frac{\alpha}{\beta}, \frac{\beta}{\alpha} = 1$ $x^{2} - \frac{a^{2} - 2b}{b} x + 1 = 0 \Rightarrow bx^{2} - (a^{2} - 2b) x + b = 0$ (D) $S = \alpha + \beta - 2 = -a - 2 ; P = (\alpha - 1) (\beta - 1) = \alpha\beta - (\alpha + \beta) + 1 = b + a + 1$ \therefore equation is $x^{2} + (a + 2)x + (a + b + 1) = 0$. 3. $ax^{2} + bx + c = 0 \swarrow^{\alpha} \Rightarrow \alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a} \Rightarrow Ax^{2} + Bx + C = 0 \stackrel{\alpha + \delta}{\searrow_{\beta - \delta}}$ $(\alpha + \delta) + (\beta + \delta) = -\frac{B}{A}, (\alpha + \delta) (\beta + \delta) = \frac{C}{A} \because [(\alpha + \delta) - (\beta + \delta)] = [(\alpha - \beta)]$ $\Rightarrow \sqrt{\frac{B^{2}}{A^{2}} - \frac{4C}{A}} = \sqrt{\frac{b^{2}}{a^{2}} - \frac{4c}{a}} \Rightarrow \frac{b^{2} - 4ac}{a^{2}} = \frac{B^{2} - 4AC}{A^{2}}$ Hence proved 4. a $4x^{2} + 2x - 1 = 0 \stackrel{\alpha}{\beta}$ $\Rightarrow 4\alpha^{2} + 2\alpha - 1 = 0 (1)$ Let $\beta = 4\alpha^{3} - 3\alpha$ with the help of equation (1) $\beta = \alpha [4\alpha^{2} - 3] = \alpha[1 - 2\alpha - 3] = -2\alpha^{2} - 2\alpha = -2\frac{(1 - 2\alpha)}{4} - 2\alpha}$ [using (1)] $\beta = -\alpha - 1/2$ $\alpha + \beta = -1/2$ which is given. hence second root is $4\alpha^{3} - 3\alpha$.	Correct Not answer Correct Correct
$x^{2} - \frac{a^{2} - 2b}{b} x + 1 = 0 \implies bx^{2} - (a^{2} - 2b) x + b = 0$ (D) $S = \alpha + \beta - 2 = -a - 2$; $P = (\alpha - 1) (\beta - 1)$ $= \alpha\beta - (\alpha + \beta) + 1 = b + a + 1$ \therefore equation is $x^{2} + (a + 2)x + (a + b + 1) = 0$. 3. $ax^{2} + bx + c = 0 \begin{cases} \alpha \\ \beta \end{cases} \implies \alpha + \beta = -\frac{b}{a}, \ \alpha\beta = \frac{c}{a} \implies Ax^{2} + Bx + C = 0 \begin{cases} \alpha + \delta \\ \beta + \delta \end{cases}$ $(\alpha + \delta) + (\beta + \delta) = -\frac{B}{A}, \ (\alpha + \delta) (\beta + \delta) = \frac{C}{A} \qquad \because \qquad (\alpha + \delta) - (\beta + \delta) = (\alpha - \beta) $ $\implies \sqrt{\frac{B^{2}}{A^{2}} - \frac{4C}{A}} = \sqrt{\frac{b^{2}}{a^{2}} - \frac{4c}{a}} \implies \frac{b^{2} - 4ac}{a^{2}} = \frac{B^{2} - 4AC}{A^{2}}$ Hence proved 4. $a 4x^{2} + 2x - 1 = 0$ $\implies 4\alpha^{2} + 2\alpha - 1 = 0$ (1) Let $\beta = 4\alpha^{3} - 3\alpha$ with the help of equation (1) $\beta = \alpha [4\alpha^{2} - 3] = \alpha[1 - 2\alpha - 3] = -2\alpha^{2} - 2\alpha = -2 \frac{(1 - 2\alpha)}{4} - 2\alpha$ [using (1)] $\beta = -\alpha - 1/2$ $\alpha + \beta = -1/2$ which is given.	
$= \alpha\beta - (\alpha + \beta) + 1 = b + a + 1$ $\therefore \text{equation is } x^{2} + (a + 2)x + (a + b + 1) = 0.$ 3. $ax^{2} + bx + c = 0 \swarrow_{\beta}^{\alpha} \Rightarrow \alpha + \beta = -\frac{b}{a}, \ \alpha\beta = \frac{c}{a} \Rightarrow Ax^{2} + Bx + C = 0 \swarrow_{\beta+\delta}^{\alpha+\delta}$ $(\alpha + \delta) + (\beta + \delta) = -\frac{B}{A}, \ (\alpha + \delta) \ (\beta + \delta) = \frac{C}{A} \because (\alpha + \delta) - (\beta + \delta) = (\alpha - \beta) $ $\Rightarrow \sqrt{\frac{B^{2}}{A^{2}} - \frac{4C}{A}} = \sqrt{\frac{b^{2}}{a^{2}} - \frac{4c}{a}} \Rightarrow \frac{b^{2} - 4ac}{a^{2}} = \frac{B^{2} - 4AC}{A^{2}} \text{Hence proved}$ 4.2. $4x^{2} + 2x - 1 = 0 \dots (1)$ Let $\beta = 4\alpha^{3} - 3\alpha$ with the help of equation (1) $\beta = \alpha \ [4\alpha^{2} - 3] = \alpha[1 - 2\alpha - 3] = -2\alpha^{2} - 2\alpha = -2 \ \frac{(1 - 2\alpha)}{4} - 2\alpha \qquad [using (1)]$ $\beta = -\alpha - \frac{1}{2}$ $\alpha + \beta = -\frac{1}{2} \text{which is given.}$	
$(\alpha + \delta) + (\beta + \delta) = -\frac{B}{A}, (\alpha + \delta) (\beta + \delta) = \frac{C}{A} \qquad \qquad$	
$\Rightarrow \sqrt{\frac{B^2}{A^2} - \frac{4C}{A}} = \sqrt{\frac{b^2}{a^2} - \frac{4c}{a}} \Rightarrow \frac{b^2 - 4ac}{a^2} = \frac{B^2 - 4AC}{A^2} \text{ Hence proved}$ 4.2 $4x^2 + 2x - 1 = 0$ $\Rightarrow 4\alpha^2 + 2\alpha - 1 = 0 \qquad \dots (1)$ Let $\beta = 4\alpha^3 - 3\alpha$ with the help of equation (1) $\beta = \alpha \ [4\alpha^2 - 3] = \alpha[1 - 2\alpha - 3] = -2\alpha^2 - 2\alpha = -2 \ \frac{(1 - 2\alpha)}{4} - 2\alpha$ [using (1)] $\beta = -\alpha - 1/2$ $\alpha + \beta = -1/2$ which is given.	
4.24 $4x^{2} + 2x - 1 = 0$ $\Rightarrow 4\alpha^{2} + 2\alpha - 1 = 0 \qquad \dots (1)$ Let $\beta = 4\alpha^{3} - 3\alpha$ with the help of equation (1) $\beta = \alpha \ [4\alpha^{2} - 3] = \alpha[1 - 2\alpha - 3] = -2\alpha^{2} - 2\alpha = -2 \ \frac{(1 - 2\alpha)}{4} - 2\alpha \qquad [using (1)]$ $\beta = -\alpha - 1/2$ $\alpha + \beta = -1/2 \qquad \text{which is given.}$	
$\Rightarrow 4\alpha^{2} + 2\alpha - 1 = 0 \qquad \dots (1)$ Let $\beta = 4\alpha^{3} - 3\alpha$ with the help of equation (1) $\beta = \alpha [4\alpha^{2} - 3] = \alpha[1 - 2\alpha - 3] = -2\alpha^{2} - 2\alpha = -2 \frac{(1 - 2\alpha)}{4} - 2\alpha$ [using (1)] $\beta = -\alpha - 1/2$ $\alpha + \beta = -1/2$ which is given.	
hence second root is $4\alpha^3 - 3\alpha$.	
5. $x^{2} + 3x + 1 = (x - \alpha) (x - \beta)$. Put $x = 2 \implies 11 = (2 - \alpha) (2 - \beta)$ option (B) $\alpha^{2} + 3\alpha + 1 = 0, \qquad \beta^{2} + 3\beta + 1 = 0$ $\alpha^{2} = -(3\alpha + 1), \qquad \beta^{2} = -(3\beta + 1)$ $\frac{\alpha^{2}}{3\alpha + 1} = -1, \qquad \frac{\beta^{2}}{3\alpha + 1} = -1 \implies \qquad \frac{\alpha^{2}}{3\alpha + 1} + \frac{\beta^{2}}{3\alpha + 1} = -2$ option (C). $\left(\frac{\alpha}{1 + \beta}\right)^{2} + \left(\frac{\beta}{1 + \alpha}\right)^{2} = \frac{\alpha^{2}}{1 + 2\beta + \beta^{2}} + \frac{\beta^{2}}{1 + 2\alpha + \alpha^{2}} = \frac{-(3\alpha + 1)}{-\beta} + \frac{-(3\beta + 1)}{-\alpha} = \frac{\alpha (3\alpha + 1)}{\beta}$ $= \frac{3(\alpha^{2} + \beta^{2}) + (\alpha + \beta)}{1} = \frac{3((\alpha + \beta)^{2} - 2\alpha\beta) + (-3)}{1} = 3 (7) - 3 = 18.$	$\frac{+\beta(3\beta+1)}{3\alpha}$

