SOLUTIONS OF REALTIVE MOTION

EXERCISE \# 1

PART-I

A-1. $\quad \vec{V}_{A}=15 \mathrm{~m} / \sec \hat{j}$
$\vec{V}_{B}=25 m / \sec (-\hat{j})$

(a) $\vec{V}_{B}-\vec{V}_{A}=-40 \hat{j} \quad$ i.e., $40 \mathrm{~m} / \mathrm{sec}$ due south $=144 \mathrm{~km} / \mathrm{hr}$ due south
(b) $0-\vec{V}_{B}=25 \mathrm{~m} / \mathrm{sec} \hat{\mathrm{j}} \quad$ i.e., $25 \mathrm{~m} / \mathrm{sec}$ due north $=90 \mathrm{~km} / \mathrm{hr}$ due north
(c) $\vec{V}_{\text {M.G }}=15 \hat{j}-\frac{18 \times 5}{18} \hat{j}=10 \hat{j}$
i.e., $10 \mathrm{~m} / \mathrm{sec}$ due north. $=36 \mathrm{~km} / \mathrm{hr}$ due north
(d) $\overrightarrow{\mathrm{V}}_{\text {M. }}=10 \hat{j}-(-25) \hat{j}=35 \hat{j}$
i.e., $35 \mathrm{~m} / \mathrm{sec}$ due north. $=126 \mathrm{~km} / \mathrm{hr}$ due north

A-2. $d=v_{r} t$ where v_{r} is the relative velocity

$$
\frac{3}{60 \times 60}=\frac{0.075}{40+v} \quad 120+3 v=270 \quad 3 v=150 \quad v=50 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

A-3. Relative velocity of A with respect to B

$$
\overrightarrow{\mathrm{v}}_{\mathrm{AB}}=\overrightarrow{\mathrm{v}}_{\mathrm{A}}-\overrightarrow{\mathrm{v}}_{\mathrm{B}}=10-5=5 \mathrm{~m} / \mathrm{s}
$$

So time taken by A to meet B is -

$$
\mathrm{t}=\frac{100}{\mathrm{v}_{\mathrm{AB}}}=\frac{100}{5}=20 \mathrm{sec} .
$$

A-4. $v_{r}=25-15=10 \mathrm{~m} / \mathrm{s}$ and $\mathrm{ar}_{\mathrm{r}}=-1 \mathrm{~m} / \mathrm{s}^{2}$ so by $\mathrm{v}^{2}=u^{2}+2$ as
$\mathrm{S}=\frac{100}{2 \times 1}=50 \mathrm{~m}$
B-1. $\quad \vec{v}_{A}=4 \hat{i}, \vec{v}_{B}=-3 \hat{j}$
$\vec{v}_{A B}=\vec{v}_{A}-\vec{V}_{B}=4 \hat{i}-(-3 \hat{j})=4 \hat{i}+3 \hat{j}$
$\vec{v}_{B A}=\vec{v}_{B}-\vec{V}_{A}=-3 \hat{j}-4 \hat{i}$
$\left|\vec{v}_{A B}\right|=\sqrt{4^{2}+3^{2}}=5$ unit
$\left|\vec{v}_{\mathrm{BA}}\right|=\sqrt{3^{2}+4^{2}}=5$ unit.

B-2. $\quad \vec{V}=12 \hat{i}+5 \hat{j} \quad|\vec{V}|=\sqrt{12^{2}+5^{2}}=13 \mathrm{~m} / \mathrm{sec}$
$\tan \theta=\frac{5}{12}$ north of east

B-3. (a) $\mathrm{V}_{\mathrm{G}, \mathrm{B}}=0-20=-20 \mathrm{~m} / \mathrm{sec}$ i.e., due east
(b) $V_{A}=15 \mathrm{~m} / \mathrm{sec} \quad \mathrm{V}_{\mathrm{B}}=20 \mathrm{~m} / \mathrm{sec} \quad\left|\overrightarrow{\mathrm{V}}_{\mathrm{A}}-\overrightarrow{\mathrm{V}}_{\mathrm{B}}\right|=\sqrt{20^{2}+15^{2}}$

B-4.
$\xrightarrow{4 V_{M}} V_{c}$
$\vec{V}_{M}-\vec{V}_{C}=5 \sin 30 \hat{i}+5 \cos 30^{\circ} \hat{j}-10 \hat{i} \quad \vec{V}_{M C}=\frac{5 \sqrt{3}}{2} \hat{j}-7.5 \hat{i}$
Speed $=\left|\vec{V}_{M}-\vec{V}_{C}\right|=\sqrt{\frac{25 \times 3}{4}+\frac{225}{4}}=5 \sqrt{3} \mathrm{~km} / \mathrm{hr}$ Ans
$\tan \theta=\frac{\frac{5 \sqrt{3}}{2}}{7.5}=\frac{1}{\sqrt{3}}$; direction $\theta=30^{\circ}$ North of west. Ans
B-5. $\quad V_{\text {ship }}=\sqrt{2} \hat{j}+1 \hat{i}+1 \hat{k}=\hat{i}+\sqrt{2} \hat{j}+\hat{k}$

C-1. $\quad V_{S}+V_{r}=16$

$$
V_{s}-V_{r}=8
$$

$$
\Rightarrow \quad V_{S}=12 \mathrm{~km} / \mathrm{hr} \quad \Rightarrow \quad \mathrm{~V}_{\mathrm{r}}=4 \mathrm{~km} / \mathrm{hr}
$$

C-2.
(I) (a) $\frac{d}{v_{m R}}=\frac{1}{4} \mathrm{hr}$
(b) Displacement along the river flow $=v_{r} t=\frac{3}{4} \mathrm{~km}$

C-3. Given $\vec{V}_{r}=5 \mathrm{~m} / \mathrm{min}$
$\vec{V}_{\mathrm{mr}}=10 \mathrm{~m} / \mathrm{min}$

$\sin \theta=\frac{\vec{V}_{r}}{\vec{V}_{m r}}=\frac{5}{10}=\frac{1}{2}$
$\sin \theta=\frac{1}{2} \Rightarrow \theta=30^{\circ}$ (west of north)
D-1.

$\tan \alpha=6 / 2=3$

$$
\alpha=\tan ^{-1} 3
$$

$\square P \square \square \square \square \underbrace{B}$
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 2
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

D－2．$\quad \mathrm{V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{M}}$
$V_{R}=V_{R b}+V_{b}=20 \hat{j}+10 \hat{i}$
$\tan \theta=\frac{10}{20}=\frac{1}{2}$

$\left|V_{r}\right|=\sqrt{(20)^{2}+(10)^{2}}=10 \sqrt{5} \mathrm{~m} / \mathrm{s}$
Making angle $\tan ^{-1} 1 / 2$ with vertical．
D－3．$\quad \vec{V}_{m}=2 \hat{i}$
$\vec{V}_{r}=v_{x} \hat{i}+v_{y} \hat{j}$
$\vec{v}_{r, m}=\left(v_{x}-2\right) \hat{i}+v_{y} \hat{j}=v_{y} \hat{j}$
$\therefore \quad v_{x}=2 \mathrm{~m} / \mathrm{sec}$
$\overrightarrow{v_{m}^{\prime}}=4 \hat{i}$
$\vec{v}_{r, m}^{\prime}=\vec{v}_{r}-\vec{v}_{m}^{\prime}$
$=\left(v_{x}-4\right) \hat{i}+v_{y} \hat{j}=-2 \hat{i}+v_{y} \hat{j}$
$\tan 45{ }^{\circ}=v_{y} / 2$
$v_{y}=2$
so ${\overrightarrow{v_{r}}}_{r}=2 \hat{i}+2 \hat{j}$ so tan $\theta=1 \Rightarrow \theta=45^{\circ}$
$u_{r}=2 \sqrt{2} \mathrm{~m} / \mathrm{sec}$ ．
E－1．Relative velocity is shown

$r_{\text {min }}=5 \sin 37^{\circ}=3 \mathrm{~m}$ ．
E－2．

Approach velocity of A towards $B=v$
So，time taken $=a / v$ ．

Resロロコロce Educating for better tomorrow

PART - II

A-1. \quad Acceleration of shell with respect to plane $=g+a$ (downward)
and speed $=700-500=200$ (upward)
To just escape from being hit
$h>\frac{u_{\text {rel }}^{2}-v_{\text {rel }}^{2}}{2(g+a)} \Rightarrow 1000>\frac{(200)^{2}-(0)^{2}}{2(g+a)}$
$g+a>20 \quad \Rightarrow \quad a>10 m / s^{2}$
A-2. $v_{1}=50-g T \quad v_{2}=-50-g T \quad v_{r}=v_{1}-v_{2}=100 \mathrm{~m} / \mathrm{sec}$
A-3. $\quad v_{1}=$ slope of C_{1} line $=$ constant
$\mathrm{v}_{2}=$ slope of C_{2} line $=$ constant
$v_{1}-v_{2} \neq 0$ but constant