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029

6. Split 32 into sum of two primes 32 = 2 + 30 = 3 + 29 = 5 + 27 = 7 + 25 = 11 + 21 = 13 + 19. 32 = 2 + 30 = 3 + 29 = 5 + 27 = 7 + 25 = 11 + 21 = 13 + 19......(i) 7.2 $\alpha^2 - a(\alpha + 1) - b = 0$ $\beta^2 - a(\beta + 1) - b = 0$(ii) by (i) & (ii) $\frac{1}{\alpha^2 - a\alpha} + \frac{1}{\beta^2 - a\beta} - \frac{2}{a+b} = \frac{1}{a+b} + \frac{1}{a+b} - \frac{2}{a+b} = 0$ (A) (hence A) f(a) + a + b = -(a + b) + (a + b) =(B) (hence B) $f(b) + a + b = b^2 - ab - a - b \neq 0$ $f\left(\frac{a}{2}\right) + \frac{a^2}{4} + a + b = \frac{a^2}{4} - a\left(\frac{a}{2} + 1\right) - b + \frac{a^2}{4} + a + b = 0$ (D) Let $(x) = x^3 + bx^2 + cx + d$ 8.2(i) $\mathbf{b} + \mathbf{c} + \mathbf{d} = \mathbf{0}$(ii) (iii 4b + 2c + d = -49b + 3c + d = -18.....(iii) by (i), (ii) and (iii) b = -5, c = 11, $d = -6 \Rightarrow f(x) = x^3 - 5x^2 + 11x - 6$ **Alter:** $f(x) = (x - 1)(x - 2)(x - 3) + x^2 = x^3 - 5x^2 + 11x - 6 = x^3 - (x - 1)(5x - 6)$ \Rightarrow f(4) = (3)(2)(1) + 16 = 22 f $\left(\frac{6}{5}\right) = \left(\frac{6}{5}\right)^3$ Now $f(x) = x^3 \Rightarrow x = 1$ or $\frac{6}{5}$ f(0) f(1) = (-6)(1) < 0 one root in (0, 1) 9. Case-I (i) $x > 1 p(x) = x^{25} (x^7 - 1) + x^{11} (x^7 - 1) + x^3 (x - 1) + 1 p(x) > 0$ no root for $x \in (1, \infty)$ 0 < x < 1 p(x) = $x^{32} + x^{18} (1 - x^7) + x^4 (x - x^7) + (1 - x^3)$ p(x) > 0 not root for (0, 1) (ii) x = 1; P(x) = 1(iii) hence no real root for x > 0for x < 0 let x = $-\alpha$ is root (α > 0) $p(\alpha) = \alpha^{32} + \alpha^{25} + \alpha^{18} + \alpha^{11} + \alpha^4 + \alpha^3 + 1 p(\alpha) \neq 0$ Case-II: Hence no negative rootAll roots are imaginary $p(x) + p(-x) = 2(x^{32} + x^{18} + x^4 + 1) \neq 0 \ \forall \ x \in R$ Hence imaginary roots. $x^{2} + px + q = 0 < \alpha^{\alpha} \Rightarrow \alpha + \beta = -p, \ \alpha\beta = q \text{ and } p^{2} - 4q > 0 \Rightarrow x^{2} - rx + s = 0 < \alpha^{\alpha}$ 10.(1) $\alpha^4 + \beta^4 = r \implies \alpha^4 + \beta^4 = r$, $(\alpha\beta)^4 = s = q^4$ \therefore $(\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 = r$ Now $\Rightarrow [(\alpha + \beta)^2 - 2\alpha\beta]^2 - 2\alpha^2\beta^2 = r \Rightarrow (p^2 - 2q)^2 - 2q^2 = r \Rightarrow (p^2 - 2q)^2 = 2q^2 + r > 0$(2) $x^2 - 4qx + 2q^2 - r = 0 \implies$ Now, for $D = 16q^2 - 4(2q^2 - r)$ by equation (2) = $8q^2 + 4r = 4(2q^2 + r) > 0 \Rightarrow D > 0$ two real and distinct roots Product of roots = $2q^2 - r = 2q^2 - [(p^2 - 2q)^2 - 2q^2] = 4q^2 - (p^2 - 2q)^2 = -p^2 (p^2 - 4q) < 0$ from (1) So product of roots is - ve. hence roots are opposite in sign $ax^3 + bx^2 + cx + d = 0$ 11. Let $ax^3 + bx^2 + cx + d \equiv (x^2 + x + 1) (Ax + B)$ Roots of $x^2 + x + 1 = 0$ are imaginary, Let these are α , β So the third root ' γ ' will be real. $\alpha + \beta + \gamma = \frac{-b}{a} \Rightarrow -1 + \gamma = \frac{-b}{a} \Rightarrow \gamma = \frac{a-b}{a}$ Also $\alpha\beta\gamma = \frac{-d}{2}$. But $\alpha\beta = 1$ $\gamma = \frac{-d}{a}$ *.*.. Ans are (A) & (D). ÷. Resonance[®] Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in ADVLCD- 21 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029

八

Quadratic Equation 12.2 If $-5 + i\beta$ is a root then other root is $-5 - i\beta$ and $\gamma = 0$ roots are $-5 + i\beta$, $-5 - i\beta$, -5 \Rightarrow Product of roots $(25 + \beta^2) (-5) = -860; 25 + \beta^2 = 172; \beta^2 = 147; \beta = \pm 7\sqrt{3}$ roots are $-5 + 7i\sqrt{3}$, $-5 - 7i\sqrt{3}$, -5*.*.. $c = -5(-5+7i\beta) - 5(-5-7i\sqrt{3}) + (-5+7i\sqrt{3})(-5-7i\sqrt{3})$ and c = 50 + (250 + 147) = 222.13. $f(x) > 0 \ \forall x \in R \text{ or } f(x) < 0 \ \forall x \in R \text{ hence } D < 0$ its graph can be or (ii) (i) (A) f(1) > 0 graph (i) will be possible so $f(x) > 0 \forall x \in R$ (B) f(-1) < 0 graph (ii) will be possible so $f(x) < 0 \ \forall x \in R$ $\left|\frac{1}{2}\right| > 0$ so f(x) < 0 $\forall x \in \mathbb{R}$ (C) so not possible a>0 c>0 (D) (graph (i)) a < 0 c < 0 (graph (ii)) in both cases ac > 014. $f(\alpha) = f(\beta) = f(\gamma) = 0$ hence f(x) has three real roots α , β , γ possible graphs of f(x) are _or _ $\alpha \in (\mathbf{x}_1 \mathbf{x}_2), \beta \in (\mathbf{x}_2 \mathbf{x}_3) \text{ and } \gamma \in (\mathbf{x}_3 \mathbf{x}_4)$ or $\alpha \in (x_1 x_3), \beta \in (x_2 x_3) \text{ and } \gamma \in (x_2 x_4)$ hence A and D are correct B is wrong as $\beta \notin (x_3, x_4)$ C is wrong as $\beta \notin (x_1, x_2)$ 15. only A and C are correct as in these graphs $f(\alpha) = f(\beta) = f(\gamma) = f'(x_1) = f'(x_2) = 0$ In option B $f(\alpha) < 0$ and $f(\beta) > 0$ (can't be equal). In option D $f(\alpha) > 0$ and $f(\beta) < 0$ (can't be equal). $f(x) = \frac{3}{x-2} + \frac{4}{x-3} + \frac{5}{x-4} \qquad \text{if } (2^+) \rightarrow \infty$ and $f(3^-) \rightarrow -\infty$ $\Rightarrow f(x) = 0 \text{ has exactly one root in } (2, 3).$ 16. $f(3^+) \rightarrow \infty$ \cdot again and $f(4^-) \rightarrow -\infty$ f(x) = 0 has exactly one root in (3, 4). \Rightarrow 17. D of $x^2 + 4x + 5 = 0$ is less than zero ÷ both the roots are imaginary \Rightarrow both the roots of quadratic are same \Rightarrow $b^2 - 4ac < 0 \& \frac{a}{1} = \frac{b}{4} = \frac{c}{5} = k$ \Rightarrow

$$\Rightarrow$$
 a = k, b = 4k, c = 5k.

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029

Quadratic Equation $x^{2} + abx + c = 0 <$...(1) $\alpha + \beta = -ab, \alpha \beta = c$ 18.2 $x^{2} + acx + b = 0 < \int_{a}^{a}$...(2) $\alpha + \delta = - \operatorname{ac}, \alpha \delta = b$ α^2 + ab α + c = 0 α^2 + ac α + b = 0 $\frac{\alpha^2}{ab^2 - ac^2} = \frac{\alpha}{c - b} = \frac{1}{a \ c - ab} \Rightarrow \alpha^2 = \frac{a \ (b^2 - c^2)}{a(c - b)} = -(b + c)$ $\& \alpha = \frac{c-b}{a(c-b)} = \frac{1}{a}$ common root, $\alpha = \frac{1}{a}$ *.*.. $\therefore -(b+c) = \frac{1}{a^2} \qquad \Rightarrow \qquad a^2 (b+c) = -1$ Product of the roots of equation (1) & (2) gives $\beta \times \frac{1}{2} = c \Rightarrow \beta = ac$ & $\delta \times \frac{1}{2} = b \Rightarrow \delta = ab.$ \therefore equation having roots β , δ is (β , δ) $x^{2} - a (b + c) x + a^{2}bc = 0$ a (b + c) $x^2 - a^2$ (b + c)² x + a.(b + c) $a^2bc = 0$ \Rightarrow $a (b + c) x^{2} + (b + c) x - abc = 0.$ 19. $S_1: 2x^2 + 3x + 1 = 0$ \therefore D = 9 - 4 × 1 × 1 = 1 Which is perfect square of a rational number .:. roots will be rational. : Let f(x) = (x - a)(x - c) + 2(x - b)(x - d)**S**₂ : f(a) > 0 f(b) < 0 f(c) < 0 f(d) > 0÷ ∴ two real and distinct roots. $x^{2} + 3x + 5 = 0$ (i) and $ax^{2} + bx + c = 0$ **S**₃ :(ii) for equation (i), D < 0Roots are imaginary and they occur in conjugate pair *.*.. Roots of equation (i) and (ii) will be identical *.*.. $=\frac{b}{3}=\frac{c}{5}=\lambda$, $(\lambda \in \mathbb{N}) \Rightarrow$ $a=\lambda, \quad b=3\lambda, \ c=5\lambda \Longrightarrow a+b+c=9\lambda \ \therefore \ \text{least value is 9}.$ \Rightarrow 20. $x^{2} + ax + 12 = 0$(1) $x^2 + bx + 15 = 0$(2)(3) x^{2} + (a + b) x + 36 = 0 (1) + (2) - (3) gives $x^2 - 9 = 0 \implies$ $x = \pm 3$ given that common root will be +ve so x = 3 put in equation (3) 9 + 3(a + b) + 36 = 0a + b = -15 \Rightarrow

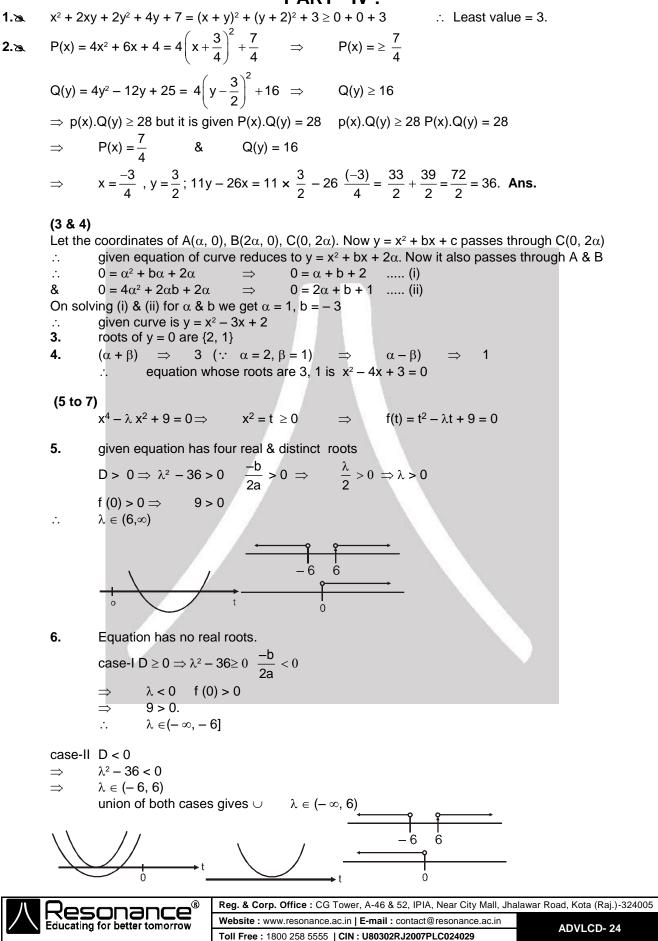
21.24.
$$4x^3 + 3x + 2c = (4x + 2c)(x^2 + \lambda x + 1)$$

by equation (1) $9 + 3a + 12 = 0 \Rightarrow a = -7$ & b = -8

compairing co-efficients
$$\Rightarrow$$
 $c = 1$ and $\lambda = -\frac{1}{2}$ or $c = -1$ and $\lambda = \frac{1}{2}$
 \Rightarrow $c + \lambda = \frac{1}{2}$ or $-\frac{1}{2}$

Resonance [®]	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha	alawar Road, Kota (Raj.)-324005
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVLCD-23
	Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVECD-25

PART - IV :



Quadratic Equation 7. Equation has only two real roots case-l f (0) < 0 9 < 0 $\frac{-b}{2a} < 0$ which is false case-II f (0) = 0 and ÷. No solution Final answer is ϕ *.*. $\xrightarrow{1}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ Divide by $x^2 \Rightarrow x^2 - 10x + 26 - \frac{10}{x} + \frac{1}{x^2} = 0 \Rightarrow x^2 + \frac{1}{x^2} - 10\left(x + \frac{1}{x}\right) + 26 = 0$ 8.2 $t = x + \frac{1}{x} \Rightarrow t^2 - 2 = x^2 + \frac{1}{x^2} \Rightarrow t^2 - 2 - 10t + 26 = 0 \Rightarrow t^2 - 10t + 24 = 0 < \frac{4}{6}$ t = 4 $x + \frac{1}{x} = 4 \Rightarrow x^2 - 4x + 1 = 0 \Rightarrow x = 2 \pm \sqrt{3}$ t = 6 $x + \frac{1}{x} = 6 \Rightarrow x^2 - 6x + 1 = 0 \Rightarrow x = 3 \pm 2\sqrt{2}$. By trail x = 1 is a root divide by x - 1 x = 1, $1 \begin{vmatrix} 1 & -5 & 9 & -9 & 5 & -1 \\ \times & 1 & -4 & 5 & -4 & 1 \\ \hline 1 & -4 & 5 & -4 & 1 & 0 \end{vmatrix}$ 9.2 $\begin{array}{ll} (x-1) \left(x^{4}-4x^{3}+5x^{2}-4x+1\right)=0 & \Rightarrow & x=1 & \text{or} & x^{4}-4x^{3}+5x^{2}-4x+1=0 \\ x^{2}-4x+5-\frac{4}{x}+\frac{1}{x^{2}}=0 & \Rightarrow & t=x+\frac{1}{x} & \Rightarrow & t^{2}=x^{2}+\frac{1}{x^{2}}+2 \\ t^{2}-2-4t+5=0 & \Rightarrow & t^{2}-4t+3=0 < \frac{1}{3} & \Rightarrow & x+\frac{1}{x}=1, x+\frac{1}{x}=3 \end{array}$ $x^2 - x + 1 = 0$, $x^2 - 3x + 1 = 0 \implies x = \frac{1 \pm i\sqrt{3}}{2}$, $x = \frac{3 \pm \sqrt{5}}{2}$ \therefore roots 1, $\frac{1\pm i\sqrt{3}}{2}$, $\frac{3\pm\sqrt{5}}{2}$ Divide by $x^3 \implies x^3 - 4x + \frac{4}{x} - \frac{1}{x^3} = 0; x^3 - \frac{1}{x^3} - 4\left(x - \frac{1}{x}\right) = 0$ 10.2 Put $t = x - \frac{1}{x} \Rightarrow t^3 = x^3 - 3x^2 \frac{1}{x} + 3x \frac{1}{x^2} - \frac{1}{x^3} = x^3 - 3\left(x - \frac{1}{x}\right) - \frac{1}{x^3}$ $t^3 + 3t = x^3 - \frac{1}{x^3}$ Put in equation above $t^3 + 3t - 4t = 0$ $t^3 - t = 0$ \Rightarrow \Rightarrow t = 0, 1, -1 $t^3 + 3t - 4t = 0$ $t^3 - t = 0$ \Rightarrow t = 0, 1, -1 \Rightarrow $x - \frac{1}{x} = 0, x - \frac{1}{x} = 1, x - \frac{1}{x} = -1; x = \pm 1, x^2 - x - 1 = 0,$ $x^2 + x - 1 =$ $x = \pm 1, x = \frac{1 \pm \sqrt{5}}{2}, x = \frac{-1 \pm \sqrt{5}}{2}.$