A-4. Slope of $v-t$ graph $=$ acceleration

$\mathrm{v}_{1}=\mathrm{a}_{1}\left(\mathrm{t}-\mathrm{t}_{0}\right)=\tan \theta_{1} \mathrm{t}-\tan \theta_{1} \mathrm{t}_{0}$
$\mathrm{v}_{2}=\mathrm{a}_{2}\left(\mathrm{t}-\mathrm{t}_{0}\right)=\tan \theta_{2} \mathrm{t}-\tan \theta_{2} \mathrm{t}_{0}$
$v_{r}=v_{1}-v_{2}=\left(\tan \theta_{1}-\tan \theta_{2}\right) t-t_{0}\left(\tan \theta_{1}-\tan \theta_{2}\right)$
So v_{r} contineously increases.
A-5. Initial relative velocity
$u_{r}=50-(-50)=100$
$a_{r}=20-(20)=0$
$S_{r}=v_{r t}+1 / 2 a r t^{2}$
$100=100 t \quad t=1 \mathrm{hr}$
$S_{A}=50(1)+1 / 2(20)(1)^{2}=60 \mathrm{~km}$.

A-6.

$\vec{V}_{A}=-500 \hat{i} \Rightarrow \vec{V}_{G A}+\vec{V}_{A}=V_{G A S}$
${ }^{\mathrm{A}^{\mathrm{y}}} \mathrm{x}$
$\vec{V}_{G A}=1500 \hat{i} \quad \Rightarrow \quad 1500 \hat{i}-500 \hat{i}=1000 \hat{i}$
B-1.

$\vec{V}_{r}=50(-\hat{j})-50 \hat{i}=50(-\hat{i}-\hat{j})$
i.e., in south west

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 4
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

B-2. $\quad \vec{V}_{12}=\vec{V}_{1}-\vec{V}_{2}$
$\left|\overrightarrow{\mathrm{V}}_{12}\right|=\sqrt{\mathrm{V}_{1}^{2}+\mathrm{V}_{2}^{2}-2 \mathrm{~V}_{1} \mathrm{~V}_{2} \cos \theta}$
If $\cos \theta=-1$
$\left|\vec{V}_{12}\right|_{\max }=\sqrt{\mathrm{V}_{1}^{2}+\mathrm{V}_{2}^{2}+2 \mathrm{~V}_{1} \mathrm{~V}_{2}}$
$\left|\vec{V}_{12}\right|_{\max }=\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$
So $\left|\vec{V}_{12}\right|$ is maximum when $\cos \theta=-1$ and $\theta=\pi$
B-3.

$\vec{V}_{1}=10 \hat{i}$
$\vec{V}_{2}=v \sin 30 \hat{i}+v \cos 30 \hat{j}=\frac{v}{2} \hat{i}+\frac{v \sqrt{3}}{2} \hat{j}$
$\vec{V}_{2}-\vec{V}_{1}=\left(\frac{v}{2}-10\right) \hat{i}+\frac{v \sqrt{3}}{2} \hat{j}=\frac{v \sqrt{3}}{2} \hat{j}$
$\therefore \quad v / 2-10=0$ or $v=20$
C-1. $\quad 15 \mathrm{~min}=1 / 4 \mathrm{hr}$.

$$
\begin{aligned}
& \quad \begin{array}{l}
V_{M R} \\
t=\frac{d}{V_{y}}
\end{array} \Rightarrow \quad \frac{1}{4}=\frac{1}{\sqrt{V_{M R}^{2}-V_{R}^{2}}}=\frac{1}{4}=\frac{1}{\sqrt{5^{2}-V_{R}^{2}}} \\
& \Rightarrow \quad V_{R}=3 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

C-2. $\quad V_{\text {boat, river }}=9 \mathrm{~km} / \mathrm{hr}$.
$V_{\text {river, ground }}=12 \mathrm{~km} / \mathrm{hr}$.
$V_{\text {boat, ground }}=(12 \hat{i}+9 \hat{j}) \mathrm{km} / \mathrm{hr}$
$V_{\text {boat, ground }}=\sqrt{12^{2}+9^{2}}=15 \mathrm{~km} / \mathrm{hr}$.

C-3. $\quad V_{b}=\sqrt{5^{2}-4^{2}}=3 \mathrm{~m} / \mathrm{s}$

$$
t=\frac{480}{3}=160 \mathrm{~s}
$$

C-4. Let velocity of wind be
$\begin{array}{lll}\left(240+v_{1}\right) 1 / 2=150 & \Rightarrow & v_{1}=60 \\ \text { and } v_{2} \times 1 / 2=40 & \Rightarrow & v_{2}=80\end{array}$
so $v_{\text {air }}=\sqrt{v_{1}^{2}+v_{2}^{2}}=100 \mathrm{~km} / \mathrm{hr}$
$\tan \theta=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}} \quad \theta=37^{\circ}$ west of south

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 5
Toll Free : $18002585555 \mid$ CIN : U80302RJ2007PLC024029	

$\overline{\mathrm{D}-1}$.

$V_{R H}=\sqrt{V_{R}^{2}+V_{M}^{2}}=\sqrt{3^{2}+4^{2}}=5 \mathrm{~km} / \mathrm{h}$ Ans.
D-2. $\quad \vec{V}_{r}=v_{y} j$
$\vec{u}_{m}=5 \hat{i}$
$\vec{V}_{r}-\vec{V}_{m}=(-5) \hat{i}+v_{y} \hat{j}$
$\tan \theta=1=v_{y} / 5$
so $v_{y}=5 \mathrm{~km} / \mathrm{hr}$
D-3. $\quad \vec{V}_{r}=10 \hat{j}$
$\vec{V}_{c}=v \hat{i}$
$\vec{V}_{r}-\vec{V}_{c}=10 \hat{j}-v \hat{i}$
$\left|\vec{V}_{r}-\vec{V}_{c}\right|=\sqrt{10^{2}+v^{2}}=20$
$v=10 \sqrt{3}$
D-4. For no drift :

$V \sin \theta=v$
$\sin \theta=\frac{v}{V}$

$$
\therefore \quad t=t_{A B}+t_{B A}
$$

$t=\frac{2 \ell}{V \cos \theta}=\frac{2 \ell}{V \sqrt{1-\frac{v^{2}}{V^{2}}}} \quad \Rightarrow \quad t=\frac{2 \ell}{\sqrt{V^{2}-v^{2}}}$
E-1. $\quad A$ and B collide if $\frac{\vec{r}_{B}-\vec{r}_{A}}{\left|\vec{r}_{B}-\vec{r}_{A}\right|}= \pm \frac{\vec{V}_{B}-\vec{V}_{A}}{\left|\vec{V}_{B}-\vec{V}_{A}\right|}$
$=\frac{4 \hat{i}+4 \hat{j}}{4 \sqrt{2}}= \pm \frac{(x-3) \hat{i}-4 \hat{j}}{\left|\left[(x-3)^{2}+4^{2}\right]^{1 / 2}\right|}$
By comparison
$x-3=-4 \quad \Rightarrow \quad x=-1$.
ALTERNATE:
$\vec{r}_{A B}=-4 \hat{i}-4 \hat{j}$
$\vec{v}_{A B}=(3-x) \hat{i}+4 \hat{j}$
to collide angle between $\vec{r}_{A B} \& \overrightarrow{\mathrm{v}}_{\mathrm{AB}}$ should be π i.e.
$=\frac{-4}{3-x}=\frac{-4}{4}-1 \quad \Rightarrow \quad x=-1$

Resonance ${ }^{\circ}$
Educating for better tomorrow

E-2.
Velocity of B w.r.t. A

$\tan \theta=\mathrm{V}_{1} / \mathrm{V}_{2}$

$$
r_{\min }=d \sin \theta=d \cdot \frac{v_{1}}{\sqrt{v_{1}^{2}+v_{2}^{2}}} .
$$

PART - III

1. In all cases, angle between velocity and net force (in the frame of observer) is in between 0° and 180° (excluding both values, in that path is straight line).
2. (A) $V_{B A}=10+10=20$
so distance $\mathrm{b} / \mathrm{w} B$ and A in 2sec. $=2 \times 20=40 \mathrm{~m}$
$\xrightarrow[(B)]{ } \xrightarrow{10 \mathrm{~m} / \mathrm{s}} 5 \mathrm{~m} / \mathrm{s}$
$\vec{V}_{B A}=5 \hat{i}-10 \hat{j}$
$\Rightarrow \quad\left|V_{B A}\right|=\sqrt{25+100}=5 \sqrt{5}$
Distance between A and B in $2 \mathrm{sec} .=10 \sqrt{5} \mathrm{~m}$
(C)

so distance between A and B in $2 \mathrm{sec} .=2 \times 8 \sqrt{5}=16 \sqrt{5}$
(D)

EXERCISE \# 2

PART - I

1. Relative velocity between either car ($1^{\text {st }}$ or $2^{\text {nd }}$) and $3^{\text {rd }}$ car $=u+30$
where $u=$ velocity of $3^{\text {rd }}$ car
Relative Displacement $=5 \mathrm{~km}$
Time interval $=4 \mathrm{~min}$.
$\therefore u+30=\frac{5}{4} \mathrm{~km} / \mathrm{min}=\frac{5 \times 60}{4} \mathrm{~km} / \mathrm{h}=75 \Rightarrow u=45 \mathrm{~km} / \mathrm{h}$
Resロпシпce ${ }^{\circ}$
Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 7
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

2. $\quad V_{\text {rel }}=\frac{S_{\text {rel }}}{t}=\frac{1000}{100}=10 \mathrm{~m} / \mathrm{s}$.

$$
\therefore \quad V_{S}-V_{B}=10 \Rightarrow V_{S}=10+V_{B}=10+10=20 \mathrm{~m} / \mathrm{s} \text {. Ans. }
$$

3. Relative to lift initial velocity and acceleration of coin are $0 \mathrm{~m} / \mathrm{s}$ and $1 \mathrm{~m} / \mathrm{s}^{2}$ upwards

$\therefore \quad 8=\frac{1}{2}(1) \mathrm{t}^{2} \quad$ or $\quad \mathrm{t}=4$ second
4.

$30 \mathrm{~km} / \mathrm{h}=\frac{25}{3} \mathrm{~m} / \mathrm{s}, 192 \mathrm{~km} / \mathrm{hr}=\frac{160}{3} \mathrm{~m} / \mathrm{s}$
Muzzle speed $=$ velocity of bullet w.r.t. revolver
$=$ velocity of bullet w.r.t. van
$150=V_{b}-V_{v}$
$150=\mathrm{V}_{\mathrm{b}}-\frac{25}{3} \quad \Rightarrow \quad \mathrm{~V}_{\mathrm{b}}=\frac{475}{3} \mathrm{~m} / \mathrm{s}$ w.r.t. ground
Now speed with which bullet hit thief's car
$=$ velocity of bullet w.r.t car $=\mathrm{V}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{c}}$
$=\frac{475}{3}-\frac{160}{3}=\frac{315}{3}=105 \mathrm{~m} / \mathrm{s}$ Ans.
5. Flag will flutter in the direction of wind with respect to bus.

and $\overrightarrow{\mathrm{V}}_{\mathrm{wB}}=\overrightarrow{\mathrm{V}}_{\mathrm{w}}-\overrightarrow{\mathrm{V}}_{\mathrm{B}}=\overrightarrow{\mathrm{V}}_{\mathrm{w}}+\left(-\overrightarrow{\mathrm{V}}_{\mathrm{B}}\right) \quad$ (Addition of two vector always lies between them)
$\left(-\vec{V}_{\mathrm{B}}\right)$ must lie in any direction between north \& west. So bus will be moving in any direction between south east.
(C)
6. Let \hat{i} and \hat{j} be unit vectors in direction of east and north respectively.
$\therefore \vec{V}_{D C}=20 \hat{j}, \vec{V}_{B C}=20 \hat{i}$ and $\vec{V}_{B A}=-20 \hat{j}$
$\therefore \overrightarrow{\mathrm{V}}_{\mathrm{DA}}=\overrightarrow{\mathrm{V}}_{\mathrm{DC}}+\overrightarrow{\mathrm{V}}_{\mathrm{CB}}+\overrightarrow{\mathrm{V}}_{\mathrm{BA}}=20 \hat{\mathrm{j}}-20 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}=-20 \hat{\mathrm{i}}$
$\therefore \vec{V}_{D A}=-20 \hat{i}$
7. Position of P and Q when they are at distance 120 m at time t after motion start

Velocity of Q along y-direction is initially $12 \cos 37^{\circ}$.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 8
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

Later on it increases it to $15 \cos 37^{\circ}=12 \mathrm{~m} / \mathrm{s}$
Earlier Q was travelling with less velocity along y direction. So, it will reach point O later.
So P reaches first at point O
8. Let $v=$ man's speed in still water and $u=$ speed of river water

$$
\begin{array}{ll}
\Rightarrow & t=\frac{d}{\sqrt{v^{2}-u^{2}}} \\
\Rightarrow \quad T=\frac{v^{2}-u^{2}=\frac{d^{2}}{t^{2}}}{v+u} \\
\Rightarrow & \Rightarrow \quad(v+u)^{2}=\frac{d^{2}}{T^{2}} \Rightarrow \quad \frac{(v+u)^{2}}{v^{2}-u^{2}}=\frac{t^{2}}{T^{2}} \\
\Rightarrow-u & \Rightarrow \frac{t^{2}}{T^{2}}
\end{array}
$$

$\Rightarrow \quad \frac{(v+u)+(v-u)}{(v+u)-(v-u)}=\frac{t^{2}+T^{2}}{t^{2}-T^{2}}$
$\Rightarrow \quad \frac{v}{u}=\frac{t^{2}+T^{2}}{t^{2}-T^{2}}$
9. In absence of wind A reaches to C and in presence of wind it reaches to D in same time so wind must deflect from C to D so wind blow in the direction of $C D$

10. $\quad \mathrm{V}_{\mathrm{R} / \mathrm{G}(\mathrm{x})}=0, \mathrm{~V}_{\mathrm{R} / \mathrm{G}(\mathrm{y})}=10 \mathrm{~m} / \mathrm{s}$

Let, velocity of $\operatorname{man}=\mathrm{v}$

$\tan \theta=\frac{16}{12}=\frac{4}{3}$
Then, $\mathrm{v}_{\mathrm{R} / \text { man }}=\mathrm{v}$ (opposite to man)
For the required condition :
$\tan \theta=\frac{\mathrm{V}_{\mathrm{R} / \mathrm{M}(\mathrm{y})}}{\mathrm{V}_{\mathrm{R} / \mathrm{M}(\mathrm{x})}}=\frac{10}{\mathrm{~V}}=\frac{4}{3} \quad \Rightarrow \quad \mathrm{~V}=\frac{10 \times 3}{4}=7.5$ Ans.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 9

11. $\mathrm{T}=\frac{2(5)}{10}=1 \mathrm{sec}$

$$
h=50+3(1)=53 \mathrm{~m}
$$

PART - II

1. Let $u=$ speed of observer.

Relative velocity between observer and a man $=u+15 \mathrm{~km} / \mathrm{h}$.
Relative velocity between observer and a cyclist $=u+25 \mathrm{~km} / \mathrm{h}$.

Hence, to for a man and a cyclist to meet simultaneously

$$
\frac{20 \mathrm{~m}}{(u+15) \mathrm{km} / \mathrm{h}}=\frac{30 \mathrm{~m}}{(u+25) \mathrm{km} / \mathrm{h}} \quad \Rightarrow \quad u=5 \mathrm{~km} / \mathrm{h}
$$

2.

$\mathrm{t}_{1}=3=\frac{2 \mathrm{~L}}{\mathrm{v}_{1}+\mathrm{v}_{2}} \Rightarrow \quad \mathrm{v}_{1}+\mathrm{v}_{2}=\frac{2 \mathrm{~L}}{3}$
$\mathrm{t}_{2}=2.5=\frac{2 \mathrm{~L}}{1.5 \mathrm{v}_{1}+\mathrm{V}_{2}} \quad 1.5 \mathrm{v}_{1}+\mathrm{v}_{2}=\frac{4 \mathrm{~L}}{5}$
by (i) and (ii)

$$
\begin{gathered}
v_{1}=\frac{4 \mathrm{~L}}{15} ; \mathrm{v}_{2}=\frac{2 \mathrm{~L}}{5} \\
\text { Now, } \mathrm{t}_{3}=\frac{2 \mathrm{~L}}{\left|\mathrm{v}_{1}-\mathrm{v}_{2}\right|}=\frac{2 \mathrm{~L}}{2 \mathrm{~L} / 15}=15 \mathrm{sec} .
\end{gathered}
$$

3. B catches C in time t then $t=\frac{d}{u-10}$

Seperation by this time has increased by 'd' between A and C hence
$(10-5) \times \frac{d}{(u-10)}=d$
$u=15 \mathrm{~m} / \mathrm{s}$
4.

w.r.t. man

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 10

5. $\quad \overrightarrow{\mathrm{V}}_{\mathrm{m}, \mathrm{g}}=\overrightarrow{\mathrm{V}}_{\mathrm{m}, \mathrm{r}}+\overrightarrow{\mathrm{V}}_{\mathrm{r}, \mathrm{g}}$

As resulting velocity $\vec{V}_{\mathrm{m}, \mathrm{g}}$ is at 45° with river flow

i.e. $\mathrm{V}_{\mathrm{r}, \mathrm{g}}-\mathrm{V}_{\mathrm{m}, \mathrm{r}} \sin \alpha=\mathrm{V}_{\mathrm{m}, \mathrm{g}} \cos 45^{\circ}$
and $\frac{60 \mathrm{~m}}{V_{m r} \cos \alpha}=6 \mathrm{sec}$.
Solving (1) \& (2)
$\mathrm{V}_{\mathrm{m}, \mathrm{r}}=5 \sqrt{5} \mathrm{~m} / \mathrm{s}$
6.