 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029

EXERCISE # 3

PART - I

1.	(i) $x^2 - 8kx + 16(k^2 - k + 1) = 0$ \therefore $D = 64(k^2 - (k^2 - k + 1)) = 64(k - 1) > 0$ \Rightarrow $k > 1$ (1) (ii) $\frac{b}{2a} - > 4$ \Rightarrow $\frac{8k}{2} > 4$ \Rightarrow $k > 1$ (2) (iii) $f(4) \ge 0$ \Rightarrow $16 - 32k + 16(k^2 - k + 1) \ge 0$ \Rightarrow $k^2 - 3k + 2 \ge 0$ \Rightarrow $(k - 2)(k - 1) \ge 0$ \Rightarrow $k \le 1 \text{ or } k \ge 2$ (3)
	$\Rightarrow (k-2)(k-1) \ge 0 \Rightarrow k \le 1 \text{ of } k \ge 2 \qquad \dots \dots (3)$ (1) \cap (2) \cap (3). Hence k = 2
2.	Product = 1 Sum = $\frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$ Since $\alpha^3 + \beta^3 = q \implies -p(\alpha^2 + \beta^2 - \alpha\beta) = q$
	$((\alpha + \beta)^2 - 3\alpha\beta) = -\frac{q}{p} \implies p^2 + \frac{q}{p} = 3\alpha\beta$ Hence sum = $\frac{\left\{p^2 - \frac{2}{3}\left(\frac{p^3 + q}{p}\right)\right\} 3p}{(p^3 + q)} = \frac{p^3 - 2q}{p^3 + q}$ so the equation $x^2 - \left(\frac{p^3 - 2q}{p^3 + q}\right)x + 1 = 0 \implies (p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q) = 0$
3.	$\begin{array}{ll} x^2 - 6x - 2 = 0 & \text{having roots } \alpha \text{ and } \beta & \Rightarrow & \alpha^2 - 6\alpha - 2 = 0 \\ \Rightarrow & \alpha^{10} - 6\alpha^9 - 2\alpha^8 = 0 & \Rightarrow & \alpha^{10} - 2\alpha^8 = 6\alpha^9 & \dots \text{ (i)} \\ \text{similarly } \beta^{10} - 2\beta^8 = 6\beta^9 & & \dots \text{ (ii)} \\ \text{by (i) and (ii)} & & & & & \\ (\alpha^{10} - \beta^{10}) - 2(\alpha^8 - \beta^8) = 6(\alpha^9 - \beta^9) & \Rightarrow & a_{10} - 2a_8 = 6a_9 \Rightarrow & \frac{a_{10} - 2a_8}{2a_9} = 3 \end{array}$
	$\frac{\text{Aliter}}{\frac{\alpha^{10} - \beta^{10} - 2(\alpha^8 - \beta^8)}{2(\alpha^9 - \beta^9)} = \frac{\alpha^{10} - \beta^{10} + \alpha\beta(\alpha^8 - \beta^8)}{2(\alpha^9 - \beta^9)} = \frac{\alpha^9(\alpha + \beta) - \beta^9(\alpha + \beta)}{2(\alpha^9 - \beta^9)} = \frac{\alpha + \beta}{2} = \frac{6}{2} = 3$
4.	$\begin{aligned} x^{2} + bx - 1 &= 0 \\ \frac{x^{2} + x + b = 0}{\frac{x^{2}}{b^{2} + 1}} &\implies x = \frac{b^{2} + 1}{-(b+1)} = \frac{-(b+1)}{1 - b} \Rightarrow (b^{2} + 1)(1 - b) = (b+1)^{2} \\ \Rightarrow \qquad b^{2} - b^{3} + 1 - b = b^{2} + 2b + 1 \Rightarrow b^{3} + 3b = 0 \Rightarrow b = 0; b^{2} = -3 \Rightarrow b = 0 \pm \sqrt{3} i, \end{aligned}$
5.	$p(x)$ will be of the form $ax^2 + c$. Since it has purely imaginary roots only.

5. p(x) will be of the form $ax^2 + c$. Since it has purely imaginary roots only.

Since p(x) is zero at imaginary values while $ax^2 + c$ takes real value only at real 'x', no root is real. Also p(p(x)) = 0

 \Rightarrow p(x) is purely imaginary \Rightarrow ax² + c = purely imaginary

Hence x can not be purely imaginary since x^2 will be negative in that case and $ax^2 + c$ will be real. Thus .(D) is correct.

6.
$$(x_{1} + x_{2})^{2} - 4x_{1}x_{2} < 1 \quad \frac{1}{\alpha^{2}} - 4 < 1 \Rightarrow 5 - \frac{1}{\alpha^{2}} > 0 \quad \frac{5\alpha^{2} - 1}{\alpha^{2}} > 0$$

$$\frac{+ - - - + +}{1 \quad \sqrt{5}} \qquad 0 \quad \frac{1}{\sqrt{5}} \qquad \alpha \in \left(-\infty, -\frac{1}{\sqrt{5}} \right) \cup \left(\frac{1}{\sqrt{5}}, \infty \right) \qquad \dots(1)$$

$$D > 0 \quad 1 - 4\alpha^{2} > 0 \quad \alpha \in \left(-\frac{1}{2}, \frac{1}{2} \right) \qquad \dots(2)$$

$$(1) \& (2) \quad \alpha \in \left(-\frac{1}{2}, \frac{1}{\sqrt{5}} \right) \cup \left(\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{2}} \right)$$

$$7. \qquad x^{2} - 2x \sec \theta + 1 = 0 \Rightarrow x = \frac{2 \sec \theta \pm \sqrt{4 \sec^{2} \theta - 4}}{2} \Rightarrow x = \sec \theta + \tan \theta , \sec \theta - \tan \theta \Rightarrow \alpha_{1} = \sec \theta - \tan \theta$$

 $now \ x^{2} + 2x \tan \theta - 1 = 0 \Rightarrow x = \frac{2}{-2 \tan \theta \pm \sqrt{4 \tan^{2} \theta + 4}} \Rightarrow x = -\tan \theta \pm \sec \theta \Rightarrow \alpha_{2} = (\sec \theta - \tan \theta)$ $\Rightarrow \beta_{2} = -(\sec \theta + \tan \theta)$

Alt: (i)
$$x^2 - 2x \sec \theta + 1 = 0$$
 $x = \frac{2 \sec \theta \pm \sqrt{4 \sec^2 \theta - 4}}{2} = \sec \theta \pm \tan \theta$

 $\alpha_1 + \beta_2 = -2 \tan \theta$

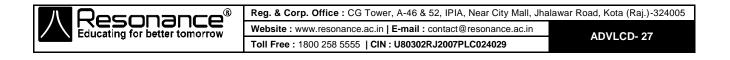
..

$$\begin{array}{ll} \alpha_1 = \sec\theta - \tan\theta & \beta_1 = \sec\theta + \tan\theta \\ (ii) \ x^2 + 2x \ \tan\theta - 1 = 0 \Rightarrow x = \frac{-\tan\theta \pm \sqrt{4\tan^2\theta + 4}}{2} \\ x = -\tan\theta \pm \sec\theta \ \alpha_2 = -\tan\theta + \sin\theta & \beta_2 = -\tan\theta - \sec\theta \ \alpha_1 + \beta_2 = -2\tan\theta \end{array}$$

8. As
$$\alpha$$
 and β are roots of equation $x^2 - x - 1 = 0$, we get : $\alpha^2 - \alpha - 1 = 0 \Rightarrow \alpha^2 = \alpha + 1$
 $\beta^2 - \beta - 1 = 0 \Rightarrow \beta^2 = \beta + 1$
 $\therefore a_{11} + a_{10} = p\alpha^{11} + q\beta^{11} + p\alpha^{10} + q\beta^{10} = p\alpha^{10} (\alpha + 1) + q\beta^{10} (\beta + 1) = p\alpha^{10} \times \alpha^2 + q\beta^{10} \times \beta^2 = p\alpha^{12} + q\beta^{12} = a_{12}$

9.
$$a_{n+2} = a_{n+1} + a_n a_4 = a_3 + a_2 = 3a_1 + 2a_0 = 3p\alpha + 3q\beta + 2(p + q)$$

As $\alpha = \frac{1+\sqrt{5}}{2}$, $\beta = \frac{1-\sqrt{5}}{2}$, we get $a_4 = 3p\left(\frac{1+\sqrt{5}}{2}\right) + 3q\left(\frac{1-\sqrt{5}}{2}\right) + 2p + 2q = 28$
 $\Rightarrow \left(\frac{3p}{2} + \frac{3q}{2} + 2p + 2q - 28\right) = 0$ (i)
and $\frac{3p}{2} - \frac{3q}{2} = 0$ (ii)
 $\Rightarrow p = q$ (from (ii)) $\Rightarrow 7p = 28$ (from (i) and (ii))
 $\Rightarrow p = 4 \Rightarrow q = 4 \Rightarrow p + 2q = 12$

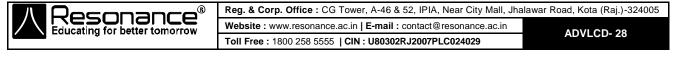


10.

$$\begin{array}{ll} \text{(A)} & b_{n} = a_{n+1} + a_{n-1} = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} + \frac{\alpha^{n-1} - \beta^{n-1}}{\alpha - \beta} = \frac{\alpha^{n-1}(\alpha^{2} + 1) - \beta^{n-1}(\beta^{2} + 1)}{\alpha - \beta} \\ & = \frac{\alpha^{n-1}(\alpha + 2) - \beta^{n-1}(\beta + 2)}{\alpha - \beta} = \frac{\alpha^{n-1}\left(\frac{5 + \sqrt{5}}{2}\right) - \beta^{n-1}\left(\frac{5 - \sqrt{5}}{2}\right)}{\alpha - \beta} \\ & = \frac{\sqrt{5}\alpha^{n-1}\left(\frac{\sqrt{5} + 1}{2}\right) - \sqrt{5}\beta^{n-1}\left(\frac{\sqrt{5} - 1}{2}\right)}{\alpha - \beta} = \frac{\sqrt{5}(\alpha^{n} + \beta^{n})}{\alpha - \beta} = \alpha^{n} + \beta^{n} \quad \because \quad \alpha - \beta = \sqrt{5} \\ \text{(B)} & \sum_{n=1}^{\infty} \frac{b_{n}}{10^{n}} = \sum \left(\frac{\alpha}{10}\right)^{n} + \sum \left(\frac{\beta}{10}\right)^{n} = \frac{\frac{\alpha}{10}}{1 - \frac{\alpha}{10}} + \frac{\frac{\beta}{10}}{1 - \frac{\alpha}{10}} = \frac{\alpha}{10 - \alpha} + \frac{\beta}{10 - \beta} \\ & = \frac{10(\alpha + \beta) - 2\alpha\beta}{100 - 10(\alpha + \beta) + \alpha\beta} = \frac{10 + 2}{89} = \frac{12}{89} \\ \text{(C)} & \sum_{n=1}^{\infty} \frac{a_{n}}{10^{n}} = \sum \frac{\alpha^{n} - \beta^{n}}{(\alpha - \beta)10^{n}} = \frac{1}{\alpha - \beta} \left(\frac{\frac{\alpha}{10}}{1 - \frac{\beta}{10}} - \frac{\frac{\beta}{10}}{1 - \frac{\beta}{10}}\right) \frac{1}{\alpha - \beta} \left(\frac{\alpha}{10 - \alpha} - \frac{\beta}{10 - \beta}\right) \\ & = \frac{1}{\alpha - \beta} \frac{(10(\alpha - \beta) - \alpha\beta + \alpha\beta)}{(100 - 10(\alpha + \beta) + \alpha\beta)} = \frac{10}{89} \qquad \text{Option (C) is correct.} \\ \text{(D)} & a_{1} + a_{2} + \dots, a_{n} = \Sigma a_{1} = \frac{\Sigma \alpha^{1} - \Sigma \beta^{1}}{\alpha - \beta} = \frac{\frac{\alpha(1 - \alpha^{n})}{(1 - \alpha)} - \frac{\beta(1 - \beta^{n})}{\alpha - \beta}}{(1 - \alpha) - \beta} \\ & = \frac{(\alpha + 1)(1 - \alpha^{n}) - (\beta + 1)(1 - \beta^{n})}{(1 - \alpha)(1 - \beta)(\alpha - \beta)} = \frac{\alpha^{2} - \alpha^{n+2} - \beta^{2} + \beta^{n+2}}{(1 - \alpha)(1 - \beta)(\alpha - \beta)} = -1 + a_{n+2} \end{array}$$

PART - II

1. Let the correct equation be
$$ax^2 + bx + c = 0$$
 $ax^2 + bx + c = 0$
now sachin's equation $\Rightarrow ax^2 + bx + c' = 0$
 $ax^2 + bx + c' = 0$
 $ax^2 + b' x + c =$



八

NowP(2) = f(2) - g(2) = 4 (a - a, 1) + 2 (b - b, 1) + (c - c, 1) = 8 + 8 + 2 = 18
1. Let
$$e^{am} = 1 \implies r^2 - 4t - 1 = 0$$

 $\Rightarrow t = \frac{4 \pm \sqrt{16+4}}{2}$
 $\Rightarrow t = e^{am} = 2 \pm \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 2 - \sqrt{5}$, $e^{mx} = 2 + \sqrt{5}$
 $\Rightarrow e^{am} = 1/(2 + \sqrt{5}) > 1$ so rejected so rejected hence no solution
1. Thus $\frac{a}{1} = \frac{b}{2} = \frac{c}{3}$ $\Rightarrow a = \lambda, b = 2\lambda, c = 3\lambda$. Hence 1 : 2 : 3
5. $a^{2} = 3(x)^{2} - 2(x)$ $[x - [x] = [x]]$
Let $(x) = t$ \therefore $t \in (0, 1)$ As $x \neq$ integer) Ans. (3)
Note : It should have been given that the solution exists else answer will be $a \in R - \{0\}$
 $= \sqrt{a^{2} - 4t}$ (i)
 $\therefore -a^{3} = a + r$ (i)
 $= \sqrt{a^{2} - 4r}$ (i)
 $= \sqrt{a^{2} - 4r}$ (i)
 $= \sqrt{a^{2} - 4pr}$ $= \sqrt{16r^{2} + 36r^{2}}$ $= 2\sqrt{13}$
7.3. $x^{2} - 6x - 2 = 0$ $a_{1} = x^{2} - \frac{q^{2}}{1 - 9r}$ $= \frac{2\sqrt{13}}{9}$
7.3. $x^{2} - 6x - 2 = 0$ $a_{1} = a^{\alpha} - \beta^{\alpha}$
 $= \frac{a^{10} - 2a_{10}}{2(a^{2} - \beta^{10})} = \frac{a^{10}(a^{2} - 2) - \beta^{10}(\beta^{2} - 2)}{2(a^{2} - \beta^{10})} = \frac{2a^{0} - 6\beta^{0}}{2(a^{0} - \beta^{10})} = \frac{2a^{0} - 6\beta^{0}}{2(a^{0} - \beta^{10})} = \frac{a^{10}(a^{2} - \beta^{10})}{2(a^{0} - \beta^{10})} = \frac$

8. For rational roots D must be perfect squareD = $121-24\alpha = k^2$ for $121 - 24\alpha$ to be perfect square α must be equal to 3, 4, 5 (observation) so number of possible values of α is 3.