Velocity of plane w.r.t ground is along $A B$ so perpendicular component (to line $A B$) of velocity is zero.
$v \sin \phi=20 \sin 30^{\circ}$
$v \sin \phi=20 \sin 30^{\circ}$
$\sin \phi=\frac{10}{150}=\frac{1}{15}$
$\phi=\sin ^{-1}\left(\frac{1}{15}\right)$
7. Let $\mathrm{v}=$ actual velocity of rain and $\theta=$ its angle with vertical :

In fig. (A)

$$
\begin{equation*}
v \sin \theta=7+v \cos \theta \cdot \tan 37^{\circ}=7+3 / 4 v \cos \theta \tag{1}
\end{equation*}
$$

$\Rightarrow \quad 4 \vee \sin \theta-3 v \cos \theta=28$
In fig. (B)
$25=v \sin \theta+v \cos \theta \cdot \tan 37^{\circ}=v \sin \theta+3 / 4 v \cos \theta$
$\Rightarrow \quad 4 v \sin \theta+3 v \cos \theta=100$
Solving (1) and (2)

$$
\mathrm{v}=20 \mathrm{~m} / \mathrm{s} \text { and } \theta=53^{\circ}
$$

8. At any time t, rain will appear to the boy as shown in picture. $\tan \theta=\mathrm{at} / \mathrm{v}$

$\vec{v}_{\mathrm{rb}}=$ velocity of rain w.r.t. boy
Boy should hold his umbrella at an angle θ from the vertical

$$
\begin{aligned}
& \therefore \quad \tan \theta=\frac{a t}{v} \quad \sec ^{2} \theta \frac{d \theta}{d t}=\frac{a}{v} \\
& \Rightarrow \quad \frac{d \theta}{d t}=\frac{a}{v \sec ^{2} \theta}=\frac{a}{v\left[1+\tan ^{2} \theta\right]}=\frac{a}{v\left[1+\frac{a^{2} t^{2}}{v^{2}}\right]}=\frac{a v}{v^{2}+a^{2} t^{2}}=\frac{2 \times 2}{4+4 t^{2}}=\frac{1}{1+t^{2}} \\
& \frac{d \theta}{d t}=\frac{1}{1+t^{2}} \quad \text { Ans. } \frac{d \theta}{d t}=\frac{1}{1+t^{2}}
\end{aligned}
$$

9.

$\mathrm{a}=$ side of square $=8 \mathrm{~m}$
They meet when Q displace $8 \times 3 \mathrm{~m}$ more than P
$\Rightarrow \quad$ Relative displacement $=$ Relative velocity \times time.
$8 \times 3=(10-2) t \Rightarrow t=3 \mathrm{sec}$
Ans. 3 sec
10. The positions of the persons at 12:00 PM will be as shown in figure. Such that $\mathrm{OC}=5 \times \frac{3}{2} \mathrm{~km}=\frac{15}{2} \mathrm{~km}$

Velocity of man at C with respect to man at O will be along CE such that $\tan \theta=5 / 5=1$
$\therefore \quad \theta=45^{\circ}$
$\therefore \quad$ Least distance $=\mathrm{OE}=\mathrm{OC} \sin 45^{\circ}=\frac{15}{2 \sqrt{2}} \mathrm{~km} \quad$ Ans.

Time taken $=\frac{C E}{5 \sqrt{2}}=\frac{15}{2 \sqrt{2} \times 5 \sqrt{2}}=\frac{3}{4} \mathrm{hr}$.
So, the person will be closest at 12:45 PM Ans.
11.

Velocity of approach of P and O is $\rightarrow \frac{d x}{d t}=v \cos 60^{\circ}=5 \mathrm{~m} / \mathrm{s}$
It can be seen that velocity of approach is always constant.
$\therefore \quad$ P reaches O after $=\frac{100}{5}=20$ sec.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 12
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

PART - III

1. Relative Intial velocities

$$
u_{r}=20-(0)=20 \mathrm{~m} / \mathrm{s}
$$

Relative acceleration

$$
\mathrm{a}_{\mathrm{r}}=0
$$

Relative velocity between them after time

$$
v_{r}=u_{r}+a_{r} . t
$$

$$
=20 \mathrm{~m} / \mathrm{s}
$$

= constant
$\Rightarrow \quad(A)$ is correct
$\Rightarrow \quad$ Since they are thrown from same height
$\Rightarrow \quad$ Speed is same after reaching ground
$\Rightarrow \quad$ Same KE when they hit the ground
$\Rightarrow \quad(\mathrm{B})$ is correct
The time taken by the first stone to come to same height from where it was thrown.

$$
\frac{2 u}{g}=\frac{2 \times 20}{10}
$$

$\therefore \quad$ Time interval between two stone when both are at A and going downwards $=4-2=2 \mathrm{~s}$.
Since, relative velocity is Constant between them. So time interval between their hitting the ground = 2 s .
$\Rightarrow \quad(\mathrm{C})$ is correct
Option (D) is obvious from conservation of energy
2. For first case (when lift is ascending with an acceleration a)

$$
\begin{equation*}
t_{1}=\frac{2 v}{g+a} \tag{i}
\end{equation*}
$$

for second case (when lift is descending with an acceleration a)

$$
\begin{equation*}
t_{2}=\frac{2 v}{g-a} \tag{ii}
\end{equation*}
$$

on solving equation (i) and (ii) we get

$$
V=\frac{g t_{1} t_{2}}{t_{1}+t_{2}} \quad \& \quad a=g\left(\frac{t_{2}-t_{1}}{t_{1}+t_{2}}\right)
$$

3.

$(0,0)$

$$
\begin{aligned}
V_{B A} & =V_{B}-V_{A} \\
& =[4 \hat{i}-3 \hat{j}]-[3 \hat{i}+4 \hat{j}]=\hat{i}-7 \hat{j} \\
V_{\text {app }} & =4 \cos 45^{\circ}+3 \cos 45^{\circ}+3 \cos 45^{\circ}-4 \cos 45^{\circ} \\
& =6 \cos 45^{\circ} \\
& =3 \sqrt{2} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 13
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

4. $\mathrm{u}_{\mathrm{T}}=15 \mathrm{~m} / \mathrm{s} \quad$ (velocity of truck)

Range $=60 \mathrm{~m}$
Range $=$ distance travelled by truck UT $\times \mathrm{T}$
$60=15 \times \mathrm{T} \quad \Rightarrow \quad \mathrm{T}=4 \mathrm{~s}=$ Time of flight (of ball)
$\mathrm{T}=\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{g}} \quad$ where $\mathrm{u}_{\mathrm{y}}=$ Vertical component of ball's vel. $\{$ wit ground $\}$
$\therefore \quad \frac{\mathrm{T} \times \mathrm{g}}{2}=u_{y} \quad$ i.e, $u_{y}=\frac{4 \times 10}{2}=20 \mathrm{~m} / \mathrm{s}$
Now vel. of truck $=u_{x}=$ horizontal component of ball's vel. (wry ground)
$\Rightarrow \quad u_{x}=15 \mathrm{~m} / \mathrm{s}$ (wit ground)
This is because both cover same horizontal distance in same time with constant velocity along horizontal.
Now, velocity, of wall wit track $=\mathrm{V}_{\mathrm{B}} \quad$ Then $\mathrm{V}_{B T x}=\mathrm{V}_{B x}-\mathrm{V}_{T \mathrm{~T}}$
i.e., velocity ball wrt truck (along x axis) $=$ velocity of ball (wit earth, along x axis) - velocity of truck (along x axis)
$\therefore \quad V_{B T} x=15-15=0$
Similarly,
$V_{B T y}=V_{B y}-V_{T y}=20-0$ $V_{\text {BT }}=20 \mathrm{~m} / \mathrm{s}$.
$\Rightarrow \quad \overrightarrow{\mathrm{V}}_{\mathrm{BT}}=\overrightarrow{\mathrm{V}}_{\mathrm{BTX}}+\overrightarrow{\mathrm{V}}_{\mathrm{BTy}}=0+20 \mathrm{~m} / \mathrm{s} \hat{\mathrm{j}}$
$\Rightarrow \quad$ velocity of ball wot truck $=20 \mathrm{~m} / \mathrm{s}$ upwards
velocity of ball, $\vec{V}=\vec{V}_{x}+\vec{V}_{y} \quad \vec{V}=15 \hat{i}+20 \hat{j}$