Ans. (3)

9.2 Let roots are $\alpha \& \beta \mod \lambda + \frac{\lambda}{\lambda} = 1 \Rightarrow \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 1 \Rightarrow \alpha^2 + \beta^2 = \alpha\beta (\alpha + \beta)^2 = 3\alpha\beta \left(\frac{-m(m-4)}{3m^2}\right)^2 = 3 \cdot \frac{2}{3m^2}$ $m^2 - 8m - 2 = 0 \quad m = 4 \pm 3\sqrt{2}$ so least value of $m = 4 - 3\sqrt{2}$

Resonance®	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha	lawar Road, Kota (Raj.)-324005
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVLCD- 29
	Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVLCD-29

HIGH LEVEL PROBLEMS (HLP)

1.
$$a_1^3 \frac{(x-a_2)(x-a_3)....(x-a_n)}{(a_1-a_2)....(a_n-a_n)} + \frac{(x-a_1)(x-a_3)....(x-a_n)}{(a_2-a_3)....(x-a_n)} a_2^3 +a_1$$

 $\dots + \frac{(x-a_1)(x_1-a_2)....(a_n-a_n)}{(a_n-a_1)(a_n-a_{n-1})} a_1^3 - x^3 = 0$
 $\Rightarrow a_1, a_2, \dots a_n$ are roots of above relation whose degree appeared as $(n-1)$
 \Rightarrow above relation is indentify
2. $a^3x^2 + (b^2 + a^2 - c^2) x + b^2 = 0$ (1)
 $\therefore a + b > c \Rightarrow a + b - c > 0$ (2)
and $|a - b| < c \Rightarrow a + b - c > 0$ (3)
and $a - b + c > 0$ (4)
Discriminant of equation (1) is $D = (b^2 + a^2 - c^2)^2 - 4a^2b^2 = (b^2 + a^2 - c^2 - 2ab) (b^2 + a^2 - c^2 + 2ab)$
 $= ((a - b)^2 - c^2) ((a + b)^2 - c^3)$
 $= (a - b)^2 - c^2) (a + b)^2 - c^3$
 $= (a - b + c) (a - b - c) (a + b + c) (a + b - c) < 0 (using (2), (3), (4))$
 $D < 0$
 \therefore roots are not real.
3. $\frac{1}{x-1} - \frac{4}{x-2} + \frac{4}{x-3} - \frac{1}{x-4} < \frac{1}{30}$
 $\Rightarrow \frac{3^2}{x^2 - 5x + 4} + \frac{4}{x^2 - 5x + 6} < \frac{1}{30}$
Let $x^3 - 5x = 3$
 $\Rightarrow \frac{4}{y+6} - \frac{3}{y+4} < \frac{1}{30}$
 $\Rightarrow x^2 - 20y + 84$
 $\Rightarrow x = (-x, -6)$
 $\Rightarrow x < (2, 3)$
(ii) if $y \in (-4, 6)$ $\Rightarrow -4 < x^2 - 5x < 6$
 $\Rightarrow x < (2, 3)$
(iii) if $y \in (-4, 6)$ $\Rightarrow -4 < x^2 - 5x < 6$
 $\Rightarrow x < (-x, -2) \cup (-1, 1) \cup (2, 3) \cup (4, 6) \cup (7, \infty)$
4. Let the three numbers in G.P. be a, ar, ar²
 $\Rightarrow (a + b + c = xb)$
 $\frac{a}{b} + 1 + \frac{b}{b} = x$ \therefore $b = ar, c = ar^2$
 $\Rightarrow x^2 - 1(x > 3)$
 $A = x^2 - 1(1 - x)r + 1 = 0$ (1)
 $r is real$ \therefore for (1) $D \ge 0$
 $\Rightarrow x^2 - 1 = x > 3$

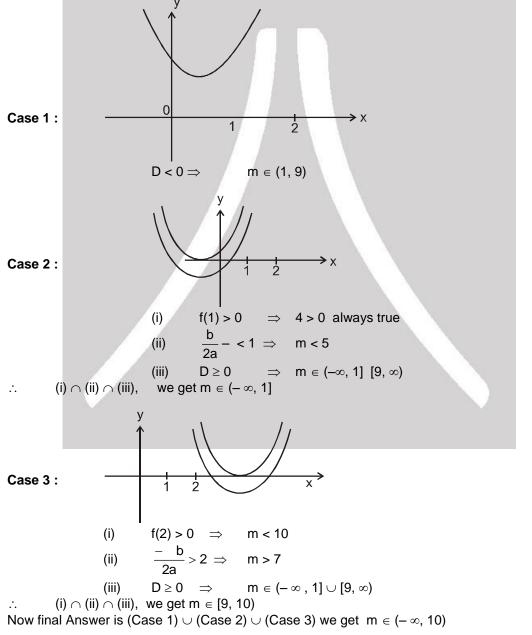
 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029

5. $V_{n} + V_{n-3} = (\alpha^{n} + \beta^{n}) + (\alpha^{n-3} + \beta^{n-3}) = \alpha^{n-3}(\alpha^{3} + 1) + \beta^{n-3}(\beta^{3} + 1)$ $\therefore \qquad \alpha^{2} + \alpha - 1 = 0$ $\alpha^{2} + \alpha - 1 \int \alpha^{3} + 1 \qquad (\alpha - 1)$ $\frac{\alpha^{3} + \alpha^{2} - \alpha}{-\alpha^{2} + \alpha + 1}$ $\frac{-\alpha^{2} - \alpha + 1}{-\alpha^{2} + \alpha + 1}$ $\frac{\alpha^{3} + 1 = (\alpha^{2} + \alpha - 1)(\alpha - 1) + 2\alpha = 2\alpha}{\alpha^{3} + 1 = 2\beta} \qquad \Rightarrow \qquad V_{n} + V_{n-3} = \alpha^{n-3}(2\alpha) + \beta^{n-3}(2\beta) = 2[\alpha^{n-2} + \beta^{n-2}] = 2V_{n-2}$ $V_{1} = \alpha + \beta = -1; \quad V_{2} = \alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = 1 - 2(-1) = 3$ $V_{n} = 2V_{n-2} - V_{n-3} \Rightarrow \qquad V_{7} = 2V_{5} - V_{4} = 2[2V_{3} - V_{2}] - (2V_{2} - V_{1}) = 4V_{3} - 2V_{2} - 2V_{2} + V_{1}$ $= 4[2V_{1} - V_{0}] - 4V_{2} + V_{1} = 9V_{1} - 4V_{0} - 4V_{2} = 9\{[-1]\} - 4[2] - 4[3] = -9 - 8 - 12 = -29$

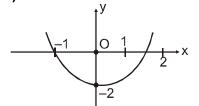
6. $f(x) = x^2 - (m - 3) x + m > 0 \ \forall x \in [1, 2].$ Here $D = (m - 3)^2 - 4m = m^2 - 10m + 9 = (m - 1) (m - 9)$ All possible graphs are



Resonance [®]	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005	
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVLCD- 31
	Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVECD- ST

7. $f(x) = ax^2 + (a - 2) x - 2$ Let f(0) = -2 and f(-1) = 0... Since the quadratic expression is negative for exactly two integral values

f(1) < 0and $f(2) \ge 0$ \Rightarrow a + a – 2 – 2 < 0 $4a + 2a - 4 - 2 \ge 0$ \Rightarrow and a < 2 a ≥ 1 and \Rightarrow a ∈ [1, 2) *.*..



8. (i) when $x < a \implies x^2 + 2a(x - a) - 3a^2 = 0 \implies (x + a)^2 = 6a^2$ $x = -a \pm \sqrt{6}a = -a(1+\sqrt{6}), -a$. Since $a \le 0$, then $x = -a(1-\sqrt{6})$ when $x \ge a$ then $x^2 - 2a(x - a) - 3a^2 = 0 \Rightarrow x = a \pm \sqrt{2}a = a((1 + \sqrt{2}), a(1 - \sqrt{2}))$ since $a \le 0$, $x \ge a$

$$\therefore \qquad x = a(1 - \sqrt{2}) \qquad \text{Hence} \quad x = a(\sqrt{6} - 1), a(1 - \sqrt{2})$$
(iii)
$$\left(x + \frac{1}{x}\right)^3 + \left(x + \frac{1}{x}\right) = 0 \implies \left(x + \frac{1}{x}\right) \left(\left(x + \frac{1}{x}\right)^2 + 1\right) = 0 \implies \left(x + \frac{1}{x}\right) \left(x^2 + \frac{1}{x^2} + 3\right)$$

$$\implies \qquad \text{No real value of } x. \qquad \therefore \qquad \text{Number of real roots} = 0$$

$$\Rightarrow$$
 No real value of x. \therefore Number of

$$\therefore \qquad \left(\sqrt{\alpha} + \sqrt{\beta}\right)^2 = \alpha + \beta + 2\sqrt{\alpha\beta} \qquad \therefore \qquad \alpha + \beta = 34 \text{ and } \alpha\beta = 1$$

$$\therefore \qquad \left(\sqrt{\alpha} + \sqrt{\beta}\right)^2 = 36 \qquad \qquad \therefore \qquad \text{we consider the principal value}$$

$$\therefore \qquad \sqrt{\alpha} + \sqrt{\beta} = 6 \text{ put in (1), we get.} \qquad \Rightarrow \qquad \left(\alpha^{\frac{1}{4}} - \beta^{\frac{1}{4}}\right)^2 = 4$$
$$\therefore \qquad \alpha^{\frac{1}{4}} - \beta^{\frac{1}{4}} = +2 \quad \text{Ans.}$$

10. The equation can be rewritten as
$$\left(\frac{x^2 + x + 2}{x^2 + x + 1}\right)^2 - (a - 3)\left(\frac{x^2 + x + 2}{x^2 + x + 1}\right) + (a - 4) = 0$$

Let $\frac{x^2 + x + 2}{x^2 + x + 1} = t$ or $t = 1 + \frac{1}{x^2 + x + 1}$ since $x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$

Therefore $(x^2 + x + 1) \ge \frac{3}{4} \Rightarrow t \in \left(1, \frac{7}{3}\right)$ Now given equation reduces to $t^2 - (a - 3)t + (a - 4) = 0$

At least one root of the equation must lie in
$$\left(1, \frac{7}{3}\right]$$
 Now, t = $\frac{(a-3)\pm\sqrt{(a-3)^2-4(a-4)}}{2}$ \Rightarrow t = a - 4, 1

= 0

1

For one root to lie in $\left(1, \frac{7}{3}\right]$ we must have $1 < a - 4 \le \frac{7}{3} \Rightarrow 5 < a \le \frac{19}{3}$

11. Let roots be α , $\beta \implies \alpha \beta = -14(q^2 + 1)$. Clearly, $q^2 + 1$ is not multiple of 7 $\therefore \quad \alpha, \beta$ are integers clearly one of α or β is multiple of 7 $\therefore \quad \alpha + \beta = -7$; which is possible if α, β are both multiple of 7. Hence α, β are not integers.

12. Let
$$x^2 = t \ge 0$$
, for only real solution. Again let $f(t) = t^2 - (a^2 - 5a + 6) t - (a^2 - 3a + 2)$

 $\begin{array}{ll} f(0) \geq 0 \Rightarrow \ a^2 - 3a + 2 \leq 0 & a \in [1, \, 2] - b/2a \geq 0 \Rightarrow a^2 - 5a + 6 \geq 0 & \Rightarrow & (a - 2) \ (a - 3) \\ \geq 0 & \Rightarrow \ a \in \left(-\infty, 2 \right] \ \cup \ \begin{bmatrix} 3, \infty \right) \end{array}$

So possible 'a' from above two conditions are a = 1, 2. Now condition for $D = ((a - 2) (a - 3))^2 + 4(a - 1) (a - 2) \ge 0$ is also satisfied by these two possible values of a. So required value of 'a' are 1, 2

3.
$$\alpha, \beta$$
 are the roots of $a_1x^2 + b_1x + c_1 = 0 \implies \alpha + \beta = -\frac{b_1}{a_1}$ and $\alpha \beta = \frac{c_1}{a_1}$
 $1 + \alpha + \beta + \alpha \beta = \frac{c_1 - b_1 + a_1}{a_1} \implies (1 + \alpha) (1 + \beta) = \frac{a_1 - b_1 + c_1}{a_1}$ (1)
Similarly $(1 + \beta) (1 + \gamma) = \frac{a_2 - b_2 + c_2}{a_2}$ (2)
 $(1 + \gamma) (1 + \alpha) = \frac{a_3 - b_3 + c_3}{a_3}$ (3)

Multiplying (1), (2) & (3), we get $(1+\alpha)^2 (1+\beta)^2 (1+\gamma)^2 = \frac{(a_1-b_1+c_1)}{a_1} \frac{(a_2-b_2+c_2)}{a_2} \frac{(a_3-b_3+c_3)}{a_3}$

1/

$$\Rightarrow \qquad (1+\alpha) (1+\beta) (1+\gamma) = \left\{ \prod_{i=1}^{3} \left(\frac{\mathbf{a}_{i} - \mathbf{b}_{i} + \mathbf{c}_{i}}{\mathbf{a}_{i}} \right) \right\}^{\frac{1}{2}}$$
$$\Rightarrow \qquad 1 + (\alpha + \beta + \gamma) + (\alpha\beta + \beta\gamma + \alpha\gamma) + \alpha\beta\gamma = \left\{ \prod_{i=1}^{3} \left(\frac{\mathbf{a}_{i} - \mathbf{b}_{i} + \mathbf{c}_{i}}{\mathbf{a}_{i}} \right) \right\}^{\frac{1}{2}}$$

$$\Rightarrow \qquad \left(\alpha + \beta + \gamma\right) + \left(\alpha\beta + \beta\gamma + \alpha\gamma\right) + \alpha\beta\gamma = \left\{\prod_{i=1}^{3} \left(\frac{a_i - b_i + c_i}{a_i}\right)\right\}^{/2} - 1$$

14. On putting the value of p, q and r in given equation we have

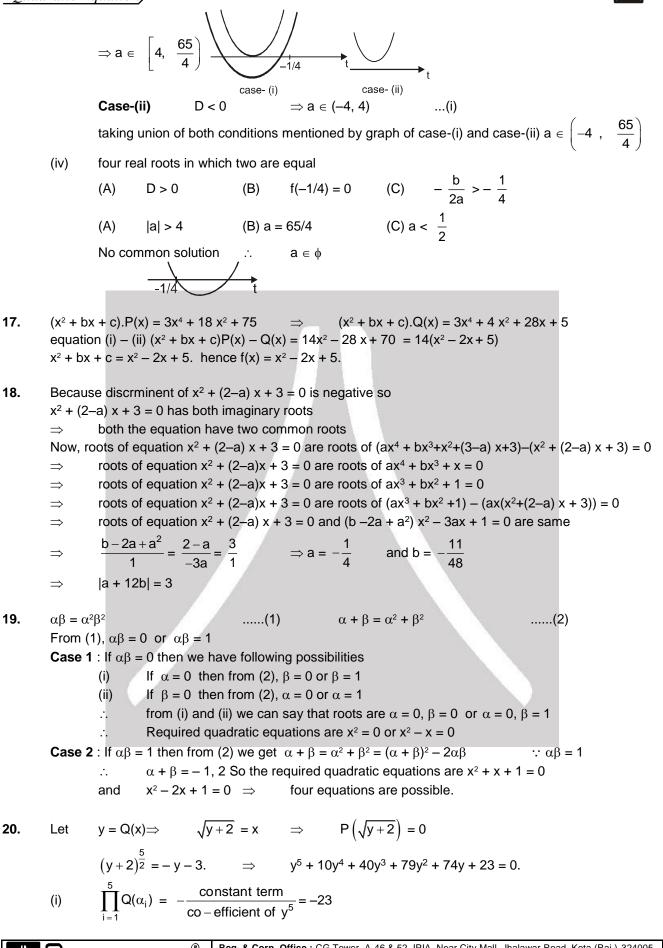
$$\begin{aligned} &2x^{3} - (a_{1} + a_{2} - \dots + a_{6})x^{2} + (a_{1}a_{3} + a_{3}a_{5} - \dots + a_{6}a_{2})x - (a_{1}a_{3}a_{5} + a_{2}a_{4}a_{6}) = 0 \\ &\left\{x^{3} - (a_{1} + a_{3} + a_{5})x^{2} + (a_{1}a_{3} + a_{3}a_{5} + a_{5}a_{1})x - a_{1}a_{3}a_{5}\right\} + \\ &\left\{x^{3} - (a_{2} + a_{4} + a_{6})x^{2} + (a_{2}a_{4} + a_{4}a_{6} + a_{6}a_{2})x - a_{2}a_{4}a_{6}\right\} = 0 \\ \Rightarrow & (x - a_{1})(x - a_{3})(x - a_{5}) + (x - a_{2})(x - a_{4})(x - a_{6}) = 0 \\ &\text{Let} \quad f(x) = (x - a_{1})(x - a_{3})(x - a_{5}) + (x - a_{2})(x - a_{4})(x - a_{6}) \\ &\text{Now} \quad f(a_{1}) = (a_{1} - a_{2})(a_{1} - a_{4})(a_{1} - a_{6}) > 0 \quad ; \qquad f(a_{2}) = (a_{2} - a_{1})(a_{2} - a_{3})(a_{2} - a_{5}) < 0 \\ & f(a_{3}) = (a_{3} - a_{2})(a_{3} - a_{4})(a_{3} - a_{6}) < 0 \quad ; \qquad f(a_{4}) = (a_{4} - a_{1})(a_{4} - a_{3})(a_{4} - a_{5}) > 0 \end{aligned}$$

$$f(a_5) = (a_5 - a_2)(a_5 - a_4)(a_5 - a_6) > 0 \quad ; \qquad f(a_6) = (a_6 - a_1)(a_6 - a_3)(a_6 - a_5) < 0$$