15

$$
\tan \theta=4 / 3
$$

$$
\theta=53^{\circ}
$$

$\therefore \quad$ Speed $=|\vec{V}|=\sqrt{15^{2}+20^{2}}=5 \sqrt{3^{2}+4^{2}}=25 \mathrm{~m} / \mathrm{s}$
ie., vel. of ball (wry ground) $=25 \mathrm{~m} / \mathrm{s}$ at an angle of 53° with the horizontal (as shown)
5. Speed of river is u and speed of boat relative to water is v

Speed of boat A observed from ground $=\sqrt{u^{2}+v^{2}}$
Speed of boat B observed from ground $=\sqrt{v^{2}-u^{2}}$
From river frame, speed of boat A and B will be same.
6. (A) Absolute velocity of ball $=40 \mathrm{~m} / \mathrm{s}$ (upwards)
$h_{\text {max }}=h_{i}=f_{f}=10+\frac{(40)^{2}}{2 \times 10}$
$\mathrm{h}=90 \mathrm{~m}$
(B) Maximum height from lift $=\frac{(30)^{2}}{2 \times 10}=45 \mathrm{~m}$
(C) The ball unless meet the elevator again when displacement of ball = displacement of lift
$40 \mathrm{t}-1 / 2 \times 10 \times \mathrm{t}^{2}=10 \times \mathrm{t} \quad \Rightarrow \quad \mathrm{t}=6 \mathrm{~s}$.
(D) with respect to elevator $\mathrm{V}_{\text {ball }}=30 \mathrm{~m} / \mathrm{s}$ downward $\therefore \mathrm{V}_{\text {ball }}$ with respect to ground $=30-10=20 \mathrm{~m} / \mathrm{s}$

PART - IV

1. Displacement of car relative to truck

$$
x_{r}=40+17+3+40=100 \mathrm{~m} .
$$

$$
t=0
$$

Initilly
Relative initial velocity between car and truck

$$
\mathrm{a}_{\mathrm{r}}=0.5-0=0.5 \mathrm{~m} / \mathrm{s}^{2}
$$

Let required time $=\mathrm{t}$.
\therefore II equation of motion

$$
x_{r}=u_{r} . t+1 / 2 a_{r .} . t^{2}
$$

$\Rightarrow \quad 100=0+1 / 2 \times 0.5 \times t^{2}$
$\Rightarrow \quad \mathrm{t}=20 \mathrm{sec}$.
2. Distance travelled by car

$$
\begin{aligned}
\mathrm{x}_{\mathrm{c}} & =\mathrm{ut}+1 / 2 \mathrm{at}^{2} \\
& =20 \times 20+1 / 2 \times 0.5 \times 20^{2}=500 \mathrm{~m}
\end{aligned}
$$

3. Final speed of the car

$$
\begin{aligned}
& =u+a t \\
& =20+0.5 \times 20=30 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

$4 \& 5$. The path of a projectile as observed by other projectile is a straight line.

The vertical component $u_{0} \sin \theta$ will get cancelled. The relative velocity will only be horizontal which is equal to $2 u_{0} \cos \theta$.
Hence, B will travel horizontally towards left with respect to A with constant speed $2 u_{0} \cos \theta$ and minimum distance will be h.
6. Time to attain this separation will be $\frac{\mathrm{S}_{\text {rel }}}{\mathrm{V}_{\text {rel }}}=\frac{\ell}{2 \mathrm{u}_{0} \cos \theta}$.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 15
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

7 to 9 . In the first case :

From the figure it is clear that
$\vec{V}_{R M}$ is $10 \mathrm{~m} / \mathrm{s}$ downwards and
\vec{V}_{M} is $10 \mathrm{~m} / \mathrm{s}$ towards right.

In the second case :
Velocity of rain as observed by man becomes times in magnitude.
$\therefore \quad$ New velocity of rain

$$
\overrightarrow{\mathrm{V}}_{\mathrm{R}^{\prime}}=\overrightarrow{\mathrm{V}}_{\mathrm{R}^{\prime} \mathrm{M}}+\overrightarrow{\mathrm{V}}_{\mathrm{M}}
$$

$\therefore \quad$ The angle rain makes with vertical is $\tan \theta=\frac{10}{10 \sqrt{3}}$
or $\quad \theta=30^{\circ}$
$\therefore \quad$ Change in angle of rain $=45-30=15^{\circ}$.

EXERCISE \# 3

PART - I
1.

NTITITITITITITITITV

For relative motion perpendicular to line of motion of A
$\mathrm{V}_{\mathrm{A}}=100 \sqrt{3}=\mathrm{V}_{\mathrm{B}} \operatorname{Cos} 30^{\circ}$
$\Rightarrow \quad V_{B}=100 \mathrm{~m} / \mathrm{s}$
$t_{0}=\frac{50}{V_{B} \sin 30^{\circ}}=\frac{500}{200 \times \frac{1}{2}}=5 \mathrm{sec}$ Ans.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 16
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

PART - II

1.

The first particle will strike ground at 8 seconds upto 8 second, relative velocity is $30 \mathrm{~m} / \mathrm{s}$ and relative acceleration is zero. After 8 second magnitude of relative velocity will increase upto 12 seconds when second particle strikes the ground.

2. $\overrightarrow{\mathrm{V}}_{r}=40 \hat{i}+50 \hat{\mathrm{j}}$
$\vec{r}_{r}=-80 \hat{i}-150 \hat{j}$
$t_{\text {min }}=\frac{\left|\vec{V}_{r} \cdot \vec{r}_{r}\right|}{\left|\vec{V}_{r}\right|^{2}}=\frac{10700}{4100}=\frac{107}{41}=2.6 \mathrm{sec}$.
3. $\mathrm{X}_{1}=-3 \mathrm{t}^{2}+8 \mathrm{t}+10$
$\vec{v}_{1}=(-6 t+8) \hat{i}=2 \hat{i}$
$Y_{2}=5-8 t^{3}$
$\vec{v}_{2}=-24 \mathrm{t}^{2} \hat{j}$
$\sqrt{v}=\left|\vec{v}_{2}-\vec{v}_{1}\right|=|-24 \hat{j}-2 \hat{i}|$
$\sqrt{v}=\sqrt{24^{2}+2^{2}}$
$v=580$

HIGH LEVEL PROBLEMS (HLP)

1.

Method-1
If the river is still, the man will be at a distance 3 meters from origin O after 1 second. The locus of all the point where man can reach at $t=1$ second is a semicircle of radius 3 and centre at O (dotted semicircle shown in figure).
The river flows to right with a speed $1 \mathrm{~m} / \mathrm{s}$. Hence there shall be additional shift in position by $1 \mathrm{~m} / \mathrm{s} \times 1 \mathrm{sec}=1 \mathrm{~m}$ towards right. Hence the locus of all points giving possible position after one second will be the dotted semicircle shifted to right by 1 m as shown in figure.