From above results it is clear that there are three real roots lying in the intervals (a_1, a_2) , (a_3, a_4) and (a_5, a_6)

15. Let A₁, A₂ are the roots of
$$ax^2 + bx + c = 0$$
, then $(A_1 - A_2)^2 = (A_1 + A_2)^2 - 4A_1A_2 = \frac{b^2}{a^2} - \frac{4c}{a} = \frac{b^2 - 4ac}{a^2}$
Using same result for $x^2 + 2bx + c = 0 \Rightarrow \left[(\beta + \cos^2 \alpha) - (\beta + \sin^2 \alpha) \right]^2 = 4b^2 - 4c$
 $\Rightarrow (\cos^2 \alpha - \sin^2 \alpha)^2 = 4b^2 - 4c \Rightarrow \cos^2 2\alpha = 4(b^2 - c)$ (i)
Similarly for $X^2 + 2BX + C = 0 \Rightarrow \left[(\gamma + \cos^4 \alpha) - (\gamma + \sin^4 \alpha) \right]^2 = \frac{4B^2 - 4C}{1} = 4B^2 - 4C$
 $\Rightarrow \left[(\cos^2 \alpha - \sin^2 \alpha) (\cos^2 \alpha + \sin^2 \alpha) \right]^2 = 4(B^2 - C)$
 $\Rightarrow \cos^2 2\alpha = 4(B^2 - C)$ (ii)
 \therefore from (i) & (ii)
 $B^2 - C = b^2 - c; B^2 - b^2 = C - c$ Hence Proved.
16. $(x^2 + x)^2 + a(x^2 + x) + 4 = 0$. Let $x^2 + x = t$ then $x^2 + x - t = 0 \quad \forall x \in \mathbb{R}$
 $D \ge 0 \Rightarrow 1 + 4t \ge 0 \Rightarrow t \in \left[-\frac{1}{4}, \infty \right]$ (1)
Now f(t) = t^2 + at + 4 = 0
(i) all four real and distinct roots
(A) $D > 0$
(B) $t(-1/4) > 0$
(C) $-\frac{b}{2a} > -\frac{1}{4}$
(A) $D > 0 \Rightarrow a^2 - 16 > 0 \Rightarrow |a| > 4$
(B) $t(-1/4) = \frac{1}{16} - \frac{a}{4} + 4 > 0 \Rightarrow a < \frac{1}{2} \Rightarrow a \in (-\infty, -4)$
 $-\frac{1}{-1/4}$
(ii) Two real roots which are distinct
 t
(iii) Two real roots which are distinct
 t
(iii) all four roots are imaginary
Case-(i) (A) $D \ge 0 \Rightarrow |a| \ge 4$
(B) $t(-1/4) > 0 \Rightarrow a < \frac{65}{4}$
(C) $-\frac{b}{2a} < -\frac{1}{4} \Rightarrow a > \frac{1}{2}$

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005	
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVLCD- 34
	Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVLCD- 34



	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005	
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVLCD- 35
	Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	

(ii)
$$\sum_{i=1}^{5} Q(\alpha_i) = -\frac{\text{coefficent of } y^4}{\text{coefficent of } y^5} = -10$$

(iii)
$$\sum_{1 \le i < j \le 5} Q(\alpha_i) Q(\alpha_j) = \frac{\text{coefficent of } y^3}{\text{coefficent of } y^5} = 40$$

(iv)
$$\sum_{i=1}^{5} Q^{2}(\alpha_{i}) = \left(\sum_{i=1}^{5} Q(\alpha_{i})\right)^{2} - 2 \sum_{1 \le i < j \le 5} Q(\alpha_{i})Q(\alpha_{j}) = (-10)^{2} - 2(40) = 100 - 80 = 20$$

21. $(abc^2) x^2 + x (3a^2c + b^2c) - (6a^2 + ab - 2b^2) = 0$ for roots to be rational D should be perfect square $D = (3a^{2}c + b^{2}c)^{2} + 4[abc^{2}] (6a^{2} + ab - 2b^{2}) = c^{2} [9a^{4} + b^{4} + 10a^{2}b^{2} + 24a^{3}b - 8ab^{3}]$ $= c^{2} (3a^{2} - b^{2} + 4ab)^{2} = [c(3a^{2} - b^{2} + 4ab)]^{2}$

22. $\Delta = (a^2 + b^2 + c^2)^2 - 4(a^2b^2 + b^2c^2 + c^2a^2) = a^4 + b^4 + c^4 - 2a^2b^2 - 2b^2c^2 - 2c^2a^2$ $= a^{4} + b^{4} + c^{4} - 2a^{2}b^{2} - 2b^{2}c^{2} + 2c^{2}a^{2} - 4c^{2}a^{2} = (a^{2} + c^{2} - b^{2})^{2} - 4c^{2}a^{2}$ $= (a^{2} + c^{2} - b^{2} - 2ac) (a^{2} + c^{2} - b^{2} - 2ac) = [(a - c)^{2} - b^{2}][(a + c)^{2} - b^{2}]$ a + c > b and |a - c| < b (a, b, c are sides of a Δ) $(a - c)^2 < b^2$ and $(a + c)^2 > b^2 \implies \Delta = -ve$ roots are imaginary. *.*..

23.
$$ax^2 + bx + c = 0$$
 has roots x_1

. .

and
$$-ax^2 + bx + c = 0$$
 has root x_2
and $0 < x_1 < x_2$

Let
$$f(x) = ax^2 + 2bx + 2c = 0$$

$$f(x_1) f(x_2) < 0$$

L.H.S. =
$$(ax_1^2 + 2bx_1 + 2c) (ax_2^2 + 2bx_2 + 2c)$$

 $[ax_1^2 + 2(-ax_1^2)] [ax_2^2 + 2(ax_2^2)]$

$$(-ax_1^2)(3ax_2^2) = -3a^2x_1^2x_2^2 < 0$$

$$\therefore \qquad f(x_1) f(x_2) < 0 \qquad \qquad \text{Hence proved.}$$

24. Clearly the graph of $y = x^4 - 4x - 1$ is

no of positive real roots = 1 *.*..

Aliter

$$y = x^{4} - 4x - 1; \ \frac{dy}{dx} = 4x^{3} - 4; \ \frac{d^{2}y}{dx^{2}} = 12x^{2} \text{ when } \frac{dy}{dx} = 0, \text{ then } x = 1$$
$$\frac{d^{2}y}{dx^{2}}\Big|_{x=1} = 12 > 0. \text{ so } x = 1 \text{ is a minima point so by graph, number of positive real roots} = 1$$

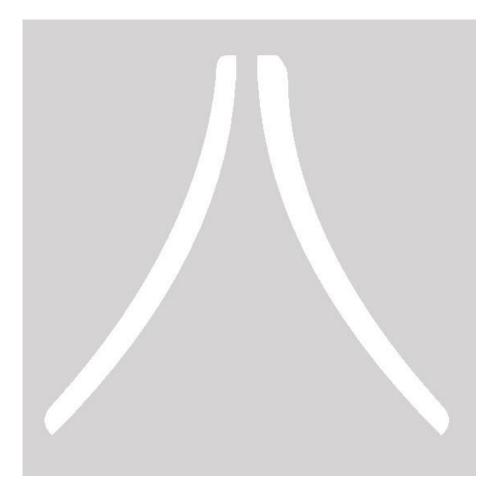
X2.

八

	Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	ADVLCD- 37	
	Toll Free : 1800 258 5555 CIN : U80302RJ2007PLC024029	ADVLOD-31	

$$\Rightarrow f(\beta) = 9 \text{ and } f'(x + \beta) = 4x^3 - 10x \Rightarrow f'(\beta) = 0$$

30. $(xy - 7)^2 = x^2 + y^2 \Rightarrow (xy - 6)^2 + 13 = (x + y)^2 \Rightarrow (x + y - xy + 6) (x + y + xy - 6) = 13$ Case-I x + y + xy - 6 = 13; x + y - xy + 6 = 1 On solving (x, y) ≡ (4, 3), (3, 4) Case-II x + y + xy - 6 = 1; x + y - xy + 6 = 13 On solving (x,) ≠ (0, 7), (7, 0) In all other cases negative solutions are obtained hence solution set is (3, 4) (4, 3), (7, 0), (0, 7) ∴ Sum of all possible values of x is 3 + 4 + 7 + 0 = 14. Ans.



 Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN : U80302RJ2007PLC024029