Hence locus all the points where the man can be at $t=1 \mathrm{sec}$. is a semicircle of radius 3 and centre at O^{\prime} ($1 \mathrm{~m}, 0 \mathrm{~m}$)
$\therefore \quad$ Equation of locus of all the points is

$$
\begin{aligned}
& (x-1)^{2}+(y-0)^{2}=3^{2} \\
& \text { or } \quad(x-1)^{2}+y^{2}=9
\end{aligned}
$$

Method - 2

Let the relative velocity of the man make angle ' θ ' with the x-axis.
Then at time ' t ' :

$$
x=(3 \cos \theta+1) t
$$

and $y=3 \sin \theta t$
$\Rightarrow \quad(x-t)^{2}+y^{2}=(3 \cos \theta)^{2} t^{2}+(3 \sin \theta)^{2} t^{2}$
$(x-t)^{2}+y^{2}=9 t^{2}$
at $\quad t=1 \mathrm{sec}$. the required equation is $(x-1)^{2}+y^{2}=9$.
2.
(a)

Velocity of approach along line joing them
$=u-V_{r} \sin \theta+u+V_{r} \sin \theta=2 u$
So time $t=\frac{D}{2 u}$ Ans.
(b) For path to be at right angle to each other, their velocity vector with respect to ground must be right angle. Taking axis system as shown

$$
\begin{aligned}
& \vec{V}_{A}=\left(u \sin \theta+v_{r}\right) \hat{i}+u \cos \theta \hat{j} \\
& \vec{V}_{B}=\left(v_{r}-u \sin \theta\right) \hat{i}-u \cos \theta \hat{j}
\end{aligned}
$$

For $\vec{V}_{A} \& \vec{V}_{B}$ to perpendicular $\vec{V}_{A} \cdot \vec{V}_{B}=0$
$\left(u \sin \theta+v_{r}\right)\left(v_{r}-u \sin \theta\right)-u^{2} \cos ^{2} \theta=0$
$\Rightarrow \quad v_{r}=u$
Speed of river should be equal to the speed of the swimmer relative to river. Ans.
3. Let particle A is moving with uniform velocity and particle B is moving with constant acceleration.

At any time, velocity of B with respect to A is
$\vec{V}_{B A}=\vec{V}_{B G}-\vec{V}_{A G}=(\vec{a}) t-\vec{u}$
$V_{B A}=\left|\vec{V}_{B A}\right|=\sqrt{u^{2}+a^{2} t^{2}-2 u a t \cos \alpha}$
For relative velocity to be least

$$
\frac{d v_{\mathrm{BA}}}{\mathrm{dt}}=0 \quad \Rightarrow \quad 2 \mathrm{a}^{2} \mathrm{t}-2 \mathrm{uacos} \alpha=0 \quad \Rightarrow \quad t=\frac{u \cos \alpha}{a}
$$

$\left(V_{B A}\right)_{\text {least }}=\sqrt{u^{2}+u^{2} \cos ^{2} \alpha-2 u^{2} \cos ^{2} \alpha}$
$\left(V_{B A}\right)_{\text {least }}=u \sin \alpha$
At time $t=\frac{u \cos \alpha}{a}$
distance between the two particles

$$
\begin{aligned}
& \text { SBA }=\sqrt{x^{2}+y^{2}}=\sqrt{\left(-u \cos \alpha t+\frac{1}{2} a t^{2}\right)^{2}+(u \sin \alpha t)^{2}} \\
& =\sqrt{\left(-\frac{u^{2} \cos ^{2} \alpha}{a}+\frac{u^{2} \cos ^{2} \alpha}{2 a}\right)^{2}+\left(\frac{u^{2} \sin \alpha \cos \alpha}{a}\right)^{2}} \\
& =\sqrt{\frac{u^{4} \cos ^{4} \alpha}{4 a^{2}}+\frac{u^{4} \sin ^{2} \alpha \cos ^{2} \alpha}{a^{2}}}=\frac{u^{2} \cos \alpha}{2 a} \sqrt{\cos ^{2} \alpha+4 \sin ^{2} \alpha}
\end{aligned}
$$

$S_{B A}=\frac{u^{2} \cos \alpha}{2 a} \sqrt{1+3 \sin ^{2} \alpha}$

Alternative Method :

$\left(\mathrm{V}_{\mathrm{BA}}\right)_{\text {least }}=u \sin \alpha$
relative velocity of B w.r.t. A is least at time t which is given by

$$
\mathrm{u} \cos \alpha=\mathrm{at}
$$

$$
t=\frac{u \cos \alpha}{a}
$$

for distance between A and B at the time t
By cosine formula

$s=\sqrt{u^{2} t^{2}+\left(\frac{1}{2} a t^{2}\right)^{2}-2(u t)\left(\frac{1}{2} a t^{2}\right) \cos \alpha}$
$=\frac{u^{2} \cos \alpha}{2 a} \sqrt{1+3 \sin ^{2} \alpha}$ using $t=\frac{u \cos \alpha}{a}$
Ans. (a) $\left(\mathbf{v}_{\text {rel }}\right)_{\text {least }}=u \sin \alpha(b)$ separation $=\frac{u^{2} \cos \alpha}{2 a} \sqrt{1+3 \sin ^{2} \alpha}$

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL - 19

4. In the frame of train, the distance between A and B remains constant which is equal to $\ell=350$. Hence, in the frame of train the distance between two events is equal to $A B=\ell=350 \mathrm{~m}$.

Distance between these points with respect to ground

$$
\begin{aligned}
& \mathrm{d}=\ell+\mathrm{x}_{1}-\mathrm{x}_{2} \\
& =\ell+\frac{1}{2} \omega \mathrm{t}^{2}-\frac{1}{2} \omega(\mathrm{t}+\tau)^{2} \\
& =\ell-\omega \tau\left(\mathrm{t}+\frac{\tau}{2}\right) \simeq 240 \mathrm{~m}
\end{aligned}
$$

Time between these two events $=\tau=60 \mathrm{sec}$.
Velocity of frame $V=\frac{240}{60}=4 \mathrm{~m} / \mathrm{s}$.
5. (a) Relative velocity along $A B \rightarrow u+v$
$B C \rightarrow \sqrt{v^{2}-u^{2}}$
$C D \rightarrow v-u$
$D A \rightarrow \sqrt{v^{2}-u^{2}}$
$\therefore \quad$ time taken

$t=\frac{a}{v+u}+\frac{a}{\sqrt{v^{2}-u^{2}}}+\frac{a}{v-u}+\frac{a}{\sqrt{v^{2}-u^{2}}}$
$=\frac{2 a}{\sqrt{v^{2}-u^{2}}}+a\left(\frac{1}{v+u}+\frac{1}{v-u}\right)$
$=\frac{2 a}{\sqrt{v^{2}-u^{2}}}+a\left(\frac{v+u+v-u}{v^{2}-u^{2}}\right)$
$=\frac{2 a}{\sqrt{v^{2}-u^{2}}}+\frac{2 a v}{v^{2}-u^{2}}$
$=2 a\left[\frac{\sqrt{v^{2}-u^{2}}+v}{v^{2}-u^{2}}\right]$
$t=2 a\left[\frac{v+\sqrt{v^{2}-u^{2}}}{v^{2}-u^{2}}\right]$
$t=\frac{2 a}{v^{2}-u^{2}}\left[v+\sqrt{v^{2}-u^{2}}\right]$

Educating for better tomorrow
(b) Along AB

Let w_{1} is the resultant velocity

$$
\begin{aligned}
w_{1} & =\frac{u}{\sqrt{2}}+v \cos \theta \\
& =\frac{u}{\sqrt{2}}+v \sqrt{1-\sin ^{2} \theta}=\frac{u}{\sqrt{2}}+v \sqrt{1-\frac{u^{2}}{2 v^{2}}}
\end{aligned}
$$

Similarly, we can show that

Along BC Resultant velocity

$$
w_{2}=v \sqrt{1-\frac{u^{2}}{2 v^{2}}}-\frac{u}{\sqrt{2}}
$$

Along CD Resultant velocity

$$
w_{3}=v \sqrt{1-\frac{u^{2}}{2 v^{2}}}-\frac{u}{\sqrt{2}}
$$

Along DA Resultant velocity

$$
w_{4}=\frac{u}{\sqrt{2}}+v \sqrt{1-\frac{u^{2}}{2 v^{2}}}
$$

$\therefore \quad$ Total time taken :-

$$
\begin{aligned}
t & =\frac{a}{w_{1}}+\frac{a}{w_{2}}+\frac{a}{w_{3}}+\frac{a}{w_{4}} \\
& =\frac{2 a}{\frac{u}{\sqrt{2}}+v \sqrt{1-\frac{u^{2}}{2 v^{2}}}}+\frac{2 a}{v \sqrt{1-\frac{u^{2}}{2 v^{2}}}-\frac{u}{\sqrt{2}}}=\frac{2 \sqrt{2 a} \sqrt{2 v^{2}-u^{2}}}{v^{2}-u^{2}}
\end{aligned}
$$

6. Let man swim at angle θ with the line $A B$ than it's velocity with respect to ground any time t is as shown.

along y-axis

$$
V_{y}=V \cos \theta=5 \cos \theta
$$

Resonence ${ }^{\text {a }}$ Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL-21
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

So time taken to cross the river $t=\frac{d}{5 \cos \theta}$
and velocity along x-axis

$$
\begin{aligned}
& V_{x}=u-V \sin \theta \quad \Rightarrow \quad \frac{d x}{d t}=\frac{t}{2}-5 \sin \theta \\
& \int_{0}^{x} d x=\int_{0}^{t}\left(\frac{t}{2}-5 \sin \theta\right) d t \\
& x=\frac{t^{2}}{4}-5 t \sin \theta
\end{aligned}
$$

For complete motion $x=0$

$$
\begin{equation*}
\Rightarrow \quad \frac{t^{2}}{4}-5 t \sin \theta=0 \quad \Rightarrow \quad t=20 \sin \theta \tag{ii}
\end{equation*}
$$

by eq (i) and (ii)
$100 \cos \theta \sin \theta=d=48 m$

$$
\begin{array}{lll}
\sin 2 \theta=\frac{24}{25} & \Rightarrow & 2 \theta=\sin ^{-1}\left(\frac{24}{25}\right) \\
2 \theta=74^{\circ} & \Rightarrow & \theta=37^{\circ} \\
2 \theta=106^{\circ} & \Rightarrow & \theta=53^{\circ}
\end{array}
$$

from eq (ii) (ii)

$$
\begin{array}{ll}
\text { for } \theta=37^{\circ} \Rightarrow & t=12 \mathrm{sec} \\
\text { for } \theta=53^{\circ} \Rightarrow & t=16 \mathrm{sec}
\end{array}
$$

also y-coordinate of man

$$
\begin{align*}
& y=5 t \cos \theta \tag{iii}\\
& x=\frac{y^{2}}{100 \cos ^{2} \theta}-y \tan \theta \\
& \quad x=\frac{y^{2}}{64}-\frac{3 y}{4}
\end{align*}
$$

by eq (ii) and (iii)
7. Velocity of helicopter and child is as shown

Now velocity of helicopter with respect to child

$\tan \phi=\frac{\frac{80}{3} \sin \theta-4}{\frac{80}{3} \cos \theta-\frac{16}{3}}=\frac{600}{800} \quad \Rightarrow \quad \tan \theta=\frac{3}{4} \quad \Rightarrow \quad \theta=37$ o
Now horizontal velocity $=\frac{80}{3} \cos \theta-\frac{16}{3}=\frac{80}{3} \cos 37^{\circ}-\frac{16}{3}=16 \mathrm{~m} / \mathrm{s}$
So time taken $=\frac{800}{16}=50 \mathrm{sec}$.

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL-22
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

$8 . \quad \mathrm{t}=0$

$$
\begin{aligned}
& \overrightarrow{\mathrm{V}}_{\mathrm{bg}}= \overrightarrow{\mathrm{V}}_{\mathrm{bt}}+\overrightarrow{\mathrm{v}}_{\mathrm{tg}} \\
& \overrightarrow{\mathrm{~V}}_{\mathrm{bt}}=20 \cos 37^{\circ} \hat{\mathrm{i}}+20 \sin 37^{0} \hat{j} \\
&=20 \times \frac{4}{5} \hat{i}+20 \times \frac{3}{5} \hat{j}=16 \hat{i}+12 \hat{j} \\
& \overrightarrow{\mathrm{v}}_{\mathrm{tg}}=10 \hat{\mathrm{i}} \\
& \therefore \quad \overrightarrow{\mathrm{~V}}_{\mathrm{bg}}=26 \hat{i}+12 \hat{j} \\
& A t \mathrm{t}=0 \quad \mathrm{Xb}=0 \\
& \text { Let they meet after time } \mathrm{t} \\
& X_{b(t)}-X_{b(0)}=26 \mathrm{t} \\
& X_{\text {train(t) }}-X_{\operatorname{tran}(0)}=10 \mathrm{t}+\frac{1}{2} a t^{2}
\end{aligned}
$$

Let The ball return to train after time t

$$
\mathrm{t}=\frac{2 \times 12}{10}=\frac{12}{5} \mathrm{~s}
$$

$$
X_{b(t)}=X_{\text {train (t) }}
$$

$$
16=\frac{1}{2} \text { at }
$$

$$
\frac{32}{\mathrm{t}}=\mathrm{a}=\frac{40}{3} \mathrm{~m} / \mathrm{s}^{2}
$$

$$
V_{\text {train }(t)}=10+a t
$$

$$
V_{\text {train }(t)}=10+\frac{40}{3} \times \frac{12}{5}=10+32=42 \mathrm{~m} / \mathrm{s}
$$

9．Let after time t, A is at P and B is at Q ．Let $T=$ Total time．Their velocities after time t

$$
\begin{align*}
& V_{A}=a t \tag{1}\\
& V_{B}=b t \tag{2}
\end{align*}
$$

Let distance $P Q=x$ ．
Velocity of approch along PQ

$$
\begin{aligned}
& =V_{B}-V_{A} \cos \alpha \\
\Rightarrow \quad & -\frac{d x}{d t}=V_{B}-V_{A} \cos \alpha=b t-a t \cos \alpha
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow \quad-\int_{\ell}^{0} \mathrm{dx}=\int_{0}^{\mathrm{T}}(\mathrm{bt}-\mathrm{at} \cos \alpha) \mathrm{dt} \\
& \Rightarrow \quad \ell=\frac{\mathrm{bT}^{2}}{2}-\mathrm{a} \int_{0}^{\mathrm{T}} \mathrm{t} \cos \alpha \mathrm{dt} \tag{3}
\end{align*}
$$

For motion along x-axis :

$$
\begin{align*}
\int_{0}^{T} V_{B} \cos \alpha d t & =\frac{1}{2} a T^{2} \\
\int_{0}^{T} b t \cos \alpha d t & =\frac{1}{2} a T^{2} \\
\Rightarrow \quad \int_{0}^{T} t \cos \alpha d t & =\frac{1}{2} \frac{a T^{2}}{b} \tag{4}
\end{align*}
$$

Put into (3) :

$$
\begin{aligned}
\ell & =\frac{\mathrm{bT}^{2}}{2}-\mathrm{a} \times \frac{1}{2} \frac{\mathrm{a}^{2}}{\mathrm{~b}} \\
\Rightarrow \quad \mathrm{~T} & =\sqrt{\frac{\ell \mathrm{b}}{\mathrm{~b}^{2}-\mathrm{a}^{2}}}
\end{aligned}
$$

Now, distance travelled by B

$$
\begin{aligned}
s & =\int_{0}^{T} V_{B} d t=\int_{0}^{T} b t d t=\frac{1}{2} b T^{2} \\
\Rightarrow \quad s & =\frac{1}{2} b \cdot \frac{2 \ell b}{b^{2}-a^{2}}=\frac{\ell b}{b^{2}-a^{2}} \text { Ans. }
\end{aligned}
$$

10. $\mathrm{v}=$ velocity of swimmer in still mater $=2.5 \mathrm{~km} / \mathrm{hr}$.
$\mathrm{u}=$ velocity of stream $=2 \mathrm{~km} / \mathrm{hr}$.
For Swimmer 1
Time taken to reach point B

$$
\begin{equation*}
t=\frac{d}{\sqrt{v^{2}-u^{2}}} \tag{1}
\end{equation*}
$$

For Swimmer 2

at $\mathrm{v}_{0}=$ velocity of walking along shore
Time to reach C

$$
t_{1}=\frac{d}{v}
$$

Time taken in coming from C to B

$$
t_{2}=\frac{d \frac{u}{v}}{v_{0}}=\frac{u d}{v v_{0}}
$$

$\therefore \quad$ Total time

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

$$
\begin{align*}
\mathrm{t} & =\mathrm{t}_{1}+\mathrm{t}_{2} \\
& =\frac{\mathrm{d}}{\mathrm{v}}+\frac{\mathrm{ud}}{\mathrm{v} \mathrm{v}_{0}} \tag{2}
\end{align*}
$$

From (1) and (2)

$$
\begin{aligned}
& \frac{d}{\sqrt{v^{2}-u^{2}}}=\frac{d}{v}+\frac{u d}{v v_{0}} \\
\Rightarrow \quad & v_{0}=\left(\frac{\sqrt{v^{2}-u^{2}}}{v-\sqrt{v^{2}-u^{2}}}\right) \times u
\end{aligned}
$$

Putting $u=2$ and $v=2.5 \mathrm{~km} / \mathrm{hr}$;
$\Rightarrow \quad v_{0}=3 \mathrm{~km} / \mathrm{hr}$.
11. We have
$\vec{v}=\vec{v}_{0}+\vec{v}^{\prime}$
From the vector diagram [of equation (1)] and using properties of triangle

$$
v^{\prime 2}=v_{0}{ }^{2}+v^{2}-2 v_{0} v \cos (\pi-\phi)
$$

or, $\quad v^{\prime}=\sqrt{v_{0}^{2}+v^{2}+2 v_{0} v \cos \phi}=40 \mathrm{~km} / \mathrm{hr}$
and $\quad \frac{v^{\prime}}{\sin (\pi-\phi)}=\frac{v}{\sin \theta} \quad$ or, $\quad \sin \theta=\frac{v \sin \phi}{v^{\prime}}$
or

$$
\theta=\sin ^{-1}\left(\frac{v \sin \phi}{v^{\prime}}\right)
$$

Using (2) and putting the values of v and d
$\theta=19^{\circ}$
12.

As given
$\left(V_{A}-V_{B}\right) \infty X_{A}-X_{B}$
$\left(V_{A}-V_{B}\right)=K\left(X_{A}-X_{B}\right)$
when $X_{A}-X_{B}=10$ We have $V_{A}-V_{B}=10$
We get
$10=K 10 \quad \Rightarrow \quad K=1$
$\Rightarrow \quad V_{A}-V_{B}=\left(X_{A}-X_{B}\right)$
Now Let
$x_{A}-x_{B}=y$
On differentiating with respect to ' t ' on both side.
$\Rightarrow \frac{\mathrm{dx}_{\mathrm{A}}}{\mathrm{dt}}-\frac{\mathrm{dx} \mathrm{x}_{\mathrm{B}}}{\mathrm{dt}}=\frac{\mathrm{dy}}{\mathrm{dt}}$
\Rightarrow Using (1) and (2)
$\frac{d\left(x_{A}-x_{B}\right)}{d t}=x_{A}-x_{B}$

$$
\begin{aligned}
& \frac{\mathrm{d}\left(\mathrm{x}_{\mathrm{A}}-\mathrm{x}_{\mathrm{B}}\right)}{\mathrm{x}_{\mathrm{A}}-\mathrm{x}_{\mathrm{B}}}=\mathrm{dt} \\
& \Rightarrow\left[\ln \left(\mathrm{x}_{\mathrm{A}}-\mathrm{x}_{\mathrm{B}}\right)\right]_{10}^{20}=\mathrm{t} \\
& \mathrm{t}=\left(\log _{\mathrm{e}} 2\right) \text { sec }
\end{aligned}
$$

Required Answer.

Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL-25
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

13. (a)

Accelerations of particle and block are shown in figure.
Acceleration of particle with respect to block

$$
\begin{aligned}
& =\text { acceleration of particle - acceleration of block } \\
& =(g \sin \theta \hat{i}+g \cos \theta \hat{j})-(g \sin \theta \hat{i})=g \cos \theta \hat{j}
\end{aligned}
$$

Now motion of particle with respect to block
will be a projectile as shown.
The only difference is, g will be replaced by $g \cos \theta$
$\therefore \quad P Q=$ Range $(R)=\frac{u^{2} \sin 2 \alpha}{g \cos \theta}$

$$
\mathrm{PQ}=\frac{\mathrm{u}^{2} \sin 2 \alpha}{\mathrm{~g} \cos \theta}
$$

Ans.
(b) Horizontal displacement of particle with respect to ground is zero. This implies that initial velocity of particle with respect to ground is only vertical, or there is no horizontal component of the absolute velocity of the particle.
Let v be the velocity of the block down the plane.
Velocity of particle with respect to block $=u \cos (\alpha+\theta) \hat{i}+u \sin (\alpha+\theta) \hat{j}$
Velocity of block $=-v \cos \theta \hat{i}-v \sin \theta \hat{j}$
\therefore Velocity of particle with respect to ground $=\{u \cos (\alpha+\theta)-v \cos \theta\}+\{u \sin (\alpha+\theta)-v \sin \theta\} \hat{j}$
Now as we said earlier with that horizontal component of absolute velocity should be zero.
Therefore,
$u \cos (\alpha+\theta)-v \cos \theta=0$
or $v=\frac{u \cos (\alpha+\theta)}{\cos \theta} \quad$ (down the plane)
$\mathrm{v}=\frac{\mathrm{u} \cos (\alpha+\theta)}{\cos \theta}$ Ans.
14. At $t=0$, raft (a float of timber) and motor boat are at point A. The velocity of raft is equal to velocity of stream.
At $t=\tau=60 \mathrm{~min}$, the motor boat is at point P and raft is at point B.
$\therefore \quad$ The time taken by raft to reach from A to $B=$ the time taken by motor boat to reach at P from A.
At $t=\tau+t_{0}$, both meet at point C,
So, the time taken by raft to reach at C from B is equal to the time taken by the motor boat to reach at C from P in upstream motion. This time is equal to t_{0}.

Let
$\mathrm{V}_{\mathrm{A}}=$ actual velocity of motor boat,
$\mathrm{V}_{\mathrm{B}}=$ actual velocity of stream = velocity of raft
\therefore During down stream,
$\mathrm{V}_{\mathrm{c}}=$ relative velocity of motor with respect to stream.

$$
\begin{array}{ll}
\therefore & \mathrm{V}_{0}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}} \\
\therefore & \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{0}+\mathrm{V}_{\mathrm{B}} \\
\therefore & \tau=\frac{\mathrm{AP}}{\mathrm{~V}_{\mathrm{A}}}=\frac{\mathrm{AP}}{\mathrm{~V}_{0}+\mathrm{V}_{\mathrm{B}}}
\end{array}
$$

But $\mathrm{AB}=$ distance travelled by raft in time $\tau=\mathrm{V}_{\mathrm{B}} \tau$
During upstream,

$$
\mathrm{V}_{0}=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}
$$

$\therefore \quad \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{0}-\mathrm{V}_{\mathrm{B}}$
$\therefore \quad \mathrm{PC}=$ distance travelled by motor boat in upstream in time $\mathrm{t}_{0}=\left(\mathrm{v}_{0}-\mathrm{v}_{\mathrm{B}}\right) \mathrm{t}_{0}$
$\mathrm{BC}=$ distance travelled by raft in time $\mathrm{t}_{0}=\mathrm{V}_{\mathrm{B}} \mathrm{t}_{0}$ According to fig.
$\because \quad A P-P C=A C=\ell$
or $\quad\left(v_{0}+V_{B}\right) \tau-\left(v_{0}-V_{B}\right) t_{0}=\ell$
or $\quad V_{0} t+V_{B} t-V_{0} t_{0}+V_{B} t_{0}=\ell$
Also, $\quad \because A B+B C=\ell$
or $\quad \mathrm{V}_{\mathrm{B}} \mathrm{t}+\mathrm{V}_{\mathrm{B}} t_{0}=\ell$
or $\quad \mathrm{V}_{\mathrm{B}}=\frac{\ell}{\tau+\mathrm{t}_{0}}$
From equation (i) and (ii) we get

$$
\mathrm{V}_{0} \mathrm{t}+\mathrm{V}_{\mathrm{B}} \mathrm{t}-\mathrm{V}_{0} \mathrm{t}_{0}+\mathrm{V}_{\mathrm{B}} \mathrm{t}_{0}=\ell
$$

or $\quad v_{0} \tau+\frac{\ell}{\tau+t_{0}} \tau-v_{0} t_{0}+\frac{\ell}{t_{0}+\tau} t_{0}=\ell$
or $\quad \mathrm{V}_{0} \tau^{2}+\tau \ell-\mathrm{V}_{0} \mathrm{to}^{2}+\ell \mathrm{t}_{0}=\ell\left(\tau+\mathrm{t}_{0}\right)$
or $\quad \mathrm{V}_{0} \tau^{2}-\mathrm{V}_{0} \mathrm{t}_{0}{ }^{2}=\ell\left(\tau+\mathrm{t}_{0}\right)-\tau \ell-\mathrm{t}_{0} \ell$
or $\quad \tau=$ to $_{0}$
From (i) we have

$$
V_{0} \tau+V_{B} \tau-V_{0} t_{0}+V_{B} t_{0}=\ell
$$

putting $\tau=\mathrm{t}_{0}$
we get, $\mathrm{v}_{\mathrm{B}}=\frac{\ell}{2 \tau}$.
15.

time to cross river $t=\frac{d}{u \cos \theta}$
Drift $x=(2 u-u \sin \theta) t=(2 u-u \sin \theta) \frac{d}{u \cos \theta}$
Drift $x=(2 \sec \theta-\tan \theta) d$
$\frac{d x}{d \theta}=\left(2 \sec \theta \tan \theta-\sec ^{2} \theta\right) d=0 \quad \Rightarrow \quad 2 \tan \theta=\sec \theta$
$\theta=30^{\circ}$ with the river flow current
angle with stream $30^{\circ}+90^{\circ}=120^{\circ}$.

Educating for better tomorrow

Reg. \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005	
Website : www.resonance.ac.in \| E-mail : contact@resonance.ac.in	ADVRL-27
Toll Free : 18002585555 \|CIN : U80302RJ2007PLC024029	